


Yi-Long Chen and De-Ping Yang
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Preface

The chief objective of this book is an extensive and updated description of appli-

cations of Mössbauer effect in lattice dynamics. As an important component of

solid state physics, lattice dynamics is the study of atomic vibrations around their

equilibrium positions in a solid and it therefore leads to a better understanding of

various properties of the solid. Research in lattice dynamics began in the early

20th century. For perfect crystals, lattice dynamics has been developed very suc-

cessfully. Recently, the focus has been on dynamics of various imperfect lattice

systems.

After the discovery of Mössbauer effect, theorists quickly pointed out the possi-

bility of observing the frequency distribution of atomic vibrations in a solid, gðoÞ,
using such an effect. Unfortunately, it did not become reality for many years be-

cause of technical difficulties. The amount of Doppler shift can, at best, only

reach the order of meV. It is difficult to increase it to cover the phonon energy

range (meV) in a stable and reliable manner. Furthermore, the phonon peak is

usually broadened and its intensity is at least two orders of magnitude smaller

than that for the recoilless g-ray resonance process, making it nearly impossible

to measure gðoÞ with sufficiently good statistics.

Although applications of Mössbauer effect in magnetic materials and chemistry

are very extensive, those in lattice dynamics are less straightforward because of

the following reasons. To study lattice dynamics, one must adopt a model (often

the Debye model) for the phonon frequency distribution and must rely on Möss-

bauer measurements of recoilless fraction f and second order Doppler shift dSOD.

These allow us to derive parameters such as mean-square displacement hu2i and

mean-square velocity hv2i of atomic vibrations, Debye temperature yD, force con-

stants, and the effective vibrating mass Meff . There are many challenges in apply-

ing Mössbauer effect in lattice dynamics, which may have been the main reason

why there existed very few books on this subject.

In the last 20 years, new progress in the field has been made, especially due

to the rapid development of synchrotron radiation. In particular, the long-

anticipated direct measurement of a-Fe phonon frequency distribution gðoÞ was
achieved for the first time using synchrotron Mössbauer source in 1995, which

had motivated us to provide a comprehensive and in-depth description of all as-

pects of Mössbauer effect and lattice dynamics in this book.
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There are a total of nine chapters and several appendices. The first three chap-

ters introduce the basics of Mössbauer spectroscopy pertinent to lattice dynamics.

Unlike most of the books on Mössbauer effect, we used the theory of coherent

states to provide a simple yet rigorous derivation of the recoilless fraction f in

Chapter 1. The second chapter deals with an essential part of Mössbauer spectros-

copy, i.e., hyperfine interactions and the consequent polarization of g-rays. Chap-

ter 3 covers the instrumentation and data analysis, with one section especially de-

voted to describing in detail a method for estimating the optimal thickness of an

absorber. The fourth chapter provides the background necessary for interpreting

Mössbauer spectra, with a brief mention of the first-principles lattice dynamics

because it would help us to understand the experimental results. Chapter 5 fo-

cuses on the properties of the two quantities f and dSOD, their dependence on

temperature and pressure, anisotropic behavior of f , as well as the relationship

between f and dSOD. In Chapter 6, scattering of Mössbauer radiation is discussed,

with an emphasis on the understanding of coherence phenomena and the appli-

cations of Rayleigh scattering of Mössbauer radiation (RSMR) in lattice dynamics.

The recent development synchrotron Mössbauer spectroscopy as a scattering

method is described in Chapter 7, which contains a great deal of important and

updated information, such as the excellent properties of synchrotron radiation

(SR), how it makes time-domain Mössbauer spectroscopy possible, how it allows

precise measurement of f in addition to hyperfine interactions, and how to mea-

sure the gðoÞ of a solid directly. In Chapter 8, the Mannheim model is applied to

lattices with very low concentrations of impurity atoms and its success is shown

in several examples of experimental work. Chapter 8 also includes how isotopic

selectivity of Mössbauer effect permits a unique way of studying the dynamics of

impurity atoms. Chapter 9 presents a collection of various experimental results

on metals, alloys, amorphous solids, molecular crystals, thin films, and nanocrys-

tals, to show the versatility and applicability Mössbauer effect in lattice dynamics

today.

This book may be used as a textbook for an advanced undergraduate course or

a graduate course and as a reference book for researchers in Mössbauer spectros-

copy, solid state physics, and related fields.

Special thanks go to our colleague and mutual friend Professor Xielong Yang of
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1

The Mössbauer Effect

1.1

Resonant Scattering of g-Rays

It was at the beginning of the 20th century that resonant scattering of light

became experimentally verified. For example, when a beam of yellow light (the

D-lines) from a sodium lamp goes through a flask with low-pressure sodium

vapor in it, sodium atoms in the 2S ground state will have a relatively large prob-

ability of absorbing the incident photons and making a transition to the excited
2P state (as shown in Fig. 1.1). When these atoms return to the ground state,

they emit a yellow light of the same wavelength (known as resonance fluores-

cence) in all spatial directions. In the original direction of the incident beam, the

light intensity will be substantially reduced. This phenomenon can be considered

as a process of resonant scattering of photons.

In 1929, Kuhn [1] pointed out that a similar g-ray resonant scattering phenom-

enon should also exist for the nuclei. However, research during the next twenty

plus years failed to produce satisfactory experimental results to support his pre-

dictions. The reason was quite clear. Because of the law of momentum conserva-

tion, after emitting a g-ray, the nucleus obtains a velocity in the opposite direction

(recoil). Compared to the recoil velocity of an atom when the atom emits a visible

photon, the nucleus recoils with a velocity several orders of magnitude larger,

takes enough energy away from the emitted g-ray, and prevents the observation

of resonance absorption. We will now discuss this in detail.

Suppose a free nucleus of mass M and initial velocity v is in the excited state Ee,

emitting a g-ray in the x-direction when it returns to the ground state. Figure 1.2

shows the energy levels and recoil of the nucleus, where vx is the x-component of

the initial velocity and vR its recoil velocity (relative to vx). According to momen-

tum conservation and energy conservation, we have

Mvx ¼ Eg

c
þMðvx � vRÞ

Ee þ 1

2
Mvx

2 ¼ Eg þ Eg þ 1

2
Mðvx � vRÞ2

8>><
>>: ð1:1Þ

1



where Eg is the ground state energy of the nucleus and Eg is the energy of the

emitted g-ray. From the above equations, we obtain

Eg ¼ ðEe � EgÞ � 1

2
Mv2R þMvxvR ¼ E0 � ER þ ED; ð1:2Þ

where E0 is the energy difference between the excited state and the ground state

E0 ¼ Ee � Eg; ð1:3Þ

ER is the recoil energy

ER ¼ 1

2
Mv2R ¼ Eg

2

2Mc2
; ð1:4Þ

and ED depends on the initial velocity vx and is due to the Doppler effect (known

as the Doppler energy shift)

ED ¼ MvxvR ¼ vx
c
Eg: ð1:5Þ

We will now consider the following two cases (vx ¼ 0 and vx 0 0) separately.

(a) If vx ¼ 0, then ED ¼ 0. In this case, the excited nucleus is at rest. The

energy spectrum of the emitted g-rays from such nuclei is shown by the dashed

line in Fig. 1.3. The spectrum is a sharp peak centered at E0 � ER, and its width at

Fig. 1.1 Schematic diagram of resonance scattering of light.

Fig. 1.2 Recoil of a nucleus after emitting a g-ray.

2 1 The Mössbauer Effect



the half height is nearly the same as the natural width ðGnÞ of the excited energy

level.

The nuclei in the ground state ðEgÞ may resonantly absorb the incident g-rays

and transit to the excited state ðEeÞ. The energy distribution of these absorbed

g-rays is identical to the emission spectrum, except for a shift of ER to the right

of E0, as shown in Fig. 1.3. The energy difference between the emitted and the

absorbed g-rays is 2ER. Therefore, the fundamental condition necessary for the

photon’s resonant scattering is

Gn

2ER
> 1; ð1:6Þ

that is, the recoil energy must be less than half of the natural width of the excited

state. Comparing the data for the 57Fe nucleus and the sodium atom in Table 1.1,

we can easily see that for the Na atom, condition (1.6) is completely satisfied,

because the emission spectrum and the absorption spectrum are almost overlap-

ping, resulting in very large probability for resonant absorption. For the 57Fe nu-

cleus, however, its Gn=2ER value is far from satisfying condition (1.6). Although

the natural widths Gn of a nucleus and an atom are comparable, the former gives

a much more energetic photon than the latter, usually by three orders of magni-

Fig. 1.3 Emission and absorption g-ray spectra when recoil is present.

Table 1.1 Comparison between photon emissions from the 57Fe nucleus

and the Na atom while each decays from its first excited state to the

ground state.

Eg(eV) Gn (eV) ER (eV) Gn/2ER

57Fe nucleus 14:4� 103 4:65� 10�9 1:95� 10�3 1:2� 10�6

Na atom (D-lines) 2.1 4:39� 10�8 1:0� 10�10 2:2� 102

1.1 Resonant Scattering of g-Rays 3



tude. This makes their ER values differ by more than six orders of magnitude,

and this is the reason why resonant absorption of g-rays is usually not observed.

(b) For vx 0 0, the situation is more common. Because of the random thermal

motions of free atoms, their velocities vx may have large variations, described by

the Maxwell distribution

pðvxÞ dvx ¼ M

2pkBT

� �1=2
exp � M

2kBT
vx

2

� �
dvx

where kB is Boltzmann’s constant and T is the absolute temperature. This distri-

bution will greatly broaden the emission spectrum (or the absorption spectrum),

as indicated by the solid line in Fig. 1.3. This broadening is due to the Doppler

effect, and hence is known as Doppler broadening. Since the width of the above

velocity distribution is 2ð2kBT ln 2=MÞ1=2, the width of the emission spectral line

is then

DED ¼ MvR 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT ln 2

M

r !
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ERkBT ln 2

p
: ð1:7Þ

For 57Fe at T ¼ 300 K, DED ¼ 2:4� 10�2 eV > 2ER. This means that the emission

spectrum partially overlaps the absorption spectrum (the shaded region in Fig.

1.3), and it may be possible to observe some effect of resonant absorption.

1.2

The Mössbauer Effect

1.2.1

Compensation for Recoil Energy

As discussed above, if the nucleus is free to move, the lost energy due to recoil

must be compensated before substantial resonance absorption of g-rays can be ob-

served. Several ingenious experiments were devised to achieve this compensation,

two of which are briefly explained here.

The first experiment made use of mechanical motion of the source [2]. The ra-

dioactive source was mounted on the tip of a high-speed rotor. Due to the Dop-

pler effect, the g-rays acquired an additional energy DE,

DE ¼ v

c
Eg: ð1:8Þ

It was possible to adjust the speed v of the rotor to completely compensate the

recoil energy loss, i.e., ðv=cÞEg ¼ 2ER (for 57Fe, v ¼ 81 m s�1). This experiment

had two problems. First, only during a very short portion of the rotation period

could the emitted g-rays be used in the experiment, and thus the source was

largely under-utilized. Second, the experiment was limited by the maximum ob-

4 1 The Mössbauer Effect



tainable speed of the mechanical rotor and especially by the poor stability of the

rotor speed.

The second experiment used the fact described in Eq. (1.7) that the Doppler

broadening is increased by raising the temperature. As a result, it would cause

increases in the overlapping region in Fig. 1.3, and therefore increases in the

probability of resonance absorption.

By the above means, the phenomenon of g-ray resonant absorption had been

observed before 1954, but a major shortcoming was that these resonance absorp-

tion experiments all involved recoil, which would never be practically significant

due to low g-ray counts and poor energy resolution. A historic discovery by Möss-

bauer of resonant absorption without recoil completely eliminated the need for the

above effort to compensate the energy loss. We will now describe this discovery.

1.2.2

The Discovery of the Mössbauer Effect

In 1958, Rudolf L. Mössbauer [3] was investigating the resonant absorption of the

129 keV g-ray in 191Ir nucleus and discovered that if the source nuclei 191Os and

absorber nuclei 191Ir were rigidly bound in crystal lattices, the recoil could be ef-

fectively eliminated and the resonant absorption was readily observed.

In a crystal lattice, an atom is held in its equilibrium position by strong

chemical bonds corresponding to an energy of typically 10 eV. For the 129 keV

transition in free 191Ir nucleus (Fig. 1.4), the recoil energy is 4:7� 10�2 eV,

much smaller than the chemical bond energy. Therefore, from the classical view-

point, when the g-ray is emitted by a nucleus bound in a lattice, the nucleus will

not recoil alone, but the entire crystal lattice recoils together (a total of about 1018

atoms). In this case, the mass M in the denominator of Eq. (1.4) should be the

mass of the whole crystal, not the individual nucleus. This reduces the recoil en-

ergy to a negligible amount (@10�20 eV). Consequently, Eq. (1.6) is satisfied, Eq.

(1.2) is simplified to EgAE0, and the entire process becomes a recoilless resonant

absorption. A more exact explanation of this phenomenon is given by a quantum

mechanical description in Section 1.5.

Fig. 1.4 Decay scheme of 191Os.

1.2 The Mössbauer Effect 5



In Mössbauer’s first experiment where he observed recoilless resonance

absorption of g-rays, the radiation source was a crystal containing 191Os and the

absorber was an iridium crystal, both at a temperature of 88 K. A platinum (Pt)

comparison absorber of the same thickness was used to measure the background.

Because the process was recoilless, the Doppler velocity only needed to be small,

about several centimeters per second. The results from that first experiment are

reproduced in Fig. 1.5, where the horizontal axis represents the g-ray energy vari-

ation DE (or source velocity v). When the source is moving towards the absorber,

v > 0, and when the source is moving away from the absorber, v < 0. The vertical

axis represents the relative change in the g-ray intensity, ðIIr � IPtÞ=IPt, where IIr
and IPt are the g-ray intensities transmitted through the Ir and Pt absorbers,

respectively.

As shown in Fig. 1.5 and pointed out by Mössbauer, the width of the spectrum

is 4:6� 10�6 eV, which is just slightly more than twice the natural width of the

129 keV energy level of 191Ir. Never before had such a high resolution in energy

ðDE=EA3:5� 10�11Þ been achieved, and Mössbauer’s research results were fun-

damentally different from what anyone had previously obtained from g-ray reso-

nant scattering, because he observed g-ray emission and absorption events in

which the recoil was completely absent. Not too long after the discovery of recoil-

less g-ray emission and resonant absorption, this effect was named after its dis-

coverer and is now known as the Mössbauer effect.

In reality, the Mössbauer nucleus is not rigidly bound, but is usually free to

vibrate about its equilibrium position. Photons may exchange energy with the

lattice, resulting in the creation or annihilation of quanta (phonons) of lattice

vibrations. Suppose we have an Einstein solid with one vibrational frequency o,

then the lattice can only receive or release energies in integral multiples of �ho
ð0;G�ho;G2�ho; . . .Þ. So if ER < �ho, the lattice cannot absorb the recoil energy,

i.e., the zero phonon process, and the g-ray is emitted without recoil. The proba-

bility of having such a process is known as the recoilless fraction f , an extremely

important parameter in Mössbauer spectroscopy.

Fig. 1.5 Resonance absorption curve of the 129 keV g-rays by 191Ir.
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In a typical lattice, both ER and �ho are in the ranges 10�3 to 10�1 eV. Obviously,

the value of f depends on how ER compares with �ho. Only when ER f �ho will f
be reasonably large (see Fig. 1.6). As we derive it later (see Section 1.5.4), accord-

ing to Lipkin’s sum rule, when a large number of absorption events are consid-

ered, the average energy transferred to the lattice must be exactly equal to ER.

Let a total of m g-photons with Eg be absorbed among which n of them cause

zero phonon creation and the rest ðm � nÞ photons each excites a single phonon

(neglecting double phonons), then

mER ¼ ðm � nÞ�ho:

Based on the Einstein model, we arrive at an approximate expression for the

recoilless fraction

f ¼ n

m
¼ 1� ER

�ho
: ð1:9Þ

It can be seen from this expression that, in order to observe the Mössbauer effect,

the recoilless fraction f should be sufficiently large, and we would like to have the

following condition between ER and �ho:

ER f �ho: ð1:10Þ

A more precise expression for the recoilless fraction is

f ¼ e�k2hx 2i

where hx2i is the mean square displacement of a nucleus along the direction of

the wave vector k of the emitted g-ray. This expression points out that in a liquid

Fig. 1.6 Emission and absorption spectra of g-rays when ER f �ho.

1.2 The Mössbauer Effect 7



or a gas, the Mössbauer effect is extremely difficult to observe because of the large

hx2i values. Also, a small k value would give a large f value, and therefore g-rays

with lower energies will favor the observation of the Mössbauer effect. At present,

the Mössbauer effect has been observed from more than 100 nuclear isotopes

(e.g., 57Fe, 119Sn, 191Ir, etc.), among which one of the highest g-ray energies is

187 keV in 190Os. For a g-ray energy higher than 100 keV, the source and the ab-

sorber are usually kept at low temperatures to reduce their hx2i values.

1.3

The Mössbauer Spectrum

1.3.1

The Measurement of a Mössbauer Spectrum

To facilitate our discussions in the first two chapters, the basic principles of mea-

suring a Mössbauer spectrum will be given, before the experimental details in

Chapter 3.

The shape of a resonance curve is often used to characterize the properties of

the resonance system. For example, we can obtain the natural width Gn of the ex-

cited energy state from the linewidth of the measured g-ray resonance curve and

estimate the life time of the energy state according to the uncertainty relation

tGn @ �h. A Mössbauer spectrum is a recoil-free resonance curve. To measure

this, we no longer need those high-speed rotors, but it is still necessary to use

the Doppler effect for modulating the g-ray energy Eg within a small energy

range, Egð1G v=cÞ. A velocity transducer with the mounted source moves with re-

spect to the absorber and the emitted g-ray energy is therefore modulated, as

shown in Fig. 1.7. A Mössbauer absorption spectrum, shown on the right of Fig.

1.7, is a record of transmitted g-ray counts through the absorber as a function of

g-ray energy, whose linewidth has a minimum value of Gs þ Ga (the sum of the

natural widths of the Mössbauer nuclei in the source and the absorber).

Fig. 1.7 Measuring a M€oossbauer spectrum.
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For the sake of simplicity, it is customary to use the source velocity (in mm s�1)

to label the energy axis. To obtain the energy value, one simply multiplies the ve-

locity by a constant Eg=c, and for 57Fe, Eg=c ¼ 4:8075� 10�8 eV mm�1 s.

1.3.2

The Shape and Intensity of a Spectral Line

After a Mössbauer resonant absorption, the nuclear excited state is an isomeric

state, which can only decay to the ground state through g-ray emission or internal

conversion. The cross-section of resonant absorption of g-rays (as a function of

photon energy E) is described by the Breit–Wigner formula [1, 4]:

saðEÞ ¼ s0G
2
a=4

ðE � E0Þ2 þ G2
a=4

ð1:11Þ

where

s0 ¼ l2

2p

1þ 2Ie
1þ 2Ig

1

1þ a
ð1:12Þ

is the maximum resonance cross-section, E0 and l are the energy and wavelength

of the g-ray, Ie and Ig are, respectively, the nuclear spins of the excited and the

ground states, and a is the internal conversion coefficient.

Because its excited state has a certain width Gs, the emitted g-rays from the

source are not completely monochromatic, but follow the Lorentzian distribution

around E0

LðEÞ dE ¼ Gs

2p

1

ðE � E0Þ2 þ G2
s =4

dE ð1:13Þ

where

ð
LðEÞ dE ¼ 1: ð1:14Þ

Therefore, in a situation where both the source and the absorber are very thin, the

observed resonance absorption curve can be calculated by a convolution integral

sexp
a ðEÞz

ðþy

�y
LðE � xÞsðxÞ dx ¼ s0Ga

Ga þ Gs

Gs þ Ga

2

� �2
ðE � E0Þ2 þ Gs þ Ga

2

� �2 ð1:15Þ

and it is clear that the line shape is also Lorentzian, similar to Eq. (1.13) except

that the linewidth becomes Gs þ Ga. In reality, because of the finite thicknesses

of the source and absorber, the emission and absorption spectral linewidths Gs
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and Ga would be larger than the natural width Gn (for 57Fe, GnA0:097 mm s�1),

and the observed resonance line would be broader than 2Gn.

We now discuss in detail how the thickness of an absorber influences the

shape and intensity of a transmission spectrum. Let the total intensity of the

g-ray emitted by Mössbauer nuclei be I0, of which only a part Ir is recoil free and

distributed according to a Lorentzian shape:

IrðE; v; 0Þ ¼ fsI0L E � v

c
E0

� �

where fs and v are the recoilless fraction and the Doppler velocity of the source.

Going through the absorber, g-ray intensity is reduced because of two absorption

processes, a non-resonance atomic absorption (mainly the photoelectric effect)

with a mass absorption coefficient of ma (ma values for different elements are tabu-

lated in Appendix H) and a Mössbauer resonance absorption with an absorption

coefficient of mr:

mrðEÞ ¼ na f saðEÞ ð1:16Þ

where na is the number of Mössbauer nuclei in the absorber per unit mass and f
is the recoilless fraction of the absorber. Considering both of these absorption

processes, the g-ray intensity decreases exponentially after transmitting an ab-

sorber thickness d (mg cm�2):

IrðE; v; dÞ ¼ fsI0L E � v

c
E0

� �
e�ðmaþmrÞd: ð1:17Þ

According to this, at a given Doppler velocity of the source, the intensity of the

recoil-free g-ray detected should be an integral over the energy:

Irðv; dÞ ¼
ðþy

�y
IrðE; v; dÞ dE ¼ fsI0e

�madTðvÞ ð1:18Þ

where

TðvÞ ¼
ðþy

�y
L E � v

c
E0

� �
AðEÞ dE; ð1:19Þ

AðEÞ ¼ exp½�mrðEÞd� ¼ exp½�sðEÞta�; ð1:20Þ
sðEÞ ¼ saðEÞ=s0;
ta ¼ na f s0d: ð1:21Þ

TðvÞ is known as the transmission integral. As defined in Eq. (1.21), ta is called

the effective thickness of the absorber, and is temperature dependent in the

same manner as f .
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The rest of the g-rays are emitted with recoil, and they are distributed in a

rather broad energy range (Fig. 1.6) and absorbed solely due to the non-resonant

absorption process. Thus, the intensity after absorption is independent of the

Doppler velocity v and can be expressed as

IðdÞ ¼ I0ð1� fsÞe�mad: ð1:22Þ

Combining Eqs. (1.18) and (1.22), we obtain the total intensity recorded by the

detector (whose efficiency is assumed to be 100%) as

Iðv; dÞ ¼ Irðv; dÞ þ IðdÞ ¼ Iðy; dÞ½1� fs þ fsTðvÞ� ð1:23Þ

where Iðy; dÞ ¼ I0 expð�madÞ is the spectral baseline corresponding to v ¼ y.

If we neglect hyperfine interactions for the time being, the fractional intensity

of the absorbed of g-rays at a Doppler velocity v can be defined as

eðvÞ ¼ Iðy; dÞ � Iðv; dÞ
Iðy; dÞ ¼ fs½1� TðvÞ� ð1:24Þ

which describes the shape of the absorption spectrum. According to Appendix A

or Ref. [5], the fractional intensity eðvÞ can be obtained analytically and, at reso-

nance v ¼ vr ¼ 0, eðvÞ reaches its maximum

eðvrÞ
fs

¼ 1� e�ta=2I0
ta
2

� �
� 2e�ta=2

Xy
n¼1

x� 1

xþ 1

� �n
In

ta
2

� �
ð1:25Þ

which is explicitly expressed in terms of x ¼ Gs=Ga. In the above equation, In is

the modified Bessel function of the first kind of order n. If Gs ¼ Ga, thus x ¼ 1,

Eq. (1.25) becomes

eðvrÞ ¼ fs 1� e�ta=2I0
ta
2

� �� �
ð1:26Þ

which is a well-known result independent of both linewidths.

Next, we discuss the contribution of the third term in eðvrÞ, which will be ab-

breviated as e3:

e3 ¼ �2e�ta=2
Xy
n¼1

x� 1

xþ 1

� �n
In

ta
2

� �
: ð1:27Þ

The value of eðvrÞ= fs in Eq. (1.25) is plotted in Fig. 1.8 as a function of ta and x.

Regardless whether n is even or odd, Inðta=2Þ is always positive. Therefore, the

sign of e3 is determined by the factor ðx� 1Þ=ðxþ 1Þ. When x < 1, e3 > 0, and

when x > 1, e3 < 0. The effect of this third term e3 is clearly demonstrated in
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Fig. 1.8. The curve with x ¼ 1 is completely consistent with those given in Ref.

[6]. In practice, cases with x > 1 are hardly observed and x < 1 is in the majority.

Therefore, the influence of the third term on eðvrÞ is essentially the addition of

a positive contribution. Obviously, when ta < 1, such an influence becomes negli-

gible regardless of the value of x.

In fact, the above argument can be understood in the following straightforward

way. In the case where Gs < Ga (or x < 1), the absorber in some sense looks like a

‘‘black absorber’’ [7] absorbing the majority of resonant g-rays. In other words,

the resonant g-rays, as a whole, have a higher probability of becoming absorbed.

Based on the above results, a transmission Mössbauer spectrum is sketched in

Fig. 1.9 where Ib represents the background counts. During the above derivation,

we assumed that the intensity was corrected by Ib.
As long as the ‘‘thin absorber approximation’’ ðta < 1Þ is valid, one only need to

take the first two terms in the polynomial expansion of AðEÞ in Eq. (1.20). Then

the fractional absorption intensity described in Eq. (1.24) can be easily written as

Fig. 1.8 eðvrÞ= fs as a function of ta for x ¼ 0:7; 1:0, and 1.3 [5].

Fig. 1.9 Contributions to the M€oossbauer spectrum in transmission geometry.
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eðvÞ ¼ fs½1� TðvÞ� ¼ fs

ðþy

�y
L E � v

c
E0

� �
1� exp � tasa

s0

� �� �
dE

A fs

ðþy

�y
L E � v

c
E0

� �
taðGa=2Þ2

ðE � E0Þ2 þ ðGa=2Þ2
dE

¼ Ga

Gs þ Ga

fsta
Gs þ Ga

2

� �2
v

c
E0

� �2
þ Gs þ Ga

2

� �2 : ð1:28Þ

This means when ta < 1, the spectral shape is still Lorentzian. At resonance, ex-

pression (1.25) becomes identical to (1.28), only if ta < 1 and Gs ¼ Ga. The area of

the absorption spectrum has been accurately calculated [4]:

AðtaÞ ¼ fsGap
ta
2

exp � ta
2

� �
J0 i

ta
2

� �
þ J1 i

ta
2

� �� �
ð1:29Þ

where J0 and J1 are the zeroth- and first-order Bessel functions. Important param-

eters of a Mössbauer spectrum are the height, width, area, and position of a spec-

tral line. Because of the constraint in Eq. (1.29), only two of the first three param-

eters are independent.

As the absorber thickness increases, the area AðtaÞ, as well as eðvrÞ, deviates
considerably from its linearity with ta and gets saturated (see Figs. 1.10 and 1.8).

Interpretation of Mössbauer spectra is often complicated by such a saturation ef-

fect due to a finite absorber thickness. A comparison between Figs. 1.10 and 1.8

shows how the area AðtaÞ saturates much less rapidly than eðvrÞ. A further analy-

sis reveals that the spectral shape remains Lorentzian for up to taA10.

Notice that eðvÞ describes the shape of the spectrum and obviously depends on

both Gs and Ga, while the area AðtaÞ is an integral of eðvÞ over the Doppler velocity
range (see Appendix A) and is only dependent on Ga.

Fig. 1.10 AðtaÞ as a function of ta. In plotting this curve, the

proportionality constant ð fsGapÞ in Eq. (1.29) is taken to be 1.
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1.4

The Classical Theory

Although the Mössbauer effect is a quantum mechanical effect, its main features

can be also derived by the classical theory. The first comprehensive classical

description was provided by Shapiro [8]. A radioactive nucleus, as a classical oscil-

lator, does not experience a recoil effect and emits an electromagnetic wave of fre-

quency o0. The distribution in frequency is entirely determined by the Doppler

effect. Thus, the corresponding vector potential at distance x0 from the source is

then

AðtÞ ¼ Að0Þ expð�gtÞ exp½iðo0t� kx0Þ� ð1:30Þ

where g is the damping coefficient, which is half of the natural width of the ex-

cited state, g ¼ Gn=2. If thermal motion of the nucleus is neglected, the distance

x0 will be constant. As a result, leaving out the last phase factor in Eq. (1.30) has

no effect on the recoilless fraction. Thus the radiation intensity as a function of

frequency is

IðoÞ ¼ I0
ðGn=2Þ2

ðo0 � oÞ2 þ ðGn=2Þ2
: ð1:31Þ

In reality, the nucleus in a solid undergoes inevitable thermal motion around

its equilibrium position. From the classical point of view, this motion modulates

the electromagnetic wave due to the Doppler effect. Let vðtÞ be the velocity com-

ponent of the nucleus in the direction of g-ray propagation. The phase of the wave

is modulated and becomes

fðtÞ ¼
ð t
�y

o0 1þ vðt 0Þ
c

� �
dt 0 ¼ o0tþ 2pxðtÞ

l
ð1:32Þ

where xðtÞ is the instantaneous displacement of the nucleus away from its equi-

librium position in the direction of the g-ray propagation, and may be expressed

as

xðtÞ ¼ x0 sin Wt ð1:33Þ

where we have used W ðWfo0Þ to represent the frequency of the thermal mo-

tion of all Mössbauer nuclei (as is the case with the Einstein model). Incorporat-

ing the phase modulation into Eq. (1.30), the vector potential becomes

AðtÞ ¼ Að0Þ expð�io0t� Gnt=2Þ expðikx0 sin WtÞ: ð1:34Þ
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If we expand the last phase factor into a sum of Bessel functions,

expðikx0 sin WtÞ ¼
Xþy

�y

Jnðkx0Þ expð�inWtÞ;

Eq. (1.34) can be written as

AðtÞ ¼ Að0Þ
Xþy

n¼�y

Jnðkx0Þ expð�Gnt=2Þ expð�io0t� inWtÞ:

Consequently, the normalized distribution of radiation intensity is

IðoÞ ¼ I0
Xþy

n¼�y

½ Jnðkx0Þ�2 ðGn=2Þ2
ðo� o0 � nWÞ2 þ ðGn=2Þ2

: ð1:35Þ

It is clear that this radiation includes one spectral line unshifted in frequency

ðo0Þ as well as a series of satellite lines with frequencies o0 GW, o0 G 2W,

o0 G 3W, etc. Each spectral line has a Lorentzian shape with a width of Gn, and

its intensity is described by the respective coefficient, i.e., the square of the Bessel

function value (Fig. 1.11). Therefore, the recoilless fraction is f ¼ ½ J0ðkx0Þ�2.
For a low-energy radiation, we have kx0 f 1, and

ln f A2 ln 1� k2x2
0

4

 !
A� k2x2

0

2

or,

f ¼ e�k2hx2i ð1:36Þ

where hx2i ¼ x02=2 is the mean square of the displacement of the nuclear vibra-

tion. This result is identical to the quantum mechanical result to be derived next.

Fig. 1.11 Intensity distribution of g-ray emission from a classical oscillator.

1.4 The Classical Theory 15



1.5

The Quantum Theory

Mössbauer [3] and later Visscher [9] derived the f fraction based on the theory of

neutron resonance scattering from nuclei bound in a solid [10]. Soon after, Lipkin

[11] simplified the derivation of the f fraction. Singwi and Sjölander [12] used a

method developed by van Hove [13] to arrive at this result. The reader may find

an abundance of relevant references.

In the 1960s, a theoretical method was developed using coherent states [14, 15]

(also known as pseudo-classical quantum states). The concept of coherent states

has attracted attention from researchers in many areas of physics, and recently

found a wide range of applications. The earliest and the most complete studies

of the coherent states were those of the harmonic oscillators [16, 17], and these

coherent states provide an extremely convenient way of describing certain partic-

ular states of vibration. Because harmonic oscillation is an important model for

describing the structure and motion of matter on the microscopic scale, the

method of coherent states is especially useful in research fields such as studying

interactions between radiation and matter. This method not only provides a direct

analogy to the classical theory, but also greatly simplifies the calculation. Recently,

Bateman et al. [18] calculated the recoilless fraction f for Mössbauer effect using

coherent states. Here, we will use this new approach to the derivation of recoilless

fraction f .

1.5.1

Coherent States of a Harmonic Oscillator

The Hamiltonian of a one-dimensional harmonic oscillator is

H ¼ p̂p2

2m
þ 1

2
mo2x̂x2: ð1:37Þ

Instead of using the position and momentum operators x̂x and p̂p, we will intro-

duce an annihilation operator âa and a creation operator âaþ:

âa ¼
ffiffiffiffiffiffiffiffi
mo

2�h

r
x̂x þ i

mo
p̂p

� �
; ð1:38Þ

âaþ ¼
ffiffiffiffiffiffiffiffi
mo

2�h

r
x̂x � i

mo
p̂p

� �
: ð1:39Þ

Solving for x̂x and p̂p from the above definitions, we obtain

x̂x ¼
ffiffiffiffiffiffiffiffiffiffi
�h

2mo

r
ðâaþ þ âaÞ; ð1:40Þ

p̂p ¼ i

ffiffiffiffiffiffiffiffiffiffi
m�ho

2

r
ðâaþ � âaÞ: ð1:41Þ
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Substituting into the Hamiltonian, it becomes quite simple

H ¼ �ho âaþâaþ 1

2

� �

and âaþâa is known as the number operator N̂N, and its eigenstates jni are also ei-

genstates of the Hamiltonian

Hjni ¼ Enjni ¼ �ho âaþâaþ 1

2

� �
jni ¼ �ho nþ 1

2

� �
n ¼ 0; 1; 2; . . . ð1:42Þ

N̂Njni ¼ âaþâajni ¼ njni: ð1:43Þ

This means that each eigenvalue of N̂N is the number of energy quanta �ho in the

number state jni. Any excited state jni can be generated by repeatedly applying

the creation operator on the ground state j0i:

jni ¼ 1

ðn!Þ1=2
ðâaþÞnj0i ð1:44Þ

where all possible n values are included, and these states jni form a complete

orthonormal set. We will introduce an important concept, the coherent state,

defined as the following linear combination of these states:

jai ¼ e�ð1=2Þjaj2 X
n

an

ðn!Þ1=2
jni ð1:45Þ

where a may be any complex number, as is proved later. If we substitute (1.44)

into (1.45), a coherent state may also be expressed in terms of j0i:

jai ¼ D̂DðaÞj0i; ð1:46Þ

where D̂DðaÞ is called the displacement operator

D̂DðaÞ ¼ expðaâaþ � a�âaÞ: ð1:47Þ

Among all the coherent states ever developed, harmonic oscillator coherent states

were the earliest ones and are now the most widely applied. Interestingly, the co-

herent states represent those states in which the uncertainty relation takes the

minimum value (i.e., they describe situations that best resemble classical sys-

tems). The squares of standard deviations of position x and momentum p are

Dx2 ¼ hajx2jai� hajxjai2 ¼ �h

2mo
; ð1:48Þ

Dp2 ¼ hajp2jai� hajpjai2 ¼ �hmo

2
: ð1:49Þ
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The product of the standard deviations is the smallest possible value allowed by

the uncertainty principle

DxDp ¼ �h

2
:

It is because of this property of satisfying the minimum uncertainty that these

quantum states are also known as pseudo-classical coherent states.

For any coherent state, we can show that

âajai ¼ ajai; ð1:50Þ
hajâaþ ¼ haja�: ð1:51Þ

Since âa is not a Hermitian operator, a is a complex eigenvalue. It is easily verified

that the jai eigenstates are normalized, but not orthogonal. However, they con-

stitute an overcomplete set, represented by

1

p

ð
jaihaj d2a ¼ ÎI ð1:52Þ

where ÎI is the unitary operator. This is a very useful operator, because any other

operator, particularly the density operator r̂r, may be expressed in the coherent

state basis as

r̂r ¼ 1

p

ð
pðaÞjaihaj d2a: ð1:53Þ

This is the p-representation of the density operator r̂r. For oscillators at tempera-

ture T in thermal equilibrium [19]

pðaÞ ¼ 1

hni
exp½�jaj2=hni� ð1:54Þ

where

hni ¼ exp½��ho=kBT �
1� exp½��ho=kBT � ð1:55Þ

and kB is Boltzmann’s constant. Therefore, using pðaÞ as a weight function, the

thermal average of any physical quantity can be evaluated in the coherent state

basis.
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1.5.2

Gamma Radiation from a Bound Nucleus

Suppose that an atom is not free but moving in the potential of a harmonic oscil-

lator. Although the motion of this atom may not be identical to that in a crystal,

this approximation can lead to the basic characteristics of the Mössbauer effect.

Let the initial state of the atom before irradiating a g-ray be the ground state j0i
of the harmonic oscillator. As can be seen in (1.42), this state is not an eigenstate

of the momentum operator p̂p, and it is impossible to immediately write down

its final state through momentum conservation. However, the set of eigenstates

of the momentum operator constitute a complete orthonormal set jk 0i, and we

may expand j0i in this set as follows:

j0i ¼
X

jk 0ihk 0j0i: ð1:56Þ

When an energy transition occurs within a nucleus at t ¼ 0, a g-ray with

k ¼ Eg=c�h is emitted in the x-direction. The momentum of the atom must change

from �hk 0 to �hðk 0 � kÞ in order to conserve momentum, and the final state of the

atom’s motion can be written as

j f i ¼
X
k 0

jk 0 � kihk 0j0i: ð1:57Þ

It is obvious that e�ikx̂x is a displacement operator of k, thus

e�ikx̂xjki ¼ jk 0 � ki: ð1:58Þ

When this is substituted into (1.57), the final state is given by

j f i ¼ e�ikx̂xj0i: ð1:59Þ

Contrary to the case of the free atom, the final state (1.59) is not an eigenstate of

the Hamiltonian (1.37) and therefore does not have a well-defined energy. This

means that one cannot predict the energy of the g-ray in advance, but can only

provide a probability description. Let us again expand j f i in the complete set

jni of eigenstates (1.44):

j f i ¼
X
n

jnihnj f i ¼
X
n

jnihnje�ikx̂xj0i ð1:60Þ

where we have used Eq. (1.59). The probability that the atom is found in the state

jni with energy ðnþ 1=2Þ�ho is given by the square of the expansion coefficient in
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(1.60). Thus, the probability for the atom to remain in the ground state j0i after

the g-emission is none other than the recoilless fraction f of the Mössbauer

effect:

f ¼ jh0je�ikx̂xj0ij2: ð1:61Þ

To evaluate f , we express the operator e�ikx̂x in terms of the annihilation operator

âa and the creation operator âaþ by using (1.40)

�ikx̂x ¼ aâaþ � a�âa a ¼ �ik
�h

2Mo

� �1=2
ð1:62Þ

where M is the mass of the nucleus. According to (1.47), the operator e�ikx hap-

pens to be a displacement operator D̂D, and the final state j f i is a coherent state

e�ikx̂xj0i ¼ eðaâa
þ�a � âaÞj0i ¼ jai ¼ e�ð1=2Þjaj2 X

n

an

ðn!Þ1=2
jni: ð1:63Þ

Applying this to (1.61) and taking account of the orthogonal property of the states

jni, we obtain

f ¼ e�jaj2 :

Substituting the value for a (1.62) into this, we have

f ¼ e�k2ð�h=2MoÞ: ð1:64Þ

As defined in (1.4), the recoil energy is ER ¼ 1

2
Mv2 ¼ p2

2M
¼ k2�h2

2M
, and we can ex-

press f in terms of ER:

f ¼ e�ER=�ho ð1:65Þ

which is consistent with (1.9).

On the other hand, using a special property of a harmonic oscillator that its av-

erage kinetic energy is one half of the total energy (for the ground state, total en-

ergy is 1
2 �ho),

1

2
Mo2hx2i ¼ 1

2

1

2
�ho

� �
; or hx2i ¼ �h

2Mo

and substituting into (1.64), we obtain

f ¼ e�k2hx 2i ð1:66Þ

which is exactly the same as (1.36).
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We know that the harmonic oscillator potential well has a parabolic shape. The

larger the o-value is, the narrower the potential well, and consequently the Möss-

bauer nucleus is bound more tightly. Based on the above expressions for the re-

coilless fraction f , if o is increased such that �hogER, hx2i would be very small,

and the f -value could be appreciable.

Finally, it needs to be noted that the recoilless fraction f can also be expressed

in terms of the coherent states jai. Since D̂D�ðaÞD̂DðaÞ ¼ 1, we can also write for-

mula (1.61) as

f ¼ jh0je�ikx̂xD̂D�ðaÞD̂DðaÞj0ij2 ¼ jhaje�ikx̂xjaij2: ð1:67Þ

From the viewpoint of calculating the recoilless fraction f , both the number state

basis and the coherent state basis are identical; the latter, however, has an im-

mense advantage shown in the next section.

1.5.3

Mössbauer Effect in a Solid

We will now treat the actual situation in the Mössbauer effect where the g-source

nucleus is bound in a solid. Owing to thermal motion, the lth nucleus is dis-

placed from its equilibrium position l by a distance uðlÞ, and therefore its instan-

taneous position is R l ¼ l þ uðlÞ. After it emits a g-ray, the nucleus makes a tran-

sition from its initial state jii to the final state j f i. Because of this, the lattice

may have a corresponding transition from its initial phonon state jnii to jnf i.
The nuclear force causing this transition is the strong force, but its range is ex-

tremely short, well within the nucleus itself, and it would not perturb the bond-

ing and motion of the atoms in the solid. On the other hand, the bonding forces

between the atoms in the solid are relatively weak, and would have negligible ef-

fect on the transition process taking place inside the nucleus. Therefore, these

two processes can be considered independent of each other and the overall tran-

sition matrix element is the product of the matrix element of the phonon state

transition and that of the nuclear transition [18, 19]:

hnf j expð�ik � R lÞjniih f jaðkÞjii:

The nuclear transition h f jaðkÞjii is solely determined by the nuclear proper-

ties, regardless of its lattice position. Here, we are only interested in the matrix

element describing a phonon state transition from jnii to jnf i due to the emis-

sion of a g-photon and a transfer of momentum �hk from the nucleus to the lat-

tice. The probability of the phonon transition is proportional to

pðnf ; niÞ ¼ jhnf j expð�ik � R lÞjniij2: ð1:68Þ

After summing pðnf ; niÞ over all possible final states including those in the pre-

sence and the absence of recoil, we find the normalization condition:
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X
f

jhnf j expð�ik � R lÞjniij2

¼
X
f

hnij expðik � R lÞjnf ihnf j expð�ik � R lÞjnii ¼ 1: ð1:69Þ

The relative probability of g-emission without recoil is the recoilless fraction f
written as

f ¼
X
f

jhnf j expð�ik � R lÞjniij2dðEf � EiÞ: ð1:70Þ

At temperature T , the initial phonon states may follow a particular distribution

pniðTÞ, and Eq. (1.70) is then multiplied by pniðTÞ and summed over all initial

states ni. For the sake of simplicity, we assume that the equilibrium position of

the radioactive nucleus to be at the origin, thus R l ¼ uðlÞ, and

f ¼
X
i

X
f

pniðTÞjhnf j expð�ik � uðlÞÞjniij2dðEf � EiÞ

¼ jhhnij expð�ik � uðlÞÞjniiiT j2 ð1:71Þ

where h� � �iT represents the thermal average.

In order to evaluate f in the coherent state basis, we start by expressing

the component of uðlÞ in the k-direction through the normal coordinates qs
ðs ¼ 1; 2; 3; . . . ; 3NÞ as

ukðlÞ ¼ 1ffiffiffiffiffi
M

p
X3N
s¼1

Bkðl; sÞqs; ð1:72Þ

with the normalization condition

X3N
s¼1

jBkðl; sÞj2 ¼ 1: ð1:73Þ

Each qs may be represented by the operators âaþs and âas:

qs ¼
ffiffiffiffiffiffiffiffi
�h

2os

s
ðâaþs þ âasÞ; ð1:74Þ

where os is the sth modal angular frequency. For a crystal of 3N independent nor-

mal mode oscillators, we must use the product of 3N individual coherent states

jfasgi1
Q

s jasi instead of the number states in (1.71), and

f ¼ jhhfasgje�ik�uðlÞjfasgiiT j2: ð1:75Þ
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The matrix elements may be written as follows:

hfasgje�ik�uðlÞjfasgi

¼
Y
s

hasj exp �ik
�h

2Mos

� �1=2
Bkðl; sÞðâaþs þ âasÞ

" #
jasi: ð1:76Þ

Since the operators âaþs and âas do not commute, but ½âaþs ; âas� ¼ �1, we apply

Glauber’s formula

eâa
þ
s þâas ¼ eâa

þ
s eâase�ð1=2Þ½âaþs ;âas� ð1:77Þ

to simplify (1.76). Letting kð�h=2MosÞ1=2Bkðl; sÞ ¼ rs, we have

e�irsðâaþs þâasÞ ¼ e�irs âa
þ
s e�irs âase�ð1=2Þr2s : ð1:78Þ

Substituting this into (1.76) and using properties of coherent states ((1.50) and

(1.51)), each factor in the product of (1.76) becomes

hasj exp½�irsðâaþs þ âasÞ�jasi ¼ e�ð1=2Þr2s e�irsða �
s þasÞ

and the matrix element is

hfasgje�ik�uðlÞjfasgi ¼ exp � 1

2

X
s

r2s

" #
exp �2i

X
s

rs ReðasÞ
" #

: ð1:79Þ

The next step is to take a thermal average h� � �iT over the probability of a par-

ticular distribution pðasÞ as described in (1.54), and we have

hh� � �iiT ¼
ð
h� � �ipðasÞ d2

as

¼ exp � 1

2

X
s

r2s

" #Y
s

ð
d2
as

phnsi
exp � jasj2

hnsi

" #
exp½�2irs ReðasÞ�:

Letting as ¼ xþ ih,

hh� � �iiT ¼ exp � 1

2

X
s

r2s

" #
exp �

X
s

rshnsi

" #

�
Y
s

ðþy

�y

1

ðphnsiÞ1=2
exp � 1

hnsi
ðzþ irshnsiÞ2

� �
dz

�
Y
s

ðþy

�y

1

ðphnsiÞ1=2
exp � 1

hnsi
h2

� �
dh
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¼ exp �
X
s

r2s hnsiþ 1

2

� �" #

¼ exp �ER

2

X
s

jBkðl; sÞj2
�hos

coth
�hos

2kBT

� �" #
: ð1:80Þ

The two integrals in the above calculations are Gaussian integrals: hnsi is the

average phonon number at T defined in (1.55) and ER ¼ �h2k2=ð2MÞ corresponds
to the recoil energy of the free nucleus. Using (1.80), the recoilless fraction in

(1.75) is reduced to

f ¼ exp �ER

X
s

jBkðl; sÞj2
�hos

coth
�hos

2kBT

� �" #
: ð1:81Þ

This still contains a summation over different normal modes, but it may be re-

placed by a frequency integral over density of states gðoÞ. For a cubic crystal, it is

only necessary to consider one displacement component, and the corresponding

coefficient jBkðl; sÞj2 is equal to 1=ð3NÞ (see Eq. (8.63)). Therefore, we have the

final result for f :

f ¼ exp �ER

ð
gðoÞ
�ho

coth
�ho

2kBT

� �
do

� �
ð1:82Þ

where gðoÞ is normalized to unity.

For an Einstein lattice and for T ! 0, Eq. (1.81) becomes (1.65). Further evalu-

ation of f in a general case requires the knowledge of gðoÞ. A more realistic

model is the Debye model whose density of states is

gðoÞ ¼ 3o2

o3
D

ðo < oDÞ; ð1:83Þ

and in this case

f ¼ exp � 3ER

2kByD
1þ 4

T

yD

� �2ð yD=T
0

x dx

ðex � 1Þ

" #( )
ð1:84Þ

where x ¼ �ho=kBT and yD ¼ �hoD=kB is the Debye temperature. This is an ap-

proximate formula of the recoilless fraction f that is often used in practice.

Here again we have demonstrated the equivalency of phonon number states

jni and the coherent states jai, when they are used in calculating f . In principle,

other basis functions, if possible, may also be used, provided they satisfy the re-

quirement that the energy state of the crystal is not changed after the g-ray emis-

sion. However, one can see from Sections 1.5.2 and 1.5.3 that the derivation using
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coherent states is not only simpler (Gaussian integrals are all one needs to use),

but also more rigorous (because no approximation was made for the derivation of

(1.81)). In addition, coherent states are those quantum states that are most simi-

lar to classical situations, and their applications in the derivation of f indicates

that there is a classical correspondence in the Mössbauer effect. It is then not sur-

prising that in Section 1.4 the classical radiation theory was able to give a recoil-

less fraction f that is identical to Eq. (1.66).

1.5.4

Average Energy Transferred

In the source, a large number of excited Mössbauer nuclei (e.g., 57Fe) are im-

bedded in a crystal lattice. During the g-emission, the average energy transferred

to the lattice is exactly equal to the recoil energy for a free nucleus ER [20, 21].

This was first proved by Lipkin [11], and it is known as Lipkin’s sum rule, which

we discuss again in Chapter 7.

Suppose that the interactions between the atoms in the lattice are dependent

only on their positions, but not on their velocities. The only term in the lattice

Hamiltonian that does not commute with expðik � uðlÞÞ is the kinetic energy oper-
ator p̂p2=ð2MÞ of the emitting nucleus. Accordingly,

½H; expðik � uðlÞÞ� ¼ p̂p2

2M
; expðik � uðlÞÞ

� �

¼ expðik � uðlÞÞ �h2k2

2M
þ �hk � p̂p

M

 !
: ð1:85Þ

Utilizing

eGik�uðlÞp̂peHik�uðlÞ ¼ p̂pG �hk;

we can calculate the double commutator

½½H; expðik � uðlÞÞ�; expð�ik � uðlÞÞ� ¼ � �h2k2

M
¼ �2ER: ð1:86Þ

On the other hand, this commutator can also be written as

½½H; expðik � uðlÞÞ�; expð�ik � uðlÞÞ�
¼ 2H� expðik � uðlÞÞH expð�ik � uðlÞÞ

� expð�ik � uðlÞÞH expðik � uðlÞÞ: ð1:87Þ

If we calculate the expectation value of this commutator when the system is at its

initial state jnii with energy Ei, we get
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hnij½½H; expðik � uðlÞÞ�; expð�ik � uðlÞÞ�jnii

¼ 2Ei �
X
f

hnij expðik � uðlÞÞjnf ihnf jH expð�ik � uðlÞÞjnii

�
X
f

hnij expð�ik � uðlÞÞjnf ihnf jH expðik � uðlÞÞjnii

¼ 2Ei � 2
X
f

Ef jhnf j expð�ik � uðlÞÞjniij2 ð1:88Þ

where a complete set of final states jnf i was inserted. Taking into account Eqs.

(1.68), (1.69), (1.86), and (1.88), we arrive at Lipkin’s sum rule

X
f

ðEf � EiÞpðnf ; niÞ ¼ ER: ð1:89Þ

When i ¼ f , ER ¼ 0, pðni; niÞ is none other than the recoilless fraction f , i.e., the
portion of the g-ray emission process that has no energy exchange with the lattice.

The rest of the emission process will cause recoil, whose recoil energy will have to

be sufficiently large so that the average energy transferred to the lattice is ER.

In order to obtain a relatively large f value, the Mössbauer nucleus should be

tightly bound in a localized potential well to form a localized state, and the Debye

temperature yD should be as high as possible. One of the best examples is the
57Fe impurities in diamond [22]. Diamond has the highest known Debye temper-

ature yD ¼ 2230 K, and f ð295 KÞ ¼ 0:94G 0:06 [23], which is probably the high-

est recoilless fraction at room temperature ever detected thus far.
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effect. Nucl. Instrum. Methods 27, 29–
37 (1964).
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2

Hyperfine Interactions

For a free atom in a gas, the interactions between the nucleus and the electro-

magnetic fields produced by the surrounding electrons are called the hyperfine

interactions. In a solid, we need to also include the electromagnetic fields pro-

duced by the neighboring atoms or ions. Hyperfine interactions have several dif-

ferent types, and they are usually quite weak. A relatively prominent type was first

observed in the atomic spectra where extremely small splittings of spectral lines

are produced by the coupling between nuclear spin and the total angular momen-

tum of a valence electron [1]. Many years after the initial observation, the only

means for studying hyperfine interactions was free atom optical spectroscopy,

which had its historic importance in determining ground state nuclear spins, nu-

clear magnetic dipole moments, and nuclear quadrupole moments.

The advent of nuclear magnetic resonance (NMR) in condensed matter [2]

marked the beginning of using bound atoms to study hyperfine interactions.

NMR is a method of observing a resonance spectrum, which is very different

from an optical spectrum. Soon after the initial discovery of NMR, many other

nuclear methods for studying hyperfine interactions were discovered or devel-

oped, such as nuclear quadrupole resonance (NQR) [3], nuclear spin orientation

(NO) [4], perturbed angular correlation (PAC) [5], perturbed angular distribution

(PAD) [6], and muon spin resonance (mSR) [7]. Gradually, there emerged a new

research field – hyperfine interactions – linking together atomic physics, nuclear

physics, and solid-state physics. But the fastest development in this field was after

the discovery of the Mössbauer effect, because the energy resolution of the Möss-

bauer effect is much better than that of the above methods, and even higher than

that of NMR by an order of magnitude.

Mössbauer spectroscopy is simply the science of using the Mössbauer effect to

observe hyperfine interactions for studying the microscopic environment sur-

rounding a nucleus. Therefore, we need to have a detailed description of hyper-

fine interactions. In the Mössbauer effect, there are mainly the following three

types of hyperfine interactions:

1. Electric monopole interaction, which causes isomer shift d, a

shift of the entire resonance spectrum.

2. Electric quadrupole interaction, which causes quadrupole

splittings of the spectral lines.
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3. Magnetic dipole interaction, which causes Zeeman splittings

of the spectral lines – magnetic hyperfine splittings.

2.1

Electric Monopole Interaction

2.1.1

A General Description

Both the isomer shift and the quadrupole splitting are due to electric hyperfine

interactions. We give a general description of the origins of these electric hyper-

fine interactions.

The nucleus may not be considered as a point charge, since it has a certain fi-

nite volume and a charge distribution within it. We choose the center of the nu-

cleus as the origin of the coordinate system, i.e., r 0 ¼ 0. Let rnðr 0Þ be the nuclear

charge density at r 0, and Vðr 0Þ be the electric potential at r 0 due to all the electric

charge outside of the nucleus. Their Coulomb interaction energy is

Ee ¼
ð
rnðr 0ÞVðr 0Þ dt 0 ð2:1Þ

where the integral is over the entire volume of the nucleus. Because the nuclear

diameter is small compared with the distance of the outside electric charge pro-

ducing Vðr 0Þ, we can approximate the potential by its Taylor expansion near the

origin:

Vðr 0Þ ¼ Vð0Þ þ
X3
i¼1

qV

qx 0
i

� �
0

x 0
i þ

1

2

X3
i; j¼1

q2V

qx 0
i qx

0
j

 !
0

x 0
i x

0
j þ � � � ð2:2Þ

Substituting Eq. (2.2) into Eq. (2.1),

Ee ¼ Vð0Þ
ð
rnðr 0Þ dt 0 þ

X3
i¼1

qV

qx 0
i

� �
0

ð
rnðr 0Þx 0

i dt
0

þ 1

2

X3
i; j¼1

q2V

qx 0
i qx

0
j

 !
0

ð
rnðr 0Þx 0

i x
0
j dt

0 þ � � � ð2:3Þ

In this expansion, the first term is the interaction energy with the potential if the

nucleus is treated as a point charge. This energy is a constant, and therefore will

have no effect on what we are studying. The second term is zero, because the nu-

cleus has no electric dipole moment. The third term (denoted by E3) is not zero,

and its physical meaning may be understood more easily if we rewrite it in terms

of a sum of two contributions:
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E3 ¼ 1

2

X3
i¼1

Vii

" # ð
1

3
r 02rnðr 0Þ dt 0 þ

1

6

X3
i; j¼1

VijQ ij ð2:4Þ

where

Qij ¼
ð
ð3x 0

i x
0
j � dijr

02Þrnðr 0Þ dt 0 ð2:5Þ

is known as the nuclear quadrupole moment tensor, and

Vij ¼ q2V

qx 0
i qx

0
j

 !
0

ð2:6Þ

is the electric field gradient (EFG) tensor evaluated at the nucleus.

In Eq. (2.4), the first contribution is the monopole interaction energy, which is

due to the finite volume of the nucleus. The second contribution is the quadru-

pole interaction energy because of the existence of a quadrupole moment in

some of the nuclear states.

We now discuss the specific features of each of these electric hyperfine interac-

tions.

2.1.2

The Isomer Shift

To simplify the calculations, we may choose a new coordinate system x, y, z as

the EFG tensor principal axis system where the tensor Vij is diagonal and its trace

is given by Poisson’s equation

Vxx þ Vyy þ Vzz ¼ �4preð0Þ ð2:7Þ

where reð0Þ ¼ �ejcð0Þj2 is the s electron charge density at the origin. If we use

dE to represent the first term in Eq. (2.4), and carry out the sum using (2.7), it

becomes

dE ¼ 2p

3
ze2jcð0Þj2hr 2i ð2:8Þ

where

hr 2i ¼

ð
r 2rnðrÞ dtð
rnðrÞ dt

¼

ð
r 2rnðrÞ dt

ze
ð2:9Þ

is the mean-square radius of the nuclear charge distribution.
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From Eq. (2.8), we see that, because of the finite volume of the nucleus, the en-

ergy level will change by an amount of dE with respect to a point charge nucleus.

This happens regardless whether the nucleus is at its ground state or at an ex-

cited state. However, the nuclear radius at an excited state may be different from

that at the ground state, and the corresponding energy changes dE g and dE e are

therefore different. Furthermore, in the radiation source and in the absorber, the

same Mössbauer isotope may be in different chemical environments, resulting in

jcsð0Þj2 0 jcað0Þj2. So in a general case, dE g
s 0 dE g

a and dE e
s 0 dE e

a , as shown in

Fig. 2.1(a). The energy of the emitted g-ray by a source is

Es ¼ E0 þ dE e
s � dE g

s ð2:10Þ

and resonant absorption can occur in an absorber only if the g-ray energy is

Ea ¼ E0 þ dE e
a � dE g

a : ð2:11Þ

Figure 2.1(b) shows a Mössbauer spectrum, where the peak position has a shift of

d with respect to the zero velocity, i.e., the resonance occurs at v0 0. This d is

Fig. 2.1 (a) Shift of nuclear energy levels due to electric monopole

interaction. (b) A typical M€oossbauer spectrum in the presence of an

isomer shift.
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known as the isomer shift, which can be calculated by taking the difference be-

tween Eqs. (2.11) and (2.10):

d ¼ Ea � Es ¼ 2p

3
zS 0ðzÞe2ðjcað0Þj2 � jcsð0Þj2Þðhr 2ie � hr 2igÞ

¼ 2p

3
zS 0ðzÞeDrð0ÞDhr 2i: ð2:12Þ

Here, Dhr 2i ¼ hr2ie � hr2ig is the difference between the mean squares of the

charge radii of the excited state and the ground state, one of the parameters of a

nucleus. Also, Drð0Þ ¼ eðjcað0Þj2 � jcsð0Þj2Þ is the difference between the s elec-

tron charge densities at the nuclei in the absorber and the source. S 0ðzÞ is called
the relativistic factor, and is introduced due to relativistic effects in heavy ele-

ments. This factor takes different values for different nuclei, e.g., S 0ðzÞ ¼ 1:32

for 57Fe but S 0ðzÞ ¼ 19:4 for 237Np.

To calculate d one step further, it is often assumed that a nucleus is a uniformly

charged sphere when it is either in the ground state (with radius Rg) or in the

excited state (with radius Re). Therefore, we have

rgn ¼ ze
4
3 pR

3
g

and ren ¼ ze
4
3 pR

3
e

:

Using Eq. (2.9), we can evaluate both hr 2ie and hr2ig, and Eq. (2.12) becomes

d ¼ 4p

5
zS 0ðzÞeR2 DR

R

� �
Drð0Þ ¼ aDrð0Þ ð2:13Þ

where DR ¼ Re � Rg, R ¼ ðRe þ RgÞ=2. It can be seen that d is directly propor-

tional to Drð0Þ with a proportionality constant a (known as the calibration con-

stant). Any of the above quantities (hr2i, DR=R, or a) is a parameter characteriz-

ing the nucleus. Equation (2.12) clearly shows that the isomer shift is essentially a

measure of the difference in the s electron charge densities at the nuclei in the

source and in the absorber. If the same source is used for a series of absorbers,

then rsð0Þ is a constant ðrsð0Þ ¼ cÞ and the isomer shift is a linear function of

the s electron density at the nuclear site in the absorber:

d ¼ aðrð0Þ � cÞ: ð2:14Þ

The sign of a may be positive or negative, and it happens to be negative for 57Fe.

A positive isomer shift indicates that the electron density at the nucleus in the

absorber is less than that in the source.

It should be mentioned that d is usually very small. For example, in Fig. 2.1(b),

d ¼ 0:3 mm s�1 which corresponds to an energy shift of @10�8 eV. Only in the

Mössbauer effect can this minute amount of energy change be detected.
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2.1.3

Calibration of Isomer Shift

As sources of a particular isotope (e.g., 57Co) imbedded into different host ma-

trices (e.g., Rh, Pd) are used to obtain Mössbauer spectra, the same absorber will

give different d values, because the sources have different jcsð0Þj values. In order

to be able to compare and discuss results from experiments using sources with

different hosts, the isomer shift of an absorber is customarily given relative to

that of a reference absorber. If the isomer shift of the sample is d1 and that of

the reference absorber is dref , we have, according to Eq. (2.14),

d1 ¼ a½rð0Þ � rsð0Þ�;
dref ¼ a½rref ð0Þ � rsð0Þ�:

Therefore, the isomer shift of the absorber relative to the reference absorber is

d ¼ d1 � dref ¼ a½rð0Þ � rref ð0Þ�: ð2:15Þ

It is clear that this is independent of rsð0Þ. In other words, even when different

sources are used (e.g., 57Co/Rh or 57Co/Pd), isomer shifts obtained in this

way should all be the same for a particular absorber, d ¼ d1ðRhÞ � dref ðRhÞ ¼
d1ðPdÞ � dref ðPdÞ ¼ . . . For example, the d1 values of sodium nitroprusside

Na2Fe(CN)5NO�2H2O obtained from experiments using 57Co/Rh and 57Co/Pd

are �0.366 and �0.437 mm s�1, respectively. However, relative to a-Fe, isomer

shifts of sodium nitroprusside in both cases are �0.260 mm s�1. The values of

dref of several reference absorbers for 57Fe are indicated in Fig. 2.2 [8]. When re-

Fig. 2.2 Isomer shift scale for 57Fe (14.4 keV) reference materials

(relative to a-Fe) at T ¼ 300 K.
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porting isomer shifts, one must clearly indicate which type of the reference ab-

sorber was used.

There are two major factors that determine the electron density at the nuclear

site. The first is due to the inner s electrons of the Mössbauer atom, and the sec-

ond is due to valence electrons in the outer shells and valence electrons of li-

gands. The first contribution is not sensitive to changes in the chemical environ-

ment, and therefore it is not uncommon to consider it as a constant. The second

contribution exerts its effect through the following two mechanisms:

1. A direct interaction, which involves a change in s electrons of
the valence shell, thus influencing rð0Þ.

2. An indirect interaction, which involves a change in the

shielding of the s electrons through the increase or decrease

of p, d, and f valence electrons. For example, rð0Þ at an Fe3þ

(3d5) nucleus is larger than that at an Fe2þ (3d6) nucleus. For

metallic iron (3d64s2), rð0Þ is even larger. Since a < 0, we

have dðFe2þÞ > dðFe3þÞ, both of which are positive with

respect to metallic iron.

In addition, indirect interactions also arise from covalent bonds affecting elec-

tronic distribution, from electronegative ligands influencing s-electrons, and

from dp backbonding which reduces the shielding effect.

Chemical bonds are formed by valence electrons in the outer shell and valence

electrons of ligands. These electrons contribute directly or indirectly to Drð0Þ in
Eq. (2.12). The isomer shift d is therefore closely related to the properties of the

electronic structure and the chemical bonds.

2.1.4

Isomer Shift and Electronic Structure

Since the observation of d in Fe2O3 in 1960 [9], the isomer shift has been in-

tensely and extensively investigated in many areas of chemistry and in materials

science. Using isomer shift for studying the electronic structure in solids has

been considered an extremely useful experimental method [10].

The isomer shift d can provide important information on the character of a

chemical bond, as well as on oxidation state, spin state, electronegativity of a li-

gand, coordination number, etc. So far, large amounts of experimental isomer

shift data have been accumulated, but the interpretation of these results is not

an easy task. The main difficulty is that there is still lacking a unified model for

the chemical bonds that could satisfactorily explain the isomer shift data. For

practical applications, the critical problem is to obtain an accurate value for the

calibration constant a (alternatively, DR=R or hr 2i) in Eq. (2.13). But it cannot be

determined without a good understanding of the chemical environment; there-

fore it is difficult to measure a and rð0Þ separately. Although isomer shift has

been widely utilized in research, many conclusions are still qualitative. In addi-

tion, since isomer shift is a relative quantity, measurements from a series of sam-
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ples of similar properties are usually required, and then through a comparative

study one can extract information on the electronic structure. The following are

several specific examples.

1. Chemical bond character. In this example, five covalent compounds of Sb

were studied (Table 2.1), and the d values were obtained from their 121Sb Möss-

bauer spectra. We will discuss how d is related to the nature of the local chemical

bond [11].

The first three compounds (AlSb, GaSb, and InSb) form a ‘‘vertical sequence’’

of Sb-based binary compounds in the zincblende crystal structure with lattice

constants 6.14, 6.12, and 6.48 Å, respectively. Arranged in the same vertical col-

umn of the periodic table with one p electron in their outer shell, Al, Ga, and In

would have rather similar physical and chemical properties. Nevertheless their ef-

fects on the s electron densities at the Sb nuclei of above three compounds are

different. Analysis showed that d is related to the number of p electrons around

Sb, and so the d value of AlSb is the largest because its bond ionicity is definitely

higher than that of GaSb or InSb. It was not certain whether or not GaSb is more

ionic than InSb, but it was speculated that the difference in d is caused by the

change in the crystal volume. Because InSb has a larger lattice constant than

GaSb, the Sb atoms in InSb would be less compressed than in GaSb, and the

looser p electron clouds around the Sb nucleus would reduce the shielding of

the s electrons.

The last three samples (InSb, SnSb, and Sb) form a ‘‘horizontal sequence’’

from which d was observed to vary significantly, reflecting the changes in the lat-

tice structure and in the chemical bond character from sp3 hybridization to

(s2)p3.

2. Ligand electronegativity. The difference between the electronegativities of the

atom and the surrounding ligands is obviously related to the isomer shift d.

1. In ferrous halides, d has a linear relationship with the

electronegativity of the halogen atoms [12], as shown in Fig.

2.3. This is direct evidence for the participation of 4s

electrons in the formation of the chemical bonds. The Fe

electronic configuration is 3d64sx, where x can be regarded

Table 2.1 Measured isomer shift d in 121Sb compounds (relative to

InSb) and calculated s electron density r(0). Here a0 is the Bohr radius.

d (mm sC1) r(0) (aC3
0 )

AlSb 0.78(5) 81.31

GaSb 0.22(3) 83.43

InSb 0.00 84.37

SnSb �1.98(7) 90.12

Sb �3.10(2) 91.42

36 2 Hyperfine Interactions



as a measure of the ionicity of the compound (ionicity

increases as x decreases). For nuclei of the 4d, 5d, and 5f

elements, such a linear relation also exists.

2. In intermetallic compounds of iron, the relationship between

d and electronegativity may be expressed in the following

empirical formula:

d ¼ 1:08ðFA � FFeÞ � 2:51
ðnA

ws � nFe
wsÞ

nFe
ws

ð2:16Þ

where F and nws are the electronegativity and electron

density on the Wigner–Seitz cell surface. A relationship

similar to Eq. (2.16) can be found in various amorphous Fe-

based alloys (A1�xFex) [13]. A linear relation between d and

electronegativity also exists in some compounds of 119Sn,
121Sb, and 181Ta [14].

3. Volume effect. A different lattice constant can cause a change in rð0Þ, result-
ing in a volume effect. External pressure may be used to change the lattice con-

stant of a compound; Fig. 2.4 shows the results from one such investigation [15].

Isomer shift d is related to the unit cell volume V by

dðdÞ
d ln V

¼ arð0Þ
ln V

: ð2:17Þ

The linear relation in Fig. 2.4 gives a slope of dðdÞ=dðln VÞ ¼ �1:42ð3Þ mm s�1.

In another investigation, an empirical formula for the molecular iodine I2 was

obtained [16], relating d to the number of holes hp in the 5p orbital:

Fig. 2.3 Isomer shift (relative to a-Fe) versus Pauling electronegativity for ferrous halides.
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d ¼ 1:50hp þ A ðmm s�1) ð2:18Þ

where A is a constant. Under atmospheric pressure, hp ¼ 1, and when Eq. (2.18)

is substituted into (2.17),

dðhpÞ
d ln V

¼ �0:95: ð2:19Þ

Here, dhp is the number of p electrons that moved into the conduction band.

When the pressure is 16 GPa, dhp ¼ 0:38, and I2 becomes a conductor with an

electronic configuration of 5s25p4:62. Still one more example worth mentioning

is the volume effect in iron borides as well as a-Fe and g-Fe, and their isomer

shifts can be described by the following relation [17]:

d ðmm s�1Þ ¼ 0:02917nB þ dFe � 2:64

11
nFe ð2:20Þ

where nB and nFe are the numbers of boron and iron nearest neighbors surround-

ing the Mössbauer nucleus and dFe is the distance (in Å) between the adjacent Fe

atoms.

4. Evaluation of the calibration constant a. As mentioned above, it is important to

determine the calibration constant a accurately. The basic procedure includes cal-

culating the values of rð0Þ for several series of compounds and measuring the

corresponding d values from their Mössbauer spectra. A least-squares fitting ac-

cording to Eq. (2.14) will allow the determination of a. The difficult part is that

Drð0Þ could be about four to six orders of magnitude smaller than rð0Þ [18, 19],
requiring precise measurement of rð0Þ from each of the compounds in the series.

In some cases, Drð0Þ may be as large as a few percent. As an example, the isomer

shifts of a series of Sb compounds are plotted in Fig. 2.5 against the calculated

rð0Þ values [11], and from the approximate linear relation we obtain

Fig. 2.4 Isomer shift of iodine versus natural logarithm of unit cell volume.
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a ðSbÞ ¼ ð�0:368G 0:035Þa30 mm s�1 ð2:21Þ

or

DR

R
¼ ð�10:4G 1:0Þ � 10�4: ð2:22Þ

There are many results for the calibration constant a of 57Fe in the literature [19–

25], the most recent result being að57FeÞ ¼ ð�0:22G 0:01Þa30 [26], which agrees

with the previous results quite well.

Isomer shift is one of the hyperfine interaction parameters that can only be

measured through the Mössbauer effect, and the information on the electronic

structure provided by isomer shift is not available from any other methodologies.

For example, Sb atoms can be doped into a semiconductor substitutionally and

used to monitor the electron density around the atoms that are replaced by Sb.

Information about the nature of local chemical bonds is uniquely provided by

the isomer shift of 121Sb [11]. Another example is that d measurements can

uniquely determine how electron density varies as alloys are formed [18].

2.2

Electric Quadrupole Interaction

2.2.1

Electric Quadrupole Splitting

In the case of an axially symmetric nucleus, we can choose its symmetry axis (i.e.,

its quantization axis) as the principal z 0 axis of the nuclear quadrupole moment

tensor defined in Eq. (2.5). In such a coordinate system, only the diagonal ele-

Fig. 2.5 Relationship between measured isomer shifts of Sb

compounds and calculated rð0Þ values.
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ments Q11, Q 22, and Q 33 are nonzero. We also have Q 11 ¼ Q 22 because of the

axial symmetry and Q 11 þ Q22 þQ 33 ¼ 0 because the tensor is traceless. There-

fore, only one independent quantity Q is needed to describe the nuclear quadru-

pole moment for this case:

eQ ¼ Q 33 (2.23)

or

Q ¼ 1

e

ð
ð3z 02 � r 02Þrnðr 0Þ dt 0: ð2:24Þ

If a nucleus has a prolate spheroid shape (longer along the z 0 axis, and shorter

along the x 0 or y 0 axis), then Q > 0; if it has a oblate shape, then Q < 0. When a

nucleus spin I ¼ 0 or 1/2, the nucleus has spherical symmetry, Q ¼ 0. Only

when I > 1=2 will there be electric quadrupole interaction.

To study quadrupole interactions in a solid, the principal axis system of the

EFG tensor, as defined in Section 2.1.2, must be chosen such that jVzzjb
jVxxjb jVyyj. Since EFG at the nucleus can only arise from electrons other than

s electrons and from ligand charges, both of which have zero electron density at

the nucleus, Eq. (2.7) for this case becomes the Laplace equation:

Vxx þ Vyy þ Vzz ¼ 0: ð2:25Þ

As a result, only two independent parameters are needed to describe EFG. These

two parameters are usually taken as Vzz and an asymmetry parameter h, defined

by h ¼ ðVxx � VyyÞ=Vzz. It is evident that 0a ha 1.

The Hamiltonian for quadrupole interaction is

HQ ¼ 1

2

X3
i; j¼1

VijQ ij ð2:26Þ

which can be eventually expressed as

HQ ¼ eQVzz

4Ið2I � 1Þ 3ÎI2z � ÎI2 þ 1

2
hðÎI2þ þ ÎI2�Þ

� �
ð2:27Þ

where ÎIþ ¼ ÎIx þ iÎIy and ÎI� ¼ ÎIx � iÎIy are the raising and lowering operators, re-

spectively. The eigenvalues of the Hamiltonian are

EQ ¼ eQVzz

4Ið2I � 1Þ ½3m
2 � IðI þ 1Þ� 1þ h2

3

� �1=2
ð2:28Þ

where m ¼ I; I � 1; . . .� jIj.
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The 14.4-keV energy level of 57Fe has a nuclear spin of I ¼ 3=2, and this energy

level splits into two sublevels (m ¼G3=2 and m ¼G1=2) due to quadrupole inter-

action. Because the quantum number m in Eq. (2.28) appears only as its square,

each sublevel is doubly degenerate. The energy eigenvalues of the two sublevels

and the corresponding eigenvectors are

E0 þ EQ G
3

2

� �
¼ E0 þ eQVzz

4
1þ h2

3

� �1=2
;

þ 3

2

����
�0

¼ cos z þ 3

2

����
�
þ sin z � 1

2

����
�

� 3

2

����
�0

¼ cos z � 3

2

����
�
þ sin z þ 1

2

����
�

8>>><
>>>: ; ð2:29Þ

E0 þ EQ G
1

2

� �
¼ E0 � eQVzz

4
1þ h2

3

� �1=2
;

� 1

2

����
�0

¼ cos z � 1

2

����
�
� sin z þ 3

2

����
�

þ 1

2

����
�0

¼ cos z þ 1

2

����
�
� sin z � 3

2

����
�

8>>><
>>>: ; ð2:30Þ

where

cos z ¼ ½1þ
ffiffiffi
3

p
ð3þ h2Þ�1=2�1=2=

ffiffiffi
2

p
;

sin z ¼ ½1�
ffiffiffi
3

p
ð3þ h2Þ�1=2�1=2=

ffiffiffi
2

p
:

The ground state of 57Fe has I ¼ 1=2, so Q ¼ 0 and the energy level does not

split, as shown in Fig. 2.6(a).

When 57Fe is in a crystal of non-axial symmetry ðh0 0Þ, HQ and ÎIz do not com-

mute, and each of the four new eigenvectors is a linear combination of the origi-

nal eigenvectors as in Eqs. (2.29) and (2.30). However, since 0a ha 1, sin2 z is

practically very small, and can be neglected as a first-order approximation. For

example, if h ¼ 0:5, sin2 z ¼ 0:02 while cos2 z ¼ 0:98, and therefore the four

new states are essentially identical to the original four pure states jG3=2i and

jG1=2i.
The energy difference between the two sublevels in (2.29) and (2.30) is

DEQ ¼ eQVzz

2
1þ h2

3

� �1=2
ð2:31Þ

where Vzz is in V cm�2, Q is in cm2, and therefore DEQ is in eV.

Now that the 57Fe excited state is split into two sublevels, the singlet Mössbauer

spectrum becomes a doublet as shown in Fig. 2.6(b). The separation DEQ between

the two resonance lines is known as quadrupole splitting, which is another im-

portant parameter in Mössbauer spectroscopy.
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Electric quadrupole interaction is essentially an electric interaction, which can

be understood by considering the following simplified physical picture. Suppose

that two point charges are located at a and �a on the z-axis as shown in Fig.

2.7(a), and we want to calculate the potential Vðz0Þ at a point z0 far from the

point charges ðz0 g aÞ. It is easy to show that

Vðz0Þ ¼ 2e

z0
þ 2ea2

z30

� �
: ð2:32Þ

Fig. 2.6 (a) Quadrupole interaction splits the 57Fe energy levels. (b) A

quadrupole splitting M€oossbauer spectrum.

Fig. 2.7 (a) Two positive point charges. (b) The equivalent charge

distribution. (c) The quadrupole component.
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This expression is the sum of the potential due to a point charge of 2e at the ori-

gin and the potential due to a quadrupole, as shown in Fig. 2.7(b), which is equiv-

alent to Fig. 2.7(a). When Eq. (2.24) is applied to calculate the quadrupole mo-

ment of the point charges shown in Fig. 2.7(c), the result is Q ¼ 4a2. Since the

potential due to a quadrupole is

1

2

eQ

z30
;

the second term in Eq. (2.32) is indeed a contribution from the quadrupole

shown in Fig. 2.7. We also see that in this case Q ¼ 4a2 > 0. If the charges were

arranged on the x-axis instead (the oblate situation), a similar calculation would

show Q ¼ �2a2 < 0.

In order to understand the quadrupole interaction, we can treat the quadrupole

in Fig. 2.7(c) as two back-to-back dipoles along the z-axis [27]. A dipole in an elec-

tric field would experience a torque, having the tendency of rotating itself until

parallel to the external electric field. However, the net torque on the quadrupole

in a uniform electric field would be zero, resulting in no such rotational tendency.

If the electric field is not uniform and has a gradient (EFG), the situation is en-

tirely different. One dipole tends to move towards a direction where the electric

field is more positive, and the other tends to move towards the opposite direction.

A net torque is then applied on the quadrupole and it will rotate to a position

where the system’s energy is the lowest. This is the quadrupole interaction. If

the EFG varies in space from one point to the next, there will also be a net force

on the quadrupole, causing translational motion. But for a nucleus, this force is

extremely small and may be neglected.

Let us consider the case when Vzz > 0, which means that there are excess neg-

ative charges in the xy-plane around the nucleus. In addition, for the excited state

of 57Fe, Q > 0. The nuclear quadrupole would therefore tend to lie near the xy-
plane to minimize the interaction energy. Consequently, the m ¼G1=2 states

would have lower energy than the m ¼G3=2 states. These can also be easily veri-

fied by calculating the energy eigenvalues in Eqs. (2.29) and (2.30). The energy

levels are shown in Fig. 2.6(a).

2.2.2

The Electric Field Gradient (EFG)

2.2.2.1 Sources of EFG

The electric charges distributed around a Mössbauer nucleus can contribute to the

EFG tensor only when they have a symmetry lower than cubic. In general, there

are two fundamental sources for EFG:

1. The charges on the neighboring ions or ligands surrounding

the Mössbauer atom, known as the lattice/ligand contribution

(Vzz)Lat.
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2. The charges in partially filled valence orbitals of the

Mössbauer atom, known as the valence electron contribution

ðVzzÞVal.

In a solid, every lattice point around the Mössbauer atom may be regarded as

a point charge qi. The position of each lattice point may be described in the spher-

ical coordinate system as shown in Fig. 2.8. An axially symmetric EFG can then

be calculated by

ðVzzÞLat ¼
X
i

qi
3z2i � r 2i

r 5i
¼
X
i

qi
3 cos2 yi � 1

r 3i

and

hLat ¼
3

Vzz

X
i

qi
sin2 yi cos 2fi

r 3i
: ð2:33Þ

However, what the Mössbauer nucleus feels is not just this EFG, because the core

electrons that are polarized and distorted by ðVzzÞLat also contribute to the EFG

tensor. The net contribution from the lattice at the nucleus is ð1� gyÞðVzzÞLat,
where gy is called the Sternheimer antishielding factor. The inner core electron

antishielding may cause an appreciable enhancement of EFG, so gy is negative

and usually quite large. Some typical values are gy ¼ �9:14 for 57Fe3þ and

gy ¼ �105 for 141Pr3þ.
In cases where the crystal structure is complicated and the principal axes of the

EFG cannot be found a priori, one is forced to choose an arbitrary coordinate sys-

tem for calculating its elements Vij and then diagonalize the tensor matrix.

For the contribution from the valence electrons which may be considered as or-

biting around the Mössbauer nucleus at high speeds, Vzz is evaluated by its ex-

pectation value with �eð3 cos2 y� 1Þ=r 3 for each valence electron and adding all

the contributions together,

Fig. 2.8 Position of a point charge in the spherical coordinate system.
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ðVzzÞVal ¼ �e
X
i

hlimij3 cos2 y� 1jlimiihr
�3
i i: ð2:34Þ

For calculating the asymmetry parameter, we evaluate Vxx and Vyy in the similar

way,

ðVyyÞVal ¼ �e
X
i

hlimij3 sin2 y sin2 f� 1jlimiihr
�3
i i;

ðVxxÞVal ¼ �e
X
i

hlimij3 sin2 y cos2 f� 1jlimiihr
�3
i i:

The core electrons shield the effect of the valence electrons, only allowing the

nucleus to see a smaller EFG than ðVzzÞVal as calculated above. This effect is ac-

counted for by multiplying ðVzzÞVal by a quantity ð1� RÞ, which is less than 1.

Here R is called the Sternheimer shielding factor, which is positive and rather

small. For 57Fe2þ, RA0:32.

To summarize, the z component of total EFG at the nucleus is then written as

Vzz ¼ ð1� RÞðVzzÞVal þ ð1� gyÞðVzzÞLat ð2:35Þ

where both ðVzzÞVal and ðVzzÞLat are inversely proportional to r 3. Since the valence
electrons are closer to the nucleus than the lattice charges, the former is much

larger than the latter. For 57Fe3þ, we have a half-filled 3d5, and ðVzzÞVal ¼ 0 be-

cause of symmetry. For 57Fe2þ, the sixth electron in 3d6 is the main source pro-

ducing a significant contribution to the EFG. The quadrupole splitting for Fe2þ

(DEQA3:0 mm s�1) has been found to be much larger than that for Fe3þ

(DEQA0:5 mm s�1) [28]. For the low spin states of 57Fe2þ and 57Fe3þ, the former

has a smaller DEQ (less than 0.8 mm s�1) while the latter has a larger DEQ (0.7 to

1.7 mm s�1) [29], again reflecting the one electron difference in their d orbitals.

When studying ðVzzÞVal, we usually consider only the p and d electrons, be-

cause the f electrons rarely participate in chemical bonding. Table 2.2 lists the

contributions to ðVzzÞVal from various d and p orbitals.

2.2.2.2 Temperature Effect on EFG

ðVzzÞVal can be further divided into two contributions: ðVzzÞCF due to the aspher-

ical population of the d-orbital electrons in the valence orbital caused by a crystal

field (see Fig. 2.9) and ðVzzÞMO due to anisotropic molecular bonding [30]. The

ðVzzÞCF term dominates when there is little overlapping of orbitals, while the

ðVzzÞMO term dominates for ions having symmetric electron ground states (e.g.,

Fe3þ high spin or Fe(II) low spin). We will focus on ðVzzÞCF. Because of a crystal

field, the Fe 5D orbital may be split into five orbitals in which the lower energy

orbitals will be populated according to the Boltzmann distribution. Hence

ðVzzÞCF is strongly temperature dependent. On the other hand, ðVzzÞMO and

ðVzzÞLat are hardly affected by temperature. Figure 2.9 shows how Fe2þ high
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spin 5D orbitals will split in crystal fields, and Fig. 2.10 shows how electrons pop-

ulate the T2g and Eg orbitals. For Fe2þ or Fe3þ ions in a regular octahedron,

ðVzzÞCF ¼ 0. But the octahedral symmetry is usually distorted (such as Jahn–

Teller distortion). When the octahedron is compressed (or elongated) in the z-
direction, the two-fold degeneracy of Eg will be removed and the three-fold degen-

eracy of T2g will be partially lifted. When additional compression or elongation is

Table 2.2 Contributions to (Vzz)Val from various d and p orbitals.

Orbital Magnetic quantum

number, m

1

e
(Vzz)Val

d jxyi �2 þ 4

7
hr�3i

jyzi �1 � 2

7
hr�3i

j3z2 � r 2i 0 � 4

7
hr�3i

jxzi þ1 � 2

7
hr�3i

jx2 � y2i þ2 þ 4

7
hr�3i

p jyi �1 þ 2

5
hr�3i

jzi 0 � 4

5
hr�3i

jxi þ1 þ 2

5
hr�3i

Fig. 2.9 5D orbitals of high-spin Fe2þ are split by crystal fields of various symmetries.
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present in the direction perpendicular to the triangular faces, degeneracy will be

completely removed. At low temperatures, the sixth electron in Fe2þ occupies the

jxyi state, but as T increases, it has a higher probability of occupying a high-

energy state, and the symmetry of electron population will increase, causing

DEQ to decline. However, in Fe3þ and Fe(III) compounds, removing the orbital

degeneracy will not affect DEQ, except for very high temperatures.

Ingalls [31] first studied in detail the temperature dependence of DEQ in Fe2þ

compounds. Suppose ðVzzÞ iCF is the contribution to EFG from an electron in or-

bital i, then the total EFG is the thermal average of contributions from all orbitals:

ðVzzÞCF ¼

X
i

ðVzzÞ iCF exp½�Di=ðkBTÞ�X
i

exp½�Di=ðkBTÞ�
ð2:36Þ

where Di is the energy of the ith orbital with respect to the ground state.

If we assume D1AD2AD in Fig. 2.9 and neglect spin–orbital coupling, then

ðVzzÞCF ¼ 4e

7
hr 3i

1� e�D=ðkBTÞ

1þ 2e�D=ðkBTÞ : ð2:37Þ

For Fe2þ in tetrahedral compounds, the Eg orbital has a lower energy than T2g,

and ðVzzÞCF has a similar expression

ðVzzÞCF ¼ 4e

7
hr 3i

1� e�D=ðkBTÞ

1þ 1
2 e

�D=ðkBTÞ : ð2:38Þ

An experimental example of how DEQ varies with temperature is given in Fig.

2.11 [32], where we can also see that DEQ of the Fe3þ site is essentially indepen-

dent of temperature.

Fig. 2.10 Electronic configurations of (a) high-spin states and (b) low-spin states of Fe ions.

2.2 Electric Quadrupole Interaction 47



2.2.3

Intensities of the Spectral Lines

Based on the calculations by Karyagin [33], Zory [34], and Alimuddin et al. [35],

the relative intensities of the spectral lines of the quadrupole doublet in a single

crystal can be written as

I3=2 ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh2=3Þp ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh2=3Þ

p
þ 3 cos2 y� 1þ h sin2 y cos 2fÞ;

I1=2 ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh2=3Þp ð4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh2=3Þ

p
� 3 cos2 yþ 1� h sin2 y cos 2fÞ

ð2:39Þ

where c is a constant, and y and f are the polar and azimuthal angles of the inci-

dent g-ray in the EFG principal axis system.

In the case where the EFG is axially symmetric, h ¼ 0, and Eq. (2.39) gives the

following ratio of the intensities of the two absorption lines:

I3=2
I1=2

¼ 1þ cos2 y
5
3 � cos2 y

: ð2:40Þ

For a polycrytalline sample or a powder sample, the crystal axes are randomly

oriented. Spatial average of the two intensities in Eq. (2.39) gives

Fig. 2.11 Temperature dependence of DEQ for Fe2þ and Fe3þ in chromite spinels.
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hI3=2i

hI1=2i
¼

1

4p

ð
I3=2 sin y dy df

1

4p

ð
I1=2 sin y dy df

¼ 1; ð2:41Þ

which means that the two lines have the same intensity.

2.2.4

The Sign of EFG

Since Q > 0 for 57Fe, the sign of the quadrupole splitting is determined by the

sign of the EFG component Vzz. From Fig. 2.6, we see that whether Vzz is positive

or negative determines whether the energy level of jG3=2i is higher or lower than

the energy level of jG1=2i.
1. Consider first a single crystal. If h ¼ 0, the two spectral lines

will in general have different intensities. For example,

I3=2=I1=2 is 3.0 when y ¼ 0, and it is 0.6 when y ¼ p=2.

Therefore, a single measured spectrum can unambiguously

determine the sign of Vzz provided the crystal axes are

known. If h0 0, this method fails. Signs of Vzz in single

crystals have also been determined by using polarized g-rays

[36].

2. For polycrystalline or powder samples, an external magnetic

field is required for the determination of the sign of Vzz.

Collins [37, 38] extensively investigated this problem, and the

results are illustrated in Fig. 2.12. The external magnetic field

further splits the energy levels. In cases where these

splittings are smaller than the quadrupole splittings,

e1 fDEQ; ð2:42Þ

the admixture between jG3=2i and jG1=2i can be neglected

and we may obtain approximate analytical solutions. In the

presence of an applied weak external magnetic field B, the
original doublet in the spectrum transforms into a quartet

and a doublet. The quartet appears to be a triplet due to two

lines not being completely resolved. If the doublet is on the

positive velocity side, then Vzz > 0; if the quartet is on the

positive velocity side, Vzz < 0. This method may also be

applied to single-crystal samples. Figure 2.13 shows a

concrete example of determining the sign of Vzz in a powder

sample using this method [39].
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It should be noted that if the external magnetic field is too large or DEQ is too

small, condition (2.42) may not be satisfied. Consequently, after the jG3=2i and

jG1=2i levels split, they also mix with one another, making it very difficult to de-

termine the sign of Vzz [40].

Fig. 2.12 57Fe nuclear energy level splittings and absorption spectra

due to g-ray transitions under an axially symmetric EFG (h ¼ 0) and a

weak external magnetic field.

Fig. 2.13 M€oossbauer spectrum of FeCO3 (Vzz > 0) with an external magnetic field Bext ¼ 3:5 T.
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2.3

Magnetic Dipole Interaction

The interaction between the nuclear magnetic dipole moment m and the magnetic

field B at the nucleus produced by the surrounding electrons or ions is called the

magnetic hyperfine interaction. This interaction lifts the degeneracy of the energy

level of a nucleus of spin I and splits it into ð2I þ 1Þ sublevels. This type of split-

ting in the nuclear ground state had been observed in nuclear magnetic reso-

nance and paramagnetic resonance. In optical spectroscopy, the Zeeman effect

in atoms was observed a long time ago. But the nuclear Zeeman effect, a similar

effect in principle, was impossible to observe before the discovery of the Möss-

bauer effect, because the splittings between the nuclear sublevels are too small

to resolve. Using the Mössbauer effect, Hanna [41, 42] first observed the magnet-

ic hyperfine interaction in the nucleus, i.e., the nuclear Zeeman effect.

Fig. 2.14 (a) Magnetic splittings of the 57Fe nuclear energy levels. (b) A

M€oossbauer spectrum of FeF3 at 4.2 K showing a sextet due to magnetic

splittings [44].

2.3 Magnetic Dipole Interaction 51



2.3.1

Magnetic Splitting

The Hamiltonian of the interaction between the nuclear magnetic dipole moment

m and the magnetic field B is

HM ¼ �m QB ¼ �gmNI QB ð2:43Þ

and the corresponding sublevel energy is

EM ¼ �gmBmN ð2:44Þ

where g is the nuclear g-factor, m ¼ I; I � 1; . . . ;�I, and mN is the nuclear magne-

ton.

The 57Fe first excited state with spin 3/2 splits into four sublevels equally sepa-

rated by geBmN, while the ground state with spin 1/2 splits into two sublevels, as

shown in Fig. 2.14(a). The gg-factor of the ground state, in general, is different

from ge of the excited state; therefore the separation between the sublevels in the

ground state is different from that in the excited state. Since the g transition in
57Fe is of the magnetic dipole type (M1), it can take place provided the selection

rule Dm ¼G1 or 0 is obeyed. Thus the six allowed transitions give six absorption

lines as shown in Fig 2.14(b). The transitions with Dm ¼G2 are forbidden.

The position of each line in the characteristic sextet can be easily calculated

according to Eq. (2.44). As can be seen from Fig. 2.14(b), the successive separa-

tions between adjacent lines are in the ratio of 1:1:x:1:1, where for 57Fe x ¼
ðgg � jgejÞ=jgejA3=4, gg ¼ 0:1808, and ge ¼ �0:1031.

2.3.2

Relative Line Intensities

The excited substates jIemei, the ground substates jIgmgi, and the quantum state

of the incident photon jwmL i are related by the Clebsch–Gordan (C-G) coeffi-

cients:

jIemei ¼
X

m¼me�mg

hIgmgLmjIemeijIgmgijwmL i: ð2:45Þ

The relative absorption probability W for each of the transitions is

WðyÞ ¼ jhIgmgLmjIemeiw
m
L ðyfÞj2: ð2:46Þ

The angular dependence of the probability is contained in wmL , and for M1-type

radiation [43]
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wG1
1 ¼

ffiffiffi
3

4

r
ð�z sin y cos fþ x cos yÞG ið�z sin y sin fþ y cos yÞ

w01 ¼ i

ffiffiffi
3

2

r
sin yð�x sin fþ y cos fÞ

ð2:47Þ

where x, y , z are the unit vectors, and y, f are the polar and azimuthal angles

describing the direction of the incident g-ray with respect to the magnetic field di-

rection. The f dependence disappears in WðyÞ because in this case jwmL j2 depends
only on y. The function wmL is normalized as follows:

ð 2p
0

ð p
0

jwmL j2 sin y dy df ¼ 4p: ð2:48Þ

The angular distribution of relative intensities for the six allowed transitions is

listed in Table 2.3. For a thin absorber, the Mössbauer fraction f is isotropic, and

when the angle between B and the g-ray is y ¼ 0, the relative intensities of the

six subspectral lines are in the ratio of 3:0:1:1:0:3. When y ¼ 90�, the ratio is

3:4:1:1:4:3. If the magnetic field vectors at the nuclei are randomly oriented,

then an integral over y gives an intensity ratio of 3:2:1:1:2:3.

2.3.3

Effective Magnetic Field

A convenient way to describe the magnetic hyperfine interaction is using the ef-

fective magnetic field, which is the sum of the local magnetic field B loc at the

Mössbauer nucleus by the lattice and the hyperfine magnetic field Bhf by the

Mössbauer atom’s own electrons:

Beff ¼ B loc þ Bhf : ð2:49Þ

The local field by the lattice may be due to the material’s magnetic ordering, or

may be applied externally, or both. It may have the following contributions:

Table 2.3 Angular distribution of the relative intensities for the six

allowed transitions in 57Fe. C ¼ hIgmgLm|Iemei are the C-G

coefficients.

Subspectral

line

Transition Dm C 2 W(y) W(0) W(90˚ ) W

1 (6) G1
2 !G3

2 G1 1 3
4 ð1þ cos2 yÞ 3=2 3=4 1

2 (5) G1
2 !G1

2 0 2=3 sin2 y 0 1 2=3

3 (4) G1
2 !H1

2 H1 1=3 1
4 ð1þ cos2 yÞ 1=2 1=4 1=3
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B loc ¼ Bext � DM þ 4p

3
M ð2:50Þ

where Bext is an external field, M is magnetization, DM represents the demagnet-

ization field, and 4pM/3 represents the Lorentz field. In general, the local field is

much smaller than the hyperfine field.

The hyperfine field Bhf has three contributions:

Bhf ¼ Bs þ BL þ BD ð2:51Þ

where Bs is called Fermi contact field produced by the s electron spin density at

the nucleus, and may be expressed as

Bs ¼ � 2m0

3
mB

X
n

½jcns"ð0Þj2 � jcns#ð0Þj2� ð2:52Þ

where mB is the Bohr magneton and jcns"ð0Þj2 and jcns#ð0Þj2 represent the ns
spin-up and spin-down electron densities at the nucleus, respectively. Actually,

such a difference in the spin densities is caused by unpaired d electrons. To un-

derstand this mechanism, let us consider 57Fe as an example. The basic reason is

that there exists an exchange interaction which would slightly reduce the repul-

sion between electrons having the same spin quantum number ms. The unpaired

d electrons all have the same spin (say, spin-up, or ms ¼ þ1=2), and they tend to

repel the spin-down s electrons more than the spin-up electrons, therefore polar-

izing the spins in the otherwise perfectly balanced s shells. The s electrons having

relatively large densities at the nucleus are polarized into two groups that interact

differentially with the nucleus. This net interaction is equivalent to a magnetic

field, called the Fermi contact field, in the opposite direction to the field generated

by the spins in the d orbitals. In iron compounds, Bs is the largest among the

three terms in Eq. (2.51). In high-spin Fe3þ (3d5), the number of unpaired d elec-

trons is the largest, resulting in a maximum spin polarization of the s electrons,

and the Fermi contact field becomes as high as 50 to 60 T, while high-spin

Fe2þ(3d6) has four unpaired d electrons, so Bs is lower and varies in the range

20 to 50 T.

BL is called the orbital field, due to the orbital motions of the unpaired elec-

trons around the nucleus. This motion constitutes a circular current, which in

turn produces a magnetic field at the nucleus:

BL ¼ � m0

2p
mBhr

�3ihLzi ð2:53Þ

where Lz is the z-component of the orbital angular momentum. For Fe3þ (3d5) in

a solid, orbital angular momentum is quenched, LzA0. When the spin–orbit

coupling mixes the non-degenerate states with the excited state, thus introducing

an angular momentum in the ground state, BL has a finite value. Because the ex-

cited state mixing may cause the g-factor of the ion to deviate from the spin-only

value of 2, BL has been expressed as [45]
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BL ¼ � m0

2p
mBhr

�3iðg � 2ÞhSzi: ð2:54Þ

For Fe3þ, gA2, and consequently BLA0. For high-spin Fe2þ, BLA20 T and op-

posite to Bs. The BL values for rare earth compounds are relatively large.

The third term in Eq. (2.51) is the dipole field at the nucleus, produced by the

total spin magnetic moment of the valence electrons. It can be written as

BD ¼ m0

8p
mBhr

�3ih3 cos2 y� 1ihSzi: ð2:55Þ

Obviously, BD is zero for a charge distribution with cubic symmetry. For Fe group

ions, BD is small even in non-cubic systems, ranging only from 0 to 8 T. However,

in rare earth compounds where the orbital momentum is not quenched, BD can

be quite large.

A necessary condition for a magnetic hyperfine field is that the atom has a

magnetic moment due to unpaired electrons. There are two main characteristics

associated with this field: it is very strong (Bhf A�33 T in a-Fe) and it is local

(not over the entire lattice). There are several ways to measure the sign of the

magnetic hyperfine field. One is to apply an external magnetic field of 2 to 5 T

and detect whether Beff increases or decreases. When it increases, Bhf is positive;

otherwise it is negative.

So far we have limited ourselves to isolated magnetic hyperfine interactions.

Now we will discuss Beff in ferromagnetic, antiferromagnetic, and paramagnetic

materials. In ferromagnetic materials, the coupling between spins of different

atoms is very strong (spontaneous magnetization), forming areas known as do-

mains. Within each domain, the magnetic moments of all atoms are parallel to

one another. Even at room temperature, the nucleus feels the interaction of a sta-

ble Beff , although the domains have random orientations. In paramagnetic com-

pounds, the coupling between atomic moments is weak, and thermal excitation

causes random fluctuations of the spins. As a result, the hyperfine field at the nu-

cleus also fluctuates rapidly, so that the nucleus may not catch the instantaneous

values of Beff , but the average value Beff ¼ 0. The fluctuation process has a char-

acteristic time called relaxation time tR. It is possible to observe hyperfine field

only when the following condition is met, tR > tL (tL is the Larmor precession

period of the nucleus). For many paramagnetic compounds, tR can be increased

by lowering both the temperature and the density of the Mössbauer nuclei in the

material, thus allowing the observation of the magnetic hyperfine splitting.

The Mössbauer effect has found extensive applications in magnetism and in re-

search of magnetic materials. Without requiring an applied external magnetic

field, Mössbauer spectroscopy can be used to study the temperature dependence

of spontaneous magnetization, the magnitude and orientation of hyperfine fields,

and the magnetic structure of new materials. It can also be used to measure the

ordering temperatures (TC, TN) and spin reorientation temperature, to detect

phase transitions and determine phase compositions, to study magnetic lattice
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anisotropy and relaxation phenomena, etc. From 1960 when Hanna first observed

a magnetic hyperfine spectrum to 1980 when Nd2Fe14B was investigated until the

recent discovery of new types of rare earth permanent magnets R2Fe17Nx and

R2Fe17Cx, the field of magnetism would not be this successful without Möss-

bauer spectroscopy. There is a tremendous amount of literature on this subject,

and there are many excellent books and review articles [46–50].

Magnetism arises mainly from the atomic magnetic moments. Transition

metals (3d, 4d, 5d), the lanthanides (4f ), and the actinides (5f ) all have unfilled

valence electrons and have atomic magnetic moments. Fortunately, many iso-

topes of these elements are Mössbauer nuclei, e.g., 57Fe, 61Ni, 99Ru, 193Ir, 149Sm,
151Eu, 155Gd, 159Tb, 161Dy, 165Ho, 166Er, 169Tm, 170Yb, and 237Np. Obviously, 57Fe is

the best one because Fe is the most important element in magnetism. Not sur-

prisingly, most of the Mössbauer effect studies in magnetism involve 57Fe.

2.4

Combined Quadrupole and Magnetic Interactions

It is often the case when both a magnetic field and an electric field gradient are

present. The shape of a Mössbauer spectrum depends on not only the relative

strengths of these two interactions but also the relative orientations of the EFG

principal axis, the magnetic field, and the incident g-ray. In the principal axis sys-

tem of the EFG (see Fig. 2.15), the total Hamiltonian as the sum of Eqs. (2.27)

and (2.43) is

HQM ¼ HQ þHM

¼ eQVzz

4Ið2I � 1Þ 3ÎI2z � ÎI2 þ 1

2
hðÎI2þ þ ÎI2�Þ

� �

� gmNB
1

2
ðÎIþ þ ÎI�Þ cos fþ 1

2
ðÎIþ � ÎI�Þ sin f

� �
sin yþ ÎIz cos y

	 

: ð2:56Þ

Fig. 2.15 Relative orientations of B, Vzz, and the g-ray direction.
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It is quite easy to obtain the eigenvalues and eigenstates of this Hamiltonian

for I ¼ 1=2, but somewhat more complicated for I > 1=2. In the early days, such

eigenvalue problems were solved essentially by numerical methods [51–56].

Various computer programs developed for this purpose are widely used. Ana-

lytical solutions for the eigenvalues were only available for the case where the

quadrupole interaction is much weaker than the magnetic interaction, i.e.,

VzzeQ=2f gemNB, or h and y are both zero.

An important step was made when analytical solutions for eigenvalues of Ham-

iltonian (2.56) were obtained. Häggström [57] first presented an analytical solu-

tion of the secular equation. By an improved method for spherical angular aver-

ages [58], his results allow a faster and more precise calculation of measured

spectra. Later, Blaes et al. [59] gave an analytical expression for the line intensities

by the superoperator technique. Even though their expressions are complicated,

they allow angular averages to be performed analytically, not numerically as

done in Häggström’s procedure.

Although the numerical method is always necessary and the analytical method

still has some imperfections, the idea has fundamental significance. Therefore,

we choose Häggström’s method for discussing the combined hyperfine interac-

tions.

For 57Fe (or 119Sn), the ground state and the excited state have I ¼ 1=2 and 3/2,

respectively. The matrix elements of the Hamiltonian (2.56) are

1

2
;m 0jHQMj 1

2
;m

� �
¼ �eg

cos y cos ye�if

sin ye if �cos y

" #
ð2:57Þ

3

2
;m 0jHQMj 3

2
;m

� �
¼ eeH

0; ð2:58Þ

where

eg ¼ 1

2
g1=2mNB;

ee ¼ 1

2
g3=2mNB;

H 0 ¼

R� 3 cos y � ffiffiffi
3

p
sin ye�if hRffiffiffi

3
p 0

� ffiffiffi
3

p
sin ye if �R� cos y 2 sin ye�if hRffiffiffi

3
p

hRffiffiffi
3

p �2 sin ye if �Rþ cos y � ffiffiffi
3

p
sin ye�if

0
hRffiffiffi
3

p � ffiffiffi
3

p
sin ye if Rþ 3 cos y

2
6666666666664

3
7777777777775
;

ð2:59Þ
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and

R ¼ eQVzz

4ee
:

The above matrix is not diagonal in the angular momentum states jImi except

when h and y are both zero. As can be seen from (2.29) and (2.30), the electric

quadrupole interaction will mix states differing in m-value byG2 units. Similarly,

the magnetic dipole interaction will mix states differing in m-value byG1 unit.

Accordingly, for I ¼ 3=2 the four eigenvectors can then be represented by linear

combinations of the states jImi:

3

2
; j

����
�

¼ bj; 3=2
3

2
;þ 3

2

����
�
þ bj; 1=2

3

2
;þ 1

2

����
�

þ bj;�1=2
3

2
;� 1

2

����
�
þ bj;�3=2

3

2
;� 3

2

����
�

ð2:60Þ

where the coefficients bj;me
are normalized to unity:

X
me

jbj;me j2 ¼ 1; for j ¼ 1; 2; 3; 4:

Analogously, for I ¼ 1=2

1

2
; i

����
�

¼ ai; 1=2
1

2
;þ 1

2

����
�
þ ai;�1=2

1

2
;� 1

2

����
�

ð2:61Þ

where the coefficients ai;mg
are also normalized to unity:

X
mg

jai;mg j2 ¼ 1; for i ¼ 1; 2:

Let l be the unknown eigenvalue of the matrix H 0. The secular determinant

equation can be then expressed as

l4 þ pl2 þ qlþ r ¼ 0 ð2:62Þ

where

p ¼ �10� 2R2ð1þ h2=3Þ;
q ¼ �8Rð3 cos2 y� 1þ h sin2 y cos 2fÞ;

ð2:63Þ
r ¼ 9þ 2R2ð6 sin2 yþ h2 cos 2yþ 4h sin2 y cos 2f� 5Þ

þ R4ð1þ h2=3Þ2:
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The real roots of such an equation of the fourth order for qb 0 are [60]

l1 ¼ ffiffiffiffi
y1

p � ffiffiffiffi
y2

p � ffiffiffiffi
y3

p

l2 ¼ � ffiffiffiffi
y1

p � ffiffiffiffi
y2

p þ ffiffiffiffi
y3

p

l3 ¼ � ffiffiffiffi
y1

p þ ffiffiffiffi
y2

p � ffiffiffiffi
y3

p

l4 ¼ ffiffiffiffi
y1

p þ ffiffiffiffi
y2

p þ ffiffiffiffi
y3

p
ð2:64Þ

where

yk ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 12r

p
cos½j=3þ ðk� 1Þ2p=3� � p

6
k ¼ 1; 2; 3; ð2:65Þ

cos j ¼ 2p3 þ 27q� 72pr

2ðp2 þ 12rÞ3=2
:

For q < 0, all li given above should be multiplied by �1.

The energy eigenvalues of the Hamiltonian with I ¼ 3=2 are then given as a

product

Eð3=2; jÞ ¼ ee � lj: ð2:66Þ

Substituting these values into the eigenvector equation, the coefficients bj;me
can

be calculated (see Appendix B).

The transition energies, ET, are the differences between the eigenvalues of the

excited and ground states

ETð3=2; j; 1=2; iÞ ¼ Eð3=2; jÞ � Eð1=2; iÞ: ð2:67Þ

When g-rays in a direction ðb; aÞ are absorbed, the relative transition probabilities

are then [51]

W b; a;
3

2
; j;

1

2
; i

� �
¼

Xþ1

m¼�1

cmw
m
L

�����
�����
2

ð2:68Þ

where

cm ¼
Xþ1=2

mg¼�1=2

a�
mg
bðmgþmÞhIgmg1mjIeðmg þmÞi; for m ¼ �1; 0;þ1: ð2:69Þ

Using the values of appropriate Clebsch–Gordan coefficients, the coefficients in

(2.69) are reduced to
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cG1 ¼ a�
i;G1=2bj;G3=2 þ

ffiffiffi
1

3

r
a�
i;H1=2bj;G1=2;

c0 ¼
ffiffiffi
2

3

r
ða�

i;þ1=2bj;þ1=2 þ a�
i;�1=2bj;�1=2Þ:

ð2:70Þ

Inserting the vector spherical harmonics wm1 from (2.47) into (2.68), one obtains

W b; a;
3

2
; j;

1

2
; i

� �
¼ 3

4
½ðjcþ1j2 þ jc�1j2Þð1þ cos2 bÞ þ jc0j22 sin2 b

�
ffiffiffi
2

p
sin 2w Reðcþ1c

�
0e

iaÞ
þ 2 sin2 b Reðcþ1c

�
�1e

2iaÞ
�

ffiffiffi
2

p
sin 2b Reðc0c ��1e

iaÞ�: ð2:71Þ

This formula should be used when the sample under investigation is a single

crystal. For a powder sample, Eq. (2.71) must be averaged over b and a, giving

the following simple result:

W
3

2
; j;

1

2
; i

� �
¼ jcþ1j2 þ jc0j2 þ jc�1j2: ð2:72Þ

In order to understand the physical meanings of jcG1j2 and jc0j2, let us consider
the pure magnetic hyperfine interaction just discussed above. In this case,

Vzz ¼ 0 (or R ¼ 0). The coordinate system is chosen so that y ¼ 0, and the matrix

(2.59) will be diagonal. This means the absence of mixture between substates. In-

deed, since R ¼ 0, we have p ¼ �10, r ¼ 9, and q ¼ 0. Solving Eq. (2.58) gives

four eigenvalues: G3ee and Gee which are the same as Eq. (2.44). For the

Dm ¼ þ1 transitions (corresponding to line 6 in Fig. 2.14), we have b4; 3=2 ¼ 1,

b4; 1=2 ¼ b4;�1=2 ¼ b4;�3=2 ¼ 0, a1; 1=2 ¼ 1, and a1;�1=2 ¼ 0. Using Eq. (2.70), we

can calculate cþ1 ¼ 1, c�1 ¼ c0 ¼ 0, where cþ1 is none other than the C-G coeffi-

cient for this transition whose relative transition probability is Wþ1 ¼ jcþ1j2 ¼ 1.

Analogously for the Dm ¼ 0 and Dm ¼ �1 transitions, the relative probabilities

are W0 ¼ jc0j2 ¼ 2=3 and W�1 ¼ jc�1j2 ¼ 1=3, respectively. The values of W are

exactly the same as earlier results listed in Table 2.3.

A subroutine program has been written which calculates the transition ener-

gies ET, and the corresponding intensities, using the above analytical formulas.

This subroutine has been incorporated into a least-square fitting program to pro-

vide a practical way of analyzing Mössbauer spectra in the presence of combined

interactions. Here we will show the results from a hexagonal FeGe powder as an

example [57]. The parameters used are B, DEQ, h, y, f, together with ordinary pa-

rameters such as background, area, linewidth, etc. In Table 2.4 are given experi-

mental results of 57Fe Mössbauer spectra at four temperatures, and one of the

spectra is presented in Fig. 2.16.
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It should be noted that the exact expressions, such as (2.63), (2.68), (2.69), etc.,

are indeed very tedious for practical purposes. It is often the case where either the

magnetic hyperfine interaction or electric quadrupole interaction is dominant

while the other occurs as a perturbation, i.e., Rg 1 or Rf 1. We now briefly con-

sider these two extreme cases.

When the magnetic interaction is dominant, Rf 1, expanding lj into a Taylor

series at R ¼ 0 (see Appendix B) can give the approximate energy eigenvalues for

the four sublevels as follows:

E
3

2
; 1

� �
¼ eeð�3þ Rk1Þ;

E
3

2
; 2

� �
¼ eeð�1� Rk1Þ;

E
3

2
; 3

� �
¼ eeðþ1� Rk1Þ;

E
3

2
; 4

� �
¼ eeðþ3þ Rk1Þ

ð2:73Þ

Table 2.4 Results from the fitting of 57Fe M€oossbauer spectra of FeGe

hexagonal compound at four temperatures.

T (K) B (T) DEQ (mm sC1) d (mm sC1) h y (̊ ) f (̊ )

10 15.7(1) �0.56(3) 0.39(1) 0.3(1) 82(2) 70(25)

295 11.8(1) �0.60(2) 0.28(1) 0.3(1) 89(1) 70(10)

360 8.7(1) �0.58(1) 0.23(1) 0.4(1) 89(1) 80(15)

390 5.2(1) �0.55(2) 0.22(1) 0.3(1) 90(1) 70(10)

Fig. 2.16 Fitted 57Fe M€oossbauer spectrum of hexagonal FeGe at room temperature.
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where

k1 ¼ 1

2
ð2 cos2 y� 1þ h sin2 y cos 2fÞ:

This means that each of four sublevels in Fig. 2.14(a) shifts an amount of þRk1
or �Rk1 further.
If the electric quadrupole interaction is dominant as shown in Fig. 2.12, Rg 1,

to a first-order approximation we may neglect the four elements in matrix (2.59)

that mix theG3=2 states withG1=2 states. Suppose also h ¼ 0, then only the in-

ner 2� 2 matrix is required to diagonalize. A similar calculation gives the approx-

imate eigenvalues and eigenstates for the excited state with:
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;� 3

2

����
�

E
3

2
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3
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����
�

¼ 3

2
;þ 3
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ð2:74Þ

where

tan2 h ¼ ð4� 3 cos2 yÞ1=2 � cos y

ð4� 3 cos2 yÞ1=2 þ cos y
:

2.5

Polarization of g-Radiation

From the viewpoint of electromagnetic waves, polarized g-rays behave basically

the same as polarized visible light, except that g-rays have more of a particle char-

acter. In optics, polarization is described by the vibration of the electric field vec-

tor E. Suppose an electromagnetic wave travels in the z-direction, and all E vectors

are in one particular plane, then this wave has a plane polarization or linearly

polarization. If the E vectors at different locations form a perfect helix around

the z-axis, then the wave is circularly polarized, with either a left-handed or a

right-handed helicity. For a particle, polarization is described by its spin. The po-
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larization of a g-ray can be defined by its helicity h, which is the projection of the

photon’s angular momentum along the z-axis. Therefore, it can have two values,

h ¼G1, corresponding to right- and left-circularly polarized g-rays.

When h ¼ þ1, we use a polarization vector eþ and the state jþ1i to describe

the right-circularly polarized g-ray. Similarly, when h ¼ �1, we use e� and j�1i
to describe the left-circularly polarized g-ray. The two vectors eþ and e� form an

orthogonal basis for circular polarization. Two other vectors ex and ey can also be

taken as an orthogonal basis for linear polarization and eG can be written in

terms of ex and ey,

eG¼H
1ffiffiffi
2

p ðex G ieyÞ ð2:75Þ

and

jG1i ¼H
1ffiffiffi
2

p ðjexiG ijeyiÞ: ð2:76Þ

The g-rays as well as light are electromagnetic waves of very high frequencies;

however, the above definition of helicity for right- and left-circularly polarized

g-rays is opposite to that in optics where h ¼ þ1 and �1 correspond to left- and

right-circularly polarized light. As is known in optical spectroscopy, an external

magnetic field B0 makes the emitted light linearly p- or s-polarized, depending

on whether E @B0 or ELB0. These conventions are also followed in Mössbauer

spectroscopy, but it is more often to use the polarization plane or the polarization

vector to describe linear polarization. For instance, the polarization plane of the

g-rays emitted from the Dm ¼G1 transitions is perpendicular to that of the

g-rays emitted from the Dm ¼ 0 transitions. The polarization vector of the former

is parallel to B0, while that of the latter is perpendicular to B0.

Mössbauer experiments with polarized resonance radiation yield a considerable

amount of information not otherwise easily available. In particular, it can be used

to determine the signs of both the quadrupole coupling ðeQVzzÞ [36] and the

magnetic hyperfine field Beff [61], and to determine the magnetic structure [62,

63]. It is also this method that allows one to observe the resonant g-ray Faraday

effect [64] and to decompose poorly resolved spectra [65]. Investigation of polar-

ization effects in resonant g-ray diffraction, interference, and refraction leads to

development of the g-ray optics theory [66].

In this section, we will first describe the methods for producing multi-line and

single-line polarized sources, followed by a detailed analysis of Mössbauer spectra

measured with these two kinds of g-ray radiations.

2.5.1

Polarized Mössbauer Sources

The methods to produce polarized Mössbauer g-rays from radioactive sources are

almost invariably based on hyperfine interactions that split nuclear energy levels
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into sublevels. The g-rays emitted from these excited sublevels are all or partially

polarized. One has to use the hyperfine fields because external magnetic fields in

excess of 33 T are not easily obtainable today, and it is extremely difficult to pro-

duce an external EFG that would result in discernible DEQ in the spectrum.

1. Multi-line sources. The effective fields Beff at all of the 57Co nuclei are aligned

by a weak external magnetic field applied to a 57Co/a-Fe source. The g-rays emit-

ted in a direction perpendicular to the magnetic field ðys ¼ 90�Þ will give a spec-

trum of six lines, all linearly polarized. The Dm ¼G1 transitions have a p-

polarization and the Dm ¼ 0 transitions have a s-polarization; the polarization

plane of the former being perpendicular to that of the latter. If we look at the

g-rays emitted in the direction of the applied magnetic field ðys ¼ 0�Þ, then the

system has an axial symmetry. Angular momentum along the magnetic field di-

rection should be conserved, and thus those spectral lines due to the Dm ¼ 0

transitions will disappear. Consequently, the spectrum has only four lines, among

which two are left-circularly polarized and two are right-circularly polarized. In an

arbitrary observation direction ð0� < ys < 90�Þ, the emitted g-rays are elliptically

polarized.

2. Single-line sources. Using a magnetized filter to produce monochromatic po-

larized g-rays is the most promising approach. The filter is placed between an un-

polarized single line source and the absorber, and is moving at a constant Dop-

pler velocity with respect to the source such that g-rays with one polarization are

resonantly absorbed and the remaining g-rays with the other polarization are al-

lowed to pass and reach the sample absorber. Thus, the filter magnetized by an

external magnetic field serves as a polarizer. The first successful construction of

such a source was reported in 1969 [67]. However, the required additional velocity

transducer makes the apparatus quite complicated. Several source-polarizer sys-

tems in which relative motion is not required have since been found. This means

the resonance absorption in the polarizer occurs at zero Doppler velocity. An

example of such a system used for producing linear polarization is a 57Co/CoO

source with an FeaRhaNi polarizer [68]. The 57Fe nucleus in the CoO matrix

has a very large isomer shift so that its g-rays can be in resonance with the fourth

line of the sextet of the FeaRhaNi polarizer. The polarizer is glued to the source

and both are mounted on the standard Mössbauer transducer. In general, the ra-

diation transmitted through the polarizing filter contains the complementary or

orthogonal polarization to that absorbed by the filter. When an external magnetic

field applied to this polarizer is perpendicular to the g-ray direction, a beam of

monochromatic radiation of 80% linear polarization is obtained. Another system

used for producing circular polarized radiation has a 57Co/Cr source and an

FeaSi polarizer, which seems to be a better combination [69]. Such a source is

shown schematically in Fig. 2.17. It is found that the mismatch between the third

absorption line of 57Fe2:85Si1:15 and the emission line of 57Co/Cr does not exceed

0.01 mm s�1. This system has many advantages. For example, Fe in Cr matrix

has a relatively narrow single line, so Cr is used as a standard matrix; in FeaSi,
the separation between the absorption line and the nearest line with a different

polarization is large. The polarizer of thickness 34 mg cm�2 is magnetized by an
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applied longitudinal magnetic field of about 1 T. Using this system, monochro-

matic circularly polarized g-rays with a (80G 2)% polarization was obtained.

In addition, one can construct a polarized g-ray source by using quadrupole

interaction. In a case where the principal axis of the EFG is perpendicular to

the direction of observation, the g-rays from the G3=2 !G1=2 transitions

ðDm ¼G1Þ are linearly polarized, and the g-rays from theG1=2 !G1=2 transi-

tions ðDm ¼G1; 0Þ are only partially linearly polarized.

In all these methods, a polarized source is obtained at the expense of the radia-

tion intensity. Today, Mössbauer sources from synchrotron radiation (SR) are be-

coming more accessible, which usually have high intensity and high degree of

polarization.

2.5.2

Absorption of Polarized g-Rays

Now we focus our attention on a comparison of 57Fe absorption spectra taken

using a multi-line polarized source with those using a single-line polarized

source. In each case, the absorber is magnetized. In Fig. 2.18, the g-ray is travel-

ing in the z-direction, and Bs and Ba represent the magnetic fields applied to the

Fig. 2.17 Layout of the circularly polarized source.

Fig. 2.18 Relative arrangement of the source and the

absorber in external magnetic fields Bs and Ba,

respectively.
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source (or the polarizer) and absorber, respectively. We will designate the emis-

sion spectral lines as A, B, C, D, E, and F, and the absorption spectral lines as a,

b, g, d, e, and h (Fig. 2.19) in addition to the number notation in Fig. 2.14(a).

1. Circularly polarized g-rays. In Fig. 2.18, if ys ¼ ya ¼ 0, the source (57Co/a-Fe)

and the absorber (a-Fe) are in collinear longitudinal magnetic fields. This multi-

line source emits only four spectral lines corresponding to the Dm ¼G1 transi-

tions. In the absorption process, angular momentum conservation in the mag-

netic field direction is also required; therefore, the helicity of the g-ray (h ¼ þ1 or

�1) will have to match the angular momentum change of the transition in the

absorber. When the source is driven with the appropriate Doppler velocities, the

total number of absorption spectral lines observed is not 16 ð4� 4Þ, but 8 because

of the constraints of angular momentum conservation. The positions and inten-

sities of the 8 lines depend on the ratio Ba=Bs as indicated in a nomograph at the

bottom of Fig. 2.20 (see also Table 2.5). The spectrum in the upper portion of Fig.

2.20 is observed when Ba ¼ Bs [61]. Let us analyze the origin of the spectral line

on the right. When the source velocity corresponds to an energy ðje 0ej þ je 0gjÞ,
where e 0e and e 0g are defined in Fig. 2.19, emission line A has the same energy

and helicity as the absorption line d, and resonance absorption takes place. In

the meantime, C is absorbed by h. Both these absorptions, Ad þ Ch, occur at the

same velocity. Similarly, the rest of the six absorptions superimpose to give two

spectral lines, one in the center and one on the left, with an intensity ratio of

10:3. We can see from the nomograph that, when Ba=Bs ¼ 0, there are four ex-

pected lines because of the absence of nuclear level splitting in the absorber.

When Ba ¼ �Bs, six absorption lines are expected.

If the single line source shown in Fig. 2.17 is used, the spectra become simpler.

Four spectra taken from a-Fe and HoFe2 absorbers are illustrated in Fig. 2.21,

each of which consists of two lines despite that the fields Bs (acting only on the

polarizer) and Ba are parallel ðys ¼ ya ¼ 0Þ or antiparallel (ys ¼ 0, ya ¼ 180�) [69].
Based on these spectra, we can discuss an important problem, namely to deter-

mine the sign of hyperfine magnetic field Bhf . As we know, the sign of Bhf is

reflected in the sense of the circularly polarized hyperfine transition g-ray (i.e.,

Fig. 2.19 Nuclear Zeeman sublevels and allowed transitions

in 57Fe.
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g-ray helicity) along the field direction. In other words, if the helicity of emission

or absorption g-ray is found, the sign of Bhf in a source or an absorber can be

unambiguously determined. The helicity of the emitted g-ray can be analyzed by

a longitudinally magnetized absorber whose Bhf direction is known. When the

fields Bs and Ba are parallel, only lines 1 and 4 have large intensities. Traces of

other lines come from incomplete polarization and incomplete alignment of the

moments in the absorber. Since Bhf in a-Fe is negative, lines 1 and 4 have the

helicity h ¼ þ1, thus the emitted g-rays must also have h ¼ þ1. Consequently,

the sign of Bhf in FeaSi polarizer is determined to be negative. After reversing

the direction of Ba ðya ¼ 180�Þ, lines 3 and 6, as expected, become dominant.

Similarly, the sign of Bhf in the ferrimagnetic HoFe2 has been determined to be

positive as evidently shown in Fig. 2.21. As far as unambiguously determining

Fig. 2.20 Top: a M€oossbauer spectrum using a 57Co/a-Fe source and an

a-Fe absorber, both equally magnetized by an external longitudinal

magnetic field of 5.2 T. Bottom: a nomogram showing the intensities of

the spectral lines and their positions as functions of the ratio Ba/Bs

(see Table 2.5) [70].
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the sign of Bhf is concerned, a partially circularly polarized g-radiation may be

sufficient, provided the spectrum changes appreciably when the applied Ba (or

Bs) is reversed [71].

2. Linearly polarized g-rays. When ys ¼ 90�, the six emission lines from a mag-

netized 57Co/a-Fe are all linearly polarized. For simplicity, we will assume

fs ¼ 90�. In this case, four of six lines are of the p-type ðDm ¼G1Þ, with the elec-

tric field vector E parallel to Bs, i.e., the polarization plane is in the yz-plane. The
other two lines are of the s-type ðDm ¼ 0Þ, ELBs, with the polarization plane in

the xz-plane. In general, using such a source for a magnetically ordered absorber

would result in a total of 36 absorption lines. But if we limit ourselves to the cases

Table 2.5 Relative intensities in M€oossbauer spectra using

polarized sources and thin absorbers, either of which may

be a magnetized ferromagnet with the M€oossbauer nuclei in

unique sites with an axially symmetric crystal field [70].

Circularly polarized g-ray source (ys F 0˚ )

ya ¼ 0�, Df indeterminate ya ¼ 180�, Df indeterminate

a g d h a g d h

A 9 0 3 0 A 0 3 0 9

C 0 1 0 3 C 3 0 1 0

D 3 0 1 0 D 0 1 0 3

F 0 3 0 9 F 9 0 3 0

linearly polarized g-ray source (ys F 90˚ )

ya and Df variable

a, h b, e g, d

A, F 9ð1� sin2 ya

sin2 DfÞ
12 sin2 ya sin

2 Df 3ð1� sin2 ya

sin2 DfÞ
B, E 12ð1� sin2 ya

cos2 DfÞ
16 sin2 ya cos

2 Df 4ð1� sin2 ya

cos2 DfÞ
C, D 3ð1� sin2 ya

sin2 DfÞ
4 sin2 ya sin

2 Df ð1� sin2 ya

sin2 DfÞ
ya ¼ 90�, Df ¼ 0� ya ¼ 90�, Df ¼ 90� ya ¼ 0�, Df ind.

a, h b, e g, d a, h b, e g, d a, h b, e g, d

A, F 9 0 3 0 12 0 9 0 3

B, E 0 16 0 12 0 4 12 0 4

C, D 3 0 1 0 4 0 3 0 1
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where the magnetic hyperfine field in the absorber is also perpendicular to the

g-ray direction ðya ¼ 90�Þ, the spectrum will be greatly simplified, especially

when Bs @Ba or Bs LBa. Figure 2.22 shows Mössbauer spectra obtained in these

two special arrangements [70].

Now that we have linearly polarized g-rays perpendicular to both Bs and Ba, it is

impossible to use simply angular momentum conservation to determine whether

an emitted line would be absorbed or transmitted. We may use the intensity of

each absorption line calculated in Table 2.5 to determine how many lines are

expected in a spectrum. But here we describe a more intuitive graphical method

to analyze them. Take the emission lines A and B as examples. Line A has a p-

polarization with its polarization plane parallel to Bs, while line B has a s-

polarization with its polarization plane perpendicular to Bs. The squares in Fig.

2.23 represent the respective polarization planes. There are two types of absorp-

tion lines, one with its polarization plane parallel to Ba and the other perpen-

dicular to Ba. When Bs @Ba, A will cause four absorption lines: Ah, Ad, Ag, and

Aa. Although the other two lines Ab and Ae meet the energy requirement, they

are not absorbed. Now we change the magnetization of the absorber so that

Bs LBa, and we expect that the originally transmitted lines (Ab and Ae) be ab-

sorbed and the originally absorbed lines will go through. For emission line B,
similar diagrams in Fig. 2.23 will help us determine which lines are absorbed

when Bs @Ba and Bs LBa. All told, 20 out of the possible 36 spectral lines will

Fig. 2.21 Spectra of a-Fe and HoFe2 measured with a single-line

circularly polarized source shown in Fig 2.17 when the fields Bs and Ba

are parallel (a, c) and antiparallel (b, d). The helicity of each line is

indicated by þ1 or �1.
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appear if Bs @Ba, and 16 lines will appear if Bs LBa. In cases where Bs and Ba

have equal magnitudes, some lines are superimposed, resulting in spectra as

shown in Fig. 2.22. We can clearly see a trend that when the source and absorber

are both magnetized, an emission line resonates with an absorption line if their

polarization planes are parallel, and the emission line will transmit if the these

polarization planes are perpendicular. This selective absorption based on polariza-

tion is identical to the phenomenon of dichromism in optics.

If the above multi-line source is replaced by the single-line source consisting of
57Co/CoO and the FeaRhaNi polarizer, the spectra in Fig. 2.22 will change into

that shown in Fig. 2.24 [68]. As can be seen from these comparisons, using a

monochromatic source significantly simplifies the complex spectra, and this is

of the greatest importance in practice. In fact, the intensity and position of a line

in Fig. 2.22 are strongly dependent on the ratio Ba=Bs. Moreover, if the absorber

is not simply a-Fe, but SrFe12O19 or Nd2Fe14B, the measured spectra can hardly

be decomposed. In other words, the practical application of a multi-line source

may be limited, and a single-line source has a unique advantage.

Fig. 2.22 M€oossbauer spectra obtained with a 57Co/a-Fe source and an

a-Fe absorber, both at room temperature and equally magnetized

perpendicular to the g-ray direction (Ba/Bs ¼ 1, ys ¼ ya ¼ 90�). Left: Bs

and Ba are parallel (fs ¼ fa). Right: Bs and Ba are perpendicular

(fs � fa ¼ 90�). The letters next to the stick diagrams indicate the

origins of the lines. The nomograms at the bottom show the positions

and intensities of the lines for any ratio of Ba/Bs.
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2.6

Saturation Effect in the Presence of Hyperfine Splittings

It has been observed [72] that in a sextet spectrum due to a magnetic hyperfine

field, there is a higher saturation effect on the areas A of the outermost lines 1

and 6 than the inner lines 3 and 4. We begin with the quadrupole splitting as an

example.

Fig. 2.23 Graphic representation of how emission lines A and B in

Fig. 2.19 may be absorbed or transmitted depending on the relative

directions of Bs, Ba, and the polarization planes. (a) Both Bs and Ba are

along the x-direction. (b) Bs is along the y-direction and Ba along the

x-direction.

Fig. 2.24 Spectra of a-Fe with a single-line polarized source when the

fields Bs (applied to the polarizer) and Ba are parallel and

perpendicular.
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The presence of the saturation effect shown earlier in Fig. 1.10 is redrawn in

Fig. 2.25. Considering a single-line absorber with a particular effective thickness

ta0, we first assume that, due to the quadrupole interaction, the single absorption

line suddenly splits into two well-resolved lines of equal areas. Of course, the pa-

rameters f , s0, and d in ta0 are not affected by any hyperfine splittings. Among all

the nuclei resonantly absorbing g-rays, one half is in the excited states jG3=2i,
while the other half is in the excited states jG1=2i. Thereby each line now has

an effective thickness of ta0=2, yielding an area Aðta0=2Þ. As shown in Fig. 2.25,

the total area 2Aðta0=2Þ (indicated by the dashed line) may be appreciably larger

than the area of the single line Aðta0Þ. An important conclusion is that the split-

ting of a line has resulted in an increase of the total absorption area, and conse-

quently a decrease of the saturation effect, although the recoilless fraction has not

changed at all.

A similar effect is observed when the single absorption line splits into a sextet

in the magnetic field. Only one-sixth of all the excited nuclei contribute to the two

absorption lines 3 and 4, so each line has an effective thickness of ta0=12, yielding
an area Aðta0=12Þ. Analogously, line 2 or 5 and line 1 or 6 have effective thick-

nesses of ta0=6 and ta0=4, yielding areas Aðta0=6Þ and Aðta0=4Þ, respectively. As
shown in Fig. 2.25, line 1 or 6 is clearly suffering from the saturation effect

more than line 3 or 4. Therefore, only very thin absorbers can guarantee the in-

tensity ratio of 3:2:1 in the sextet spectrum.

2.7

Mössbauer Spectroscopy

Mössbauer spectroscopy is mainly used to study the properties of materials

through hyperfine interactions. Isomer shift d, quadrupole splitting DEQ, mag-

Fig. 2.25 Absorption area A(ta) as a function of effective thickness ta.

Due to the saturation effect, 2A(ta
0/2) > A(ta

0), and 12A(ta
0/12) >

6A(ta
0/6) > 4A(ta

0/4).
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netic hyperfine field, second-order Doppler effect, and the recoilless fraction are

all basic parameters in Mössbauer spectroscopy. They are determined by the posi-

tions and the areas of spectral lines. Moreover, the spectral shape and linewidth

are also very important. These parameters are dependent on external conditions

such as temperature, pressure, and magnetic field. It is clear that Mössbauer

spectra can provide an abundance of information.

Using hyperfine interactions, the Mössbauer effect serves as a bridge linking

the nucleus with its environmental details, which include the crystal structures

of materials, the perfectness of a crystal, lattice periodicity and magnetic ordering,

crystallinity, the amorphous state, oxidation state in a compound, coordination

number, and effect of ligands, as well as the vibrations and diffusions of atoms

in the solid. Because of its extremely diverse applications, Mössbauer spectros-

copy has developed into a truly unique and specialized interdisciplinary field of

science.

Mössbauer spectroscopy has enjoyed continued popularity because of the fol-

lowing extraordinary characteristics and advantages: (1) it has decisively the high-

est energy resolution of all spectroscopic methods; (2) it requires only a relatively

simple apparatus, in contrast to other nuclear physics research systems that are

usually huge in size and exorbitantly expensive; and (3) it is a nondestructive

method for studying a solid and gives microscopic statistical information on the

atomic scale rather than a macroscopic average. Mössbauer spectroscopy comple-

ments other nuclear methods such as neutron scattering, perturbed angular cor-

relation, nuclear magnetic resonance, etc. Like any other experimental methods,

Mössbauer spectroscopy has its own limitations. Although the total number of

Mössbauer isotopes now exceeds 100, some of them have very short half-lives,

and others require liquid nitrogen or even liquid helium temperatures for the ob-

servation of the Mössbauer effect. By and large, for most of the isotopes, either

the corresponding sources are very expensive or their Mössbauer effects are diffi-

cult to observe. 57Fe remains as the best Mössbauer nucleus. Iron is found in a

large array of materials. Many minerals have certain amount of Fe, magnetic ma-

terials are largely based on Fe, and there are numerous iron alloys and iron com-

pounds. Because of this economic implication of iron and iron products, research

using 57Fe Mössbauer spectroscopy has always assumed a leading role. In addi-

tion, Mössbauer spectroscopy is very sensitive to the changes of the environment

around the nucleus, but in some cases it is not capable of unambiguously distin-

guishing the origins of the contributions. Experimentally, we usually have to pre-

pare a series of samples to fix certain conditions such as crystalline structure and

composition, quenching temperature, etc., and use comparative methods to study

phenomena of interest. Therefore, Mössbauer spectroscopy is mainly a relative

methodology.

Mössbauer spectroscopy has a history of 50 years since the first experiments of

resonant absorption of nuclear g-rays, and new aspects of this nuclear technique

are still being investigated, especially as new materials and new theories are de-

veloped constantly in solid-state physics.
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the Mössbauer effect of 57Fe. In
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Mössbauer spectroscopy. Nucl.
Instrum. Methods B 134, 405–412

(1998).

64 P. Imbert. Etude des phénomènes
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3

Experimental Techniques

The development and advancement of Mössbauer spectroscopy represents one of

the great achievements in experimental physics. To someone new to Mössbauer

spectroscopy, this ingenious experimental method often seems mysterious as to

why it can offer an energy resolution of the same order of magnitude as the ‘‘nat-

ural width’’ of the energy level. In this chapter, we first describe the principle of

energy modulation using Doppler velocity, which is a key step in observing a

Mössbauer spectrum. This technique is well developed and well documented in

the literature [1, 2]. Next, we describe the Mössbauer radiation sources and the

g-ray detectors. These sources and detectors must possess certain particular prop-

erties and are specially prepared. The data acquisition system is relatively simple,

which we briefly deal with.

3.1

The Mössbauer Spectrometer

To measure the characteristics of any resonance phenomenon, e.g., the resonance

curve of an LC circuit, one must have a signal generator whose frequency can be

continuously adjusted. To obtain the resonance curve of a nucleus absorbing

g-rays, the energy of the incoming g-ray must also be modulated. This is achieved

using the Doppler effect, in which the perceived frequency of a wave is different

from the emitted frequency if the source is moving relative to the receiver. Sup-

pose the source and the receiver have a relative velocity of v, then the perceived

frequency of the g-radiation is

f ¼ f0 1þ v

c
cos y

� �
1� v2

c2

� ��1=2

ð3:1Þ

where f0 is the frequency of the radiation when the source is at rest, c is the speed
of light, and y is a small angle between the relative velocity and the g-ray direc-

tion. To obtain a typical Mössbauer spectrum, vmax < 1 m s�1, thus v=cf 1, and

a very good approximation of the above equation is
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Df ¼ f � f0 ¼ f0
v

c
cos y;

or

DE ¼ E0
v

c
cos y: ð3:2Þ

In principle, the energy of the emitted g-rays may be changed by either raising

the source temperature or applying an external magnetic field to cause Zeeman

splitting of the nuclear energy levels in the source [3]. But both have serious lim-

itations and have never become widely adopted. At the present time, almost every

Mössbauer spectrometer has a velocity transducer based on Eq. (3.2), modulating

the g-ray energies in order to observe the resonance curve. In most cases, the

source undergoes a mechanical motion, whereas the absorber is at rest so that it

is easier to change its temperature or to apply an external magnetic field to the

absorber.

The velocity transducers are generally operated in two modes: constant velocity

and velocity scan. The first is the simplest, developed in the early 1960s. In this

case the spectrum is recorded ‘‘point by point’’ throughout the selected velocities

provided that the measurement time interval at each velocity is fixed. The Möss-

bauer spectrometers used at the present time are almost exclusively constructed

using the second mode, in which the source scans periodically through the veloc-

ity range of interest. If every increment/decrement in velocity between adjacent

points is the same, the source motion must have a constant acceleration, and the

velocity-scanning spectrometer becomes a constant-acceleration one. For record-

ing the transmitted g-rays, each velocity has its own register (usually called a

channel) which is sequentially held open for a fixed, short time interval synchro-

nized with the velocity scan. The number of channels, i.e., the number of velocity

points, is usually chosen to be 256, 512, or sometimes 1024, etc.

Figure 3.1 shows a block diagram of a velocity-scanning spectrometer in trans-

mission geometry. It consists of a radiation source, an absorber, a detector with its

electronic recording system, a clock signal and a function generator, a drive cir-

cuit, and a transducer.

The radiation source is not monochromatic. For example, in addition to emit-

ting the 14.4-keV g-rays, a 57Co source also emits g-rays and x-rays of other ener-

gies (see Section 3.3). In order to pick out the signal due to the 14.4-keV radia-

tion, a single-channel analyzer (SCA) is placed behind the amplifier. Figure 3.2

shows various control signals and an observed spectrum.

The clock generates a synchronizing signal, which sets the starting moment

ðt ¼ 0Þ for velocity scanning. A triangular wave from the waveform generator be-

gins to increase (decrease) from its minimum (maximum), and the first channel

also begins to open. After that, each channel is opened in turn by an advance

pulse alone. The velocity of the transducer is scanned linearly from �vm to þvm,
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Fig. 3.1 Block diagram of a M€oossbauer spectrometer in transmission geometry.

Fig. 3.2 Various control signals in a constant-acceleration spectrometer

and an absorption spectrum.
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and a spectrum taken during the linear ramp is stored in one half of the total

channels. Then, the velocity decreases from þvm back to �vm, completing a back-

ward scan, during which the measured data are stored in the other half of the

available channels. Therefore, in one scan period, a multiscaler or a computer

will record two spectra, which are mirror images of each other. In order to obtain

a spectrum with a good signal-to-noise ratio, hundreds of thousands of scans are

usually necessary. An occasional synchronization problem would have no impact,

because it recovers at the next scan period.

One obvious advantage of using a constant-acceleration spectrometer is that the

stability requirement is not as strict as in a constant-velocity spectrometer. If in-

stability, such as a discrimination voltage drift at SCA, should cause a decrease in

the absorbed line intensities during one scan or several scans, it has a small effect

on the absolute intensities but no effect on the positions and the shape of the

spectral lines because this process is equivalent to shortening the experiment du-

ration slightly. Another advantage is that this mode can make full use of digital

technology, improving the properties of the spectrometer and allowing automatic

data acquisition.

3.2

Radiation Sources

Among the isotopes in which the Mössbauer effect has been observed, 40K is the

lightest one. It is a pity that there exist no lighter Mössbauer isotopes. The Möss-

bauer isotopes are not distributed evenly, with three-quarters of them concen-

trated in elements with atomic numbers between 50 and 80. There are only a lit-

tle over 20 Mössbauer isotopes that are in practical use, which amount to about

one-quarter of the total number of Mössbauer isotopes. 57Fe and 119Sn are the

most popular, whose decay schemes are shown in Fig. 3.3. 57Fe is by far

the most important one, for more than 69% of research work involves 57Fe. The

Fig. 3.3 Nuclear decay schemes of 57Co and 119Sn.
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next few frequently used isotopes are 151Eu, 197Au, 129I, 121Sb, and 125Te. In-

creased attention has been paid to 237Np, 155Gd, 161Dy, and especially to 67Zn

and 181Ta, which are used to obtain high-resolution spectra.

The quality of a Mössbauer source depends on the properties of the isotope and

the host (matrix) material. The Mössbauer isotope and the host should satisfy the

following criteria:

1. Eg should be limited within 5 to 150 keV, preferably less

than 50 keV. This is because both f and s0 decrease as Eg

increases, and especially f decreases more severely. For g-rays

of energies less than 5 keV, too much self-absorption makes

Mössbauer radiation very weak.

2. It is desired that the half-life T1=2 of the excited state should

lie between 1 and 100 ns. If T1=2 is too long, the natural

width Gn of the excited state is very narrow and a slight

mechanical vibration may destroy the resonance condition.

Conversely, if T1=2 is too short, Gn would be too large such

that a spectrum with hyperfine structure may not be

resolved.

3. The internal conversion coefficient a should be small (<10),

to ensure a relatively large probability for g-ray emission,

which is especially important for the transmission geometry.

4. It is preferred that the parent nucleus has a long half-life,

and allows for easy production of a high-activity source.

5. The Mössbauer isotope should not have a high spin, which

would produce complicated spectra and make analysis more

difficult.

6. The Mössbauer isotope should have a reasonably large

natural abundance, so that isotopic enrichment in the

absorber can be avoided. Except for its low natural

abundance, 57Fe satisfies the above criteria the best, followed

by 119Sn. A good Mössbauer source also requires an

appropriate host, a suitable fabrication process, etc.

7. The radiation from the source should be monochromatic

with an energy width as close to the natural width as possible

ðGsAGnÞ. This requires that the host matrix material be a

nonmagnetic crystal of cubic symmetry with a very low

impurity content.

8. In order to have the highest possible f value, the host

material should have a high Debye temperature. This is why

metals or ionic crystals of high melting points are usually

chosen as the matrix materials. Also, any nonequilibrium

charge distribution in a metal would only last for less than

10�12 s, shorter than the life time of a typical Mössbauer

excited state (between 10�6 and 10�10 s). Because of this,

metals are better than ionic crystals.
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9. The number of stable Mössbauer nuclei in the host material

should be minimized; otherwise, the resonant self-absorption

would broaden the emitted g-rays.

10. The host material should be made very thin, to reduce the

photoelectric effect and Compton scattering caused by the

Mössbauer g-rays.

11. The host should be chemically stable, so that it does not

change its chemical composition or structure due to

oxidation, hydrolysis, etc.

Satisfying the above conditions, a Mössbauer source would provide a high re-

coilless fraction f , a small line width (AGn), and intense radiation. For 57Fe, Rh

and Pd are good hosts, giving an admirable f -value of about 0.784 at room tem-

perature.

A Mössbauer source is usually custom-made with a particular radioactive iso-

tope. A nuclear reaction in an accelerator or in a reactor produces a very highly

excited state. It quickly decays to a relatively long-lived parent nucleus (still an ex-

cited state), which is then isolated and diffused into the host material. Other

methods include the ‘‘in-beam’’ implantation, which could provide some of the

difficult-to-produce isotopes such as 40K or Mössbauer isotopes with short life

times. In the recent years, researchers have also been attracted to synchrotron ra-

diation as a new Mössbauer source.

3.3

The Absorber

In Mössbauer spectroscopy, the absorber is usually the sample to be investigated.

In transmission geometry, the thickness of the absorber significantly affects the

quality of the spectrum and must be carefully chosen. In this section, we mainly

discuss this effect and the methods of correcting for it.

3.3.1

Estimation of the Optimal Thickness

The optimal sample thickness dopt means such a thickness that would produce a

minimum statistical uncertainty in the Mössbauer spectrum measured in a given

time duration, and therefore provide the most accurate values for the spectral pa-

rameters. When the sample is too thin, it would contain too few Mössbauer nu-

clei. Consequently, the spectral intensity would be weak, with too much back-

ground and a large statistical uncertainty, and accurately extracting spectral

parameters (especially absorption intensities) would be difficult. When the sam-

ple is too thick, significant atomic absorption would occur, causing resonant ab-

sorption to decrease. Also, as the sample thickness increases, the Lorentzian

shape of the spectral lines would be gradually distorted. As the sample thickens
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to a certain extent, the Mössbauer effect can no longer be observed. Obviously,

there should be an optimal thickness between these two extremes.

In studies of subjects such as lattice dynamics, phase analysis, distribution of

anions, etc., it is necessary to measure the absorption intensity accurately. This

demands a high-quality Mössbauer spectrum. Therefore, it is important to prepare

a sample with an optimal thickness. Within three years of the discovery of the

Mössbauer effect, there were several reports on studies of optimal sample thick-

ness [3–5]. But at the present time, it is still very difficult to calculate the exact

optimal thickness. It would require an understanding of all interactions between

the g-radiation and the sample, as well as the details of sample composition and

structure. Therefore, we would be content with an approximate estimation of dopt.
In order to do that, we need to select a physical quantity for judging whether

the sample has the optimal thickness. Some use the height [6] or the area [7] of

the spectral lines; others use the signal-to-noise ratio ðS=NÞ [8–12]. When one of

these quantities reaches a maximum, it is deemed to correspond to the optimal

sample thickness. It seems that using S=N is a good method [8]. For conve-

nience, Q (quality factor) is often used to represent S=N, with the following defi-

nition [11]:

Q ¼ S

N
¼ Iðy; dÞ � Iðvr; dÞ

½ðDIðy; dÞÞ2 þ ðDIðvr; dÞÞ2�1=2
¼ Iðy; dÞ � Iðvr; dÞ

½Iðy; dÞ þ Iðvr; dÞ�1=2

where Iðy; dÞ and Iðvr; dÞ are the total g counts off- and on-resonance, respec-

tively. DI is the corresponding statistical uncertainty in I, and DI ¼ ffiffi
I

p
because it

is a random process.

For a very thin absorber, the difference between Iðy; dÞ and Iðvr; dÞ is very

small, often less than 10% of Iðy; dÞ, which means Iðy; dÞ þ Iðvr; dÞG 2Iðy; dÞ.
Therefore, we may redefine Q (within a constant factor) in a simpler manner

[9, 13]:

Q ¼ S

N
¼ Iðy; dÞ � Iðvr; dÞ

½Iðy; dÞ�1=2

¼ fsI0
1=2e�mad=2½1� e�m rd=2J0ðimrd=2Þ�

¼ fsI0
1=2Fðma; mr; dÞ ð3:3Þ

where I0 is the total intensity of incident g-rays, fs is the recoilless fraction of the

source, d is the sample thickness in mg cm�2 (note that mrd ¼ ta is the effective

thickness), J0 is the zeroth-order Bessel function, ma (in cm2 mg�1) is the atomic

mass absorption coefficient, and mr (in cm2 mg�1) is the g resonance absorption

coefficient. Both ma and mr are defined in Chapter 1 [see Eq. (1.17)]:

ma ¼
X
i

pim
i
a; ð3:4Þ

mr ¼ rs0 fam
NA

Am
n0 ð3:5Þ
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where pi is the mass fraction of the ith element in the sample, s0 is the maxi-

mum cross-section of g resonance absorption, am is the natural abundance of

the Mössbauer isotope, NA is Avogadro’s number, Am is the molecular mass (in

mg) per mole, n0 is the number of Mössbauer atoms in a molecule of the ab-

sorber compound (e.g., n0 ¼ 3 for Fe3BO6), and f is the recoilless fraction of the

absorber. The factor r in Eq. (3.5) needs to be further explained. It is the weight

factor to account for the intensity distribution in the case of hyperfine field split-

ting. For a single line absorber, r ¼ 1. When there is a quadrupole splitting and

the sample is polycrystalline, resulting in a doublet of equal intensity, one of the

lines, which is used for calculating Iðvr; dÞ in Eq. (3.3), corresponds to an effective

thickness of ta=2, so r ¼ 1=2. If there is a magnetic hyperfine field in the sample

(e.g., a-Fe2O3), we calculate Iðvr; dÞ of line 3 or line 4 where the saturation effect

is the weakest according to the discussion in Section 2.6. If the sample is poly-

crystalline, the saturation effect is negligible, thus the effective thickness of line

3 or line 4 is ta=12, so r ¼ 1=12. When the sample is a single crystal, r can be de-

termined in a similar way.

One can rewrite Eq. (3.3) as

Q ¼ Iðy; dÞ � Iðvr; dÞ
Iðy; dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðy; dÞ

p
¼ eðvrÞ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Iðy; dÞp ð3:6Þ

where 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðy; dÞp

is the fractional standard deviation of the baseline counts, a

most commonly used precision index in ‘‘counting’’ experiments, and eðvrÞ is

given by Eq. (1.24). Equation (3.3) is a general definition of the signal-to-noise

ratio, but once it is rewritten as Eq. (3.6), we can see its physical significance

more clearly. A better Q requires a combination of a large Mössbauer effect and

a high precision in the measurement. Suppose we let fs½I0�1=2 ¼ c (a constant),

mad ¼ x, and mr=ma ¼ b, then Eq. (3.3) becomes

Qðb; xÞ ¼ ce�x=2 1� e�bx=2
Xy
k¼0

1

ðk!Þ2
bx

4

� �2k" #
¼ cFðb; xÞ ð3:7Þ

where

Fðb; xÞ ¼ e�x=2 1� e�bx=2
Xy
k¼0

1

ðk!Þ2
bx

4

� �2k" #
: ð3:8Þ

Now we treat b as a parameter, and plot Fðb; xÞ, which is proportional to

Qðb; xÞ, in Fig. 3.4. For every b, the curve has a maximum, and its corresponding

x-value gives the product madopt. From given values of ma and mr, a computer pro-

gram based on Eq. (3.7) may be used to calculate such a curve, find its maximum,

and obtain the optimal thickness dopt. To calculate the maximum of Qðb; xÞ ana-
lytically is somewhat more complicated, if not impossible. Table 3.1 lists numeri-

cally calculated results for potassium ferrocyanide, sodium nitroprusside, and fer-
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rocene, assuming f (or mr) is known and neglecting hyperfine splittings. In this

approach, it is imperative to know the precise values of ma and mr. The ma values

have been tabulated for all the elements (see Appendix H). A mr value may be cal-

culated using Eq. (3.5), since we can easily get precise values for all the factors in

Eq. (3.5) except for f . For a new sample under investigation, f is unknown. The

f value is not precisely known even for many common materials. But f can be

determined experimentally, and once f is known, dopt can be readily calculated.

To do this, we obtain a set of spectra from samples of the same material but

with different thickness values d, to deduce the experimental Q exp as a function

of sample thickness. Now, Eq. (3.7) is used to fit the Q exp values with f as the

only adjustable parameter. The fit would give the f value, and the maximum of

the fitted curve would give a value for dopt. The results of this procedure applied

to seven samples are listed in Table 3.2 and the fitted curves for six samples are

shown in Fig. 3.5.

Fig. 3.4 Theoretical curves of F(b, x) versus x for various b-values as indicated.

Table 3.1 Calculated dopt values when f takes two different values for

each of the three materials.

Absorber ma (10
C3

cm2 mgC1)

mr (10
C3

cm2 mgC1)

f dopt
(mg cmC2)

K4Fe(CN)6�3H2O 19.14 15.9 0.2 68

23.8 0.3 63

Na2Fe(CN)5NO�2H2O 13.73 33.8 0.3 65

56.25 0.5 51

Fe(C5H5)2 19.79 9 0.05 76

18 0.1 66
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First of all, the excellent fit between the experimental data and the calculated

curve confirms that Eq. (3.7) describes Q as a function d very well. At room tem-

perature, sodium nitroprusside (SNP, Na2Fe(CN)5NO�2H2O) has f ¼ 0:37, which

agrees exactly with the literature value [14]. For ferrocene (Fe(C5H5)2), Table 3.2

gives f ¼ 0:08, which is half of the value f ¼ 0:169 reported in 1960 [15]. Later

in Section 8.3, f (295 K) ¼ 0:09 is derived from known lattice dynamics parame-

ters, in good agreement with this experiment. This will confirm that the above

method for determining f is reliable, and the accuracy can reach 0.01 [16].

In Table 3.2, a-Fe2O3 is the only magnetic sample. As mentioned above, we

only need to accurately measure the height of line 3 or line 4. Therefore, these

Table 3.2 Parameters obtained from fitting the Q(b, x) curves for seven samples.

Sample dopt
(mg cmC2)

ma
(10C3 cm2 mgC1)

f (295 K) 1

ma
L

2

ma

Ref.

exp. cal. exp.

Fe(C5H5)2 81 19.79 19.36 0.08 50@100 13

Cu5FeS4 25 63.39 59.82 0.77 15.8@31.8 13

FeSO4�7H2O 89 16.23 15.98 0.16 61.6@123 13

SNP 79 13.73 12.64 0.37 73@146 13

K3Fe(CN)6 72 21.02 20.25 0.10 47.6@95 13

K4Fe(CN)6�3H2O 65 19.14 18.202 0.25 52@144 16

a-Fe2O3 37 45.43 44.73 0.65 22@44 16

Fig. 3.5 Experimental Q(d) data for the six materials indicated. The

lines are fitted curves by Eq. (3.7).
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experiments were done for velocities between �2.5 and þ2.5 mm s�1, and the re-

sult was f ¼ 0:65G 0:03.

The values for ma are available from Appendix H, but they can also be obtained

from these experiments based on the relationship Iðy; dÞ ¼ Ið0Þe�mad. Table 3.2

lists both the calculated and experimental values of ma for each sample, and they

essentially agree with each other. If an experimental value turns out to be differ-

ent from the calculated value beyond experimental uncertainty, there must have

been some problems either with the sample composition or with the measure-

ment process. These problems must be corrected before proceeding to using ma
for estimating the optimal thickness.

When mrd is small, we may take the first two terms of the summation in Eq.

(3.7), and take e�mrd=2A1� mrd=2. At the maximum of the curve, dQ=dx ¼ 0,

we can derive the following approximate result for dopt:

doptA
2

ma
: ð3:9Þ

However, this is the upper limit of the sample thickness, and the optimal thick-

ness should be thinner than 2=ma. An analysis has shown [11] that the optimal

thickness is between 1=ma and 2=ma. It is easy to see from data in Table 3.2 that

the results evaluated using the above experimental method are indeed within this

range.

Comparing the results in Table 3.1 with those in Table 3.2, one can find that

neglecting the hyperfine splittings may cause the deduced dopt to be underesti-

mated when b > 1. Owing to this approximation the maximum of Qðb; xÞ curve
is generally shifted towards the coordinate origin. When b < 1, as we see below,

such a shift does not affect dopt, so the approximation just mentioned is admissi-

ble. For b < 1, those curves in Fig. 3.4 change very slowly in the vicinity of the

maximum value Qmax. The smaller the b-value, the flatter is the curve. In this

case, the thickness of the sample can be chosen in a relatively wide range be-

tween Qmaxð1� eÞ and Qmaxð1þ eÞ, with little difference in the quality of the

spectrum. For example, if e ¼ 0:01, the corresponding sample thickness for ferro-

cene may range from 66 to 91 mg cm�2. This provides certain flexibility in the

sample preparation.

If the chemical composition of the sample is unknown, we may experimentally

determine the lower limit of the sample thickness. Let d ¼ 1=ma, then by defini-

tion

Iðy; dÞ
Ið0Þ ¼ 1

e
; ð3:10Þ

which means that when the transmitted intensity is 1/e of the incident intensity,

the sample thickness is at the lower limit. However, the optimal thickness may be

far above the lower limit (see Table 3.2).
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3.3.2

Sample Preparation

Metallic or alloy samples are usually wrought or roll-milled into foils of the appro-

priate thickness. If only small pieces of sample foils are available, they may be

arranged to cover the entire sample area with fewest gaps and overlaps possible.

Samples in chemistry and biology research are usually in powder form. Most

solid-state materials are also prepared as powders. Samples may be immersed in

petroleum ether during grinding to avoid oxidation. A particle size of about 200

mesh is appropriate, and the powder is pressed to the desired thickness between

two pieces of thin plastic sheet. For low-temperature measurements, the powder

sample is usually mixed with a compressible solid chemical of light atoms such

as a sugar, and pressed into a ‘‘free-standing’’ sample. For high-temperature

measurements, the powder sample is usually placed between two pieces of boron

nitride sheet.

Sometimes, samples exhibit certain additional preferred orientation (e.g., tex-

ture), which causes the quadrupole split doublet to have different intensities. To

reduce such an effect in a powder sample, one may prepare a sample by grinding

it together with a little quartz. A small amount of chemically nonreactive additive

such as vacuum grease or silicone may also be used.

Liquid samples are usually sealed in a sample holder and refrigerated until fro-

zen. The sample holder’s window for g-rays must be made from a material of

light atomic number elements.
57Fe has a relatively low natural abundance. If the 57Fe content in the sample is

not sufficient to give a satisfactory spectrum, its enrichment in the sample may

be necessary.

3.4

Detection and Recording Systems

If the 14.4 keV recoilless g-rays were the only radiation emitted by a source con-

taining 57Co, as simply shown in Fig. 1.7, we would merely need to record the

number of transmitted g-photons at each source velocity with no need for the

detector’s energy resolution; thus, a Geiger–Muller counter with relatively high

efficiency would do the job. But in reality, this is not the case. Take the 57Co

source, for example. It emits g-rays of 136, 122, and 14.4 keV and x-rays of 6.3

keV (Fig. 3.6), with an approximate intensity ratio of 1:10:1:13. Therefore, the

14.4 keV Mössbauer radiation is only a small part of the total radiation, and

what is worse is that the flux of 14.4 keV g-rays is attenuated considerably after

going through a typical sample, but the flux of the 122 keV g-rays will be de-

creased very little.

Consequently, the detector must be highly efficient for the 14.4 keV g-rays, but

be as insensitive as possible to the 122 keV g-rays. As to the g-rays with energies

below 14.4 keV, they will be discriminated against by the SCA if they have been

90 3 Experimental Techniques



detected. The most widely employed detectors are proportional counters and

NaI(Tl) scintillation counters, followed by semiconductor detectors. Their main

characteristics are listed in Table 3.3. The choice of a detector also depends on

the Mössbauer isotope in use.

Fig. 3.6 (a) Schematic diagram showing various processes of secondary

radiation as g-rays from a 57Co source travel through the absorber

towards the detector. (b) The resonance absorption and internal

conversion of the 14.4 keV radiation in a 57Fe atom [17].

Table 3.3 Characteristics of detectors in general use for M€oossbauer spectroscopy.

Detector Energy

resolution (%)

Efficiency

(%)

Maximum

count rate (sC1)

Resolution

time (s)

Gas proportional counters 10 (Eg ¼ 14 keV) 80 7� 104 10�6

NaI (Tl) counters 20 (Eg ¼ 50 keV) 100 2� 105 10�6–10�8

Semiconductor counters 2 (Eg ¼ 50 keV) 100 @104

3.4 Detection and Recording Systems 91



3.4.1

Gas Proportional Counters

Typically, a gas proportional counter has a cylindrical metal tube (cathode) and a

metal wire on the axis (anode). It is filled with a gas, about 90% of it being a no-

ble gas such as xenon, krypton, argon, or neon and about 10% being a quench

gas such as methane or butane. A high voltage of 1500 to 3000 V is applied to

the anode. A krypton counter filled to a pressure of 100 kPa has a good efficiency

for the 14.4 keV g-rays. This is because the krypton x-ray absorption edge is at

14.32 keV, which would largely absorb the 14.4 keV photons and mostly reject

photons with higher energies. Its energy resolution is about 10%, sufficient

enough to resolve the 14.4 keV g-rays from the 6.3 keV x-rays. In addition, the

gas proportional counter has a high signal-to-noise ratio and an upper count

rate; its cross-section for Compton scattering is lower than that of an NaI(Tl)

counter and is only 30% of that of a semiconductor detector. Therefore, the pro-

portional counter is the popular detector for g-rays of Eg < 20 keV.

3.4.2

NaI(Tl) Scintillation Counters

These are also widely used counters with detection efficiency as high as 100%.

When used in Mössbauer spectroscopy, the thickness of the NaI(Tl) crystal must

be reduced to between 0.1 and 0.2 mm, which will ensure a high efficiency for

the 14.4 keV g-rays and a low efficiency for any higher energy g-rays. The 14.4

keV g-rays have an energy resolution of about 35%, and can be just resolved

from the 6.3 keV x-rays. Since the NaI(Tl) scintillation counter is highly efficient

and simple to use, it is often chosen for g-rays of Eg > 15 keV (e.g., 119Sn).

3.4.3

Semiconductor Detectors

Each semiconductor detector is essentially a p–n junction, with a reverse-biased

high voltage, creating a region that is sensitive to g-rays. Selecting the correct

thickness allows a great reduction of its sensitivity to high-energy g-rays. Semi-

conductor detectors offer the best resolution (about a few percent) over the entire

range of energies of interest in Mössbauer experiments, and their efficiency com-

pares favorably with proportional or scintillation counters. At the present time,

high-purity Ge detectors are available at lower cost than the lithium-drifted

Ge(Li) or Si(Li) detectors. For detecting the 35.5 keV g-rays or the 27.5 and 31.0 keV

x-rays from 125Te, proportional or scintillation counters would not be suitable,

and a high-resolution semiconductor detector must be used.

The emission spectra from a 57Co/Rh source recorded by the above three types

of detectors are shown in Fig. 3.7.
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3.4.4

Reduction and Correction of Background Counts

Background counts are what the detector would record if all ‘‘sources’’ causing

the effect under investigation were removed. But separating the background

from resonance absorption counts is not a simple matter, because both come

from the same radiation source used in the experiment. Moreover, for different

absorbers, the detected background counts are also different. Although there are

methods of measuring background counts [18], it is advantageous to reduce the

background as much as possible. One step is to reduce the detector efficiency for

g-rays of higher energies. Another step for reducing background is to set up a

window (for 14.4 keV in the case of 57Fe) in the SCA after the amplifier.

The background counts in the transmission spectrum come from the following

events:

(1) Compton scattering of high-energy g-rays in the sample or other compo-

nents of the spectrometer produces secondary g-rays, some of which fall into the

14.4 keV window. Also, high-energy g-rays may enter the detector directly and

produce a broad and nearly flat distribution of Compton electron energies from

zero up to about 40 keV (for the 120 keV g-rays), and those electrons within the

window contribute to the main part of the background.

Therefore, we would reduce the Compton scattering cross-section for high-

energy g-rays in both the detector and other parts around the detector. Removing

Fig. 3.7 57Co/Rh source emission spectra recorded by a semiconductor

Si(Li) detector, an Ar/CH4 proportional counter, and a NaI(Tl)

scintillation counter.
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the shields farther away from the detector can help, but completely eliminating

Compton secondary radiation is very difficult. This makes up the major portion

of the background counts. It is especially difficult when the radiation to be discri-

minated against is only slightly higher in energy than the Mössbauer radiation

energy. For instance, the 119Sn Mössbauer radiation energy is 23.87 keV, but the

source also emits Sn Ka x-rays of 25.2 keV, which a NaI(Tl) detector would not

be able to resolve. Fortunately, the Ka absorption edge of Pd is at 24.35 keV, situ-

ated between the above two energy values. When a Pd filter of thickness of 0.05 or

0.10 mm is used, the x-rays can be largely absorbed with little attenuation of the

g-rays.

(2) The source also emits radiation with a continuous energy spectrum due to a

recoiled 14.4 keV emission, and some of this radiation may fall into the window.

It may be reduced by lowering the temperature of the source.

(3) Portions of the radiation with energies lower than 14.4 keV (e.g., the 6.3 keV

x-rays) are detected because of an imperfect detector resolution. For reducing this

contribution to the background a piece of aluminum of 0.1 mm thickness (or

Plexiglass of 4 mm thickness) would be able to attenuate the 6.3 keV x-rays to

about 1/50, with the 14.4 keV g-rays being reduced only by 3%.

3.4.5

Geometric Conditions

The two types of geometric arrangements are transmission and scattering. In

transmission geometry, the source, the sample, and the detector should be col-

linear and any deviation from that will have a substantial influence on the out-

come of the measurement. A good-quality collimator, as well as the shield used,

should be made of minimal x-ray fluorescent materials, such as Plexiglass or alu-

minum on the surfaces with lead in the interior. The distances separating the

source, the sample, and the detector should not be too short for two main rea-

sons. As the source vibrates, the solid angle it spans with respect to the detector

will change and the detector would record different g-ray counts for different po-

sitions of the source. A simple calculation for 57Fe indicates that if the minimum

distance passed over by the source does not exceed 0.2 mm, and if the source-to-

detector distance is Lb 10 cm and the detector window radius is R ¼ 1 cm, the

solid angle change can be limited within 0.5% and this effect may be neglected.

But for some Mössbauer nuclei, such as 169Tm, larger Doppler velocities are re-

quired and the solid angle change would not be negligible. The second main rea-

son for a proper distance from the source to the detector is the cosine effect [19].

If the g-rays are emitted in a direction not exactly parallel with the source–

absorber relative velocity, but make an angle y, then the Doppler shift is not

ðv=cÞE0, but ðv=cÞE0 cos y. This will cause line broadening, even a shift [20, 21].

Calculations have indicated that when R=L < 0:1, the spectral shift and broaden-

ing would be less than 0.4%.
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3.4.6

Recording Systems

In a typical spectrometer, the detected signal goes through a preamplifier, the

main amplifier, the SCA with a 14.4 keV window, and finally the multiscaler

consisting of several hundred registers (channels). The most usual way of data ac-

quisition has been to utilize a multichannel analyzer (MCA) in the multiscaler

operating mode. But more recent spectrometers use a NIM unit with a micro-

processor or a personal computer with special interfaces to perform SCA’s and

multiscaler’s tasks, etc.

3.5

Velocity Drive System

A velocity drive system is not only the most important component, but also a fea-

ture unique to Mössbauer spectroscopy. Although there are several different types

of drive systems, the best and prevalent is an electromagnetic drive system com-

posed of a waveform generator, a drive circuit, a feedback circuit, and a velocity

transducer. Especially after the advent of digital technology, it exhibits excellent

stability, linearity, and reliability. Although its performance has improved tremen-

dously since the 1960s, it still operates on the same original principle. We now

describe the components of this system.

3.5.1

Velocity Transducer

The electromagnetic velocity transducer works in the same way as a loudspeaker

[22, 23]. The transducer converts an applied current into the velocity of the source

through a drive coil and provides a signal proportional to the actual velocity

through a pickup coil. It is equivalent to two back-to-back speakers but without

magnetic coupling between them. A shaft goes through the common center of

the coils. The radiation source is attached to one end of the shaft, and a prism

(or a mirror) for measuring velocity is installed on the other end. The drive coil

uses thick wires and a small number of turns, to allow enough current for driving

the shaft. The pickup coil uses thin wires and many turns for increasing its sen-

sitivity. The shaft is supported by two thin flat springs and can move along the

axis within certain amplitude. To ensure effective control of this motion, the fun-

damental frequency of the reference waveform should be close to the shaft’s nat-

ural frequency, typically ranging between 10 and 40 Hz.

Figure 3.8 shows a cross-sectional diagram of a high-performance transducer

developed recently [24]. Its drive component is not different from the usual de-

sign, but the pickup and feedback loop have been drastically modified. The

pickup coil of as many as 50 000 turns of copper wire wound on a spool is fixed
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inside the steel box and centered around the shaft, and its resistance is 5 kW,

much higher than that of the 1.5 kW pickup coil manufactured by Wissel. Incor-

porated into the shaft inside the pickup coil is a cylindrical bar magnet with max-

imum field strength of about 0.5 T. Furthermore, the pickup coil is divided into

two halves wound in opposite directions and connected in series to generate a

feedback signal. This new design completely removes any magnetic coupling be-

tween the drive coil and the pickup coil. Another modification in the feedback

loop is the introduction of a position feedback circuit for further improvement.

This drive system has therefore high stability as well as linearity and immune to

drifts in velocity and position, regardless of the duration of data acquisition. For

instance, its nonlinearity is only 0.1% (Wissel’s transducer nonlinearity is 0.3%),

and the velocity at any point in the scan period has a maximum error ranging

fromG1 mm s�1 (at 3.5 mm s�1) toG3 mm s�1 (at 21 mm s�1).

3.5.2

Waveform Generator

The function of the waveform generator is to provide the drive system with a ref-

erence signal which determines the waveform of the source motion. Sinusoidal

and triangular waves are the two most often used waveforms.

1. Sinusoidal waveform. The shaft can be easily driven by a sinusoidal wave-

form. As a result, the source motion could be controlled most accurately and

this is the main advantage of this waveform. Because there is no abrupt change

in acceleration, the effect of the system’s inertia is reduced to its minimum. How-

ever, the sinusoidal waveform has some disadvantages. Owing to a nonlinear re-

lationship between velocity and channel numbers, it is not easy to visualize what

the spectrum would look like on the linear velocity scale. At present, this is not a

serious problem because a simple computer program can easily manipulate the

data and give a spectrum graphed against the linear velocity. If the shaft is rela-

tively long, the mechanical load is heavy, or the velocity limits are high, the sinus-

Fig. 3.8 Cross-section of a new type of velocity transducer [24].
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oidal waveform should be used. By and large, sinusoidal waveform provides a

good operation mode.

Figure 3.9 shows a block diagram of a digital waveform generator [25], whose

principle of operation is completely different from the traditional one. Its key

components include a read-only memory (ROM), an address register, and a

digital-to-analog converter (DAC). For any address n ð0a na 1023Þ, the respec-

tive value of sin½ðp=2Þðn=1023Þ� is programmed into the ROM in the form of a

10-bit binary number. Each clock pulse triggers one up counting of the address

register, and the address register advances from 0 to 1023. The values of sin x
are read out in turn from the ROM, and converted to analog signals by the DAC,

forming the first quarter of a sine wave. Next, each clock pulse triggers one down

counting, and the circuit generates the second quarter of the sine wave. Execution

of this ‘‘up’’ and ‘‘down’’ counting sequentially again, provided that the polarity is

now inverted by the switching circuit, gives the third and fourth quarters, com-

pleting the entire period of a sine wave. In the meantime, the clock pulses are

also divided to give the synchronization signals whenever the velocity is at þvmax

or �vmax.

2. Triangular waveform. This is another commonly used waveform. In this

mode, the motion of the shaft in the transducer has a constant acceleration. The

velocity starts at �vmax, goes through zero, and increases linearly to þvmax. It then

uniformly decreases back to �vmax. In the circuit of Fig. 3.9, the DAC successively

reads in the address codes (from 0 to 1023) instead of the sin x value from the

ROM, and outputs a linearly increasing voltage in the first half and decreasing

voltage in the second half, completing a triangular waveform. A digital triangular

waveform generator is better than an analog generator, not only because of its

better linearity and stability, but also due to its versatility in providing the ‘‘region

of interest’’ waveforms and constant-velocity waveforms. In the latter case, the

counting of the address register is stopped for an exactly defined time precisely

Fig. 3.9 Block diagram of a digital waveform generator.
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at the maximum of the output waveform. Using the triangular form, the system

records the spectrum twice as mirror images of each other, but a computer pro-

gram can easily fold the two parts together. In order to reduce the abrupt change

in acceleration, the triangular wave must be smoothed nearGvmax. Such a wave-

form reduces impulsive forces and is easier for the driving system to follow.

There is also a sawtooth waveform, but it has no advantage over the triangular

waveform, and therefore recent spectrometers have eliminated the sawtooth op-

tion all together.

3.5.3

Drive Circuit and Feedback Circuit

The purpose of the drive circuit is to produce a current signal in the drive coil to

drive the shaft with the required velocity. In general, the circuit consists of three

op-amps (A1, A2, and A3) as shown in Fig. 3.10. A1 is for amplifying the differ-

ence between the pickup signal and the reference signal, A2 is an integrator, and

A3 is a power amplifier.

The basic principle of the drive circuit operation is as follows. The pickup coil

is a negative feedback loop, electromagnetically decoupled from the drive coil,

and the amplitude and shape of the feedback signal depend only on the shaft’s

motion. The difference between the pickup signal and the reference signal,

known as an error signal, is proportional to the deviation of the actual velocity

from its reference value. As we know, introducing a negative feedback into an

amplifier can greatly improve its linearity and stability, and this is extremely im-

portant in velocity control [26]. Only when there is a suitable feedback would the

shaft move precisely according to the reference signal, because if there is a slight

deviation from the reference signal, the error signal instantly corrects the differ-

ence.

Let us now look at the function of the integrator. Suppose the waveform is tri-

angular, and a Lorentz force experienced by the drive coil balances the springs’

restoring force, F ¼ ks ¼ ciðtÞ, where c and k are constants, iðtÞ is the current

through the drive coil, and s is the displacement of the shaft with respect to its

Fig. 3.10 Schematic diagram of the drive and feedback circuit system.
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equilibrium position. If we require the shaft to execute a constant acceleration

motion, then s ¼ at2=2, and

v ¼ at ¼ c

k

diðtÞ
dt

:

The frequency of the drive voltage e0ðtÞ is very low and, as a result, it is almost in

phase with the current iðtÞ. Therefore

at ¼ c1
k

de0ðtÞ
dt

where c1 is another constant. It is clear now that the output voltage of A3 should

be the integration of a signal that is linearly proportional to time t. This is why an
integrator is normally used in the triangular waveform mode.

Careful attention must be paid to the stability of the negative feedback loop.

Analyses have shown that when the frequency of the reference signal is low and

near the natural resonance frequency of the shaft, its motion can be controlled

most effectively. When the frequency is high, the pickup signal will lag behind

the input reference signal. If such phase shift approaches 180�, the feedback is

no longer negative, but positive, resulting in self-sustained oscillations at a rela-

tively high frequency. This has been documented extensively in the literature

[22, 27]. In a practical instrument, there are controls for adjusting the feedback

gain and the frequency response so that the feedback circuit works under stable

conditions with a large gain, small error signals, and no undesirable oscillations.

3.5.4

Velocity Calibration

The horizontal axis of a Mössbauer spectrum is initially labeled by the address

codes of the data registers or the channel numbers of the MCA. To express the

position parameters such as d, DEQ, Bhf , etc., in units of mm s�1, the channel

numbers must be converted to the velocities of the source, not only the values,

but also the direction of the motion. This is velocity calibration, and is usually

done by either a secondary standard method or an absolute velocity method.

3.5.4.1 Secondary Standard Calibration

In this method, the source velocity is calibrated using certain standard samples

whose hyperfine splittings have been most accurately measured [28]. For veloc-

ities in the range ofG10 mm s�1, a-Fe or sodium nitroprusside is often used.

For velocities higher than 100 mm s�1, metallic Dy may be used as the standard

sample.

Metallic iron has many advantages, including relatively large separations be-

tween the spectral lines in the sextet, a very large f -value at room temperature,

and a cubic crystal structure (so Vzz ¼ 0). However, there are slight differences
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among the a-Fe spectral results from various authors, mainly due to sample im-

purities [29]. Analyses have shown that in order to obtain a calibration accuracy of

0.1%, the a-Fe sample should have a purity of at least 9.99% [26], which is com-

mercially available. This method is very simple and its accuracy is high enough

for most research work. Many authors have made effort to measure the a-Fe hy-

perfine splittings as accurately and precisely as possible [30, 31], and the accepted

values are 10.627 mm s�1 for the separation between line 1 and line 6.

3.5.4.2 Absolute Velocity Calibration

According to their underlying principles, the absolute calibration methods belong

to two main categories, ultrasonic modulation and optical methods, which would

directly give the velocity for each channel.

1. Ultrasonic frequency modulation [32]. Suppose we have a single-line source

(57Co/Pd) and a single-line absorber, and mount either the source or the absorber

on a piezoelectric crystal which vibrates with frequency o (e.g., 16 MHz). The ob-

served Mössbauer spectrum will have, in addition to the original single line (ab-

sorption intensity x0 and frequency o0), a series of sidebands with frequencies

o0 G no, where n ¼ 1; 2; 3, etc. The corresponding absorption intensities can be

predicted by the squares of Bessel function values J2nðx0=lÞ. Because the fre-

quency of the piezoelectric crystal can be measured extremely precisely, this cali-

bration method can be very accurate, often reaching 0.1%.

2. Optical methods. Laser interference fringes and moiré patterns are often used

to measure the absolute values of the source velocity.

A simple Michelson interferometer is shown in Fig. 3.11, where M2 is the sta-

tionary prism and M1 the moving prism attached to the drive shaft. Let the wave-

length of the laser light be l. Every time the shaft moves a distance of l=2, a

bright fringe appears and the frequency of the emerging fringes is proportional

to the velocity of the shaft. These fringes are transformed by a photodiode into

Fig. 3.11 Laser Michelson interferometer.
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pulses, which are counted by the multiscaler. The velocity value can be expressed

by

vi ¼ Ni

nt0

l

2
ð3:11Þ

where Ni is the fringe count (usually more than 105 accumulated) in the ith
channel, n is the number of scans performed, and t0 is the dwell time for each

channel.

The interference method can only measure the magnitude of the instantaneous

velocity of the source, so when the velocity uniformly changes from �Vm and

þVm, the multiscaler records a V-shaped spectrum. The data points in first half

of the ‘‘V’’ are flipped with respect to the horizontal axis. The two halves are

then combined and numerically fitted by the function ax2 þ bx þ c, from which

the nonlinearity of the velocity scan (indicated by the value of a) and the precise

position of the zero velocity are determined (see Fig. 3.12). The signs of velocities

(þv or �v) measured from the a-Fe absorption sextet spectrum are also given in

Fig. 3.12.

This is a method of choice for many Mössbauer spectroscopists, and modern

spectrometers often have an interferometer attachment. The problem with this

method is that the fringe counts at low speeds are not as accurate, especially

Fig. 3.12 (a) Triangular drive voltage. (b) A V-shaped interference fringe

spectrum, superimposed on a sextet spectrum.
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near zero velocity, because the error in fringe counts isG1. Therefore, the posi-

tion of the zero velocity cannot be directly calculated using Eq. (3.11). Recently,

there has been an improved version of the interferometer system capable of mea-

suring velocity within a wide range of 0.5 to 1000 mm s�1 with a precision of

0.1% or better [33].

When the velocity values are vary high (around 700 mm s�1), a method using

gratings and observing changes in moiré patterns can be utilized [34]. In this

method, we also record the number of bright and dark fringes to obtain the speed

values, but the accuracy is not as good as in the Michelson interferometer

method.

3.6

Data Analysis

In order to obtain reliable microscopic information from Mössbauer spectroscopy,

it is imperative to analyze the measured spectra quantitatively. The experimental

spectrum is often quite complicated, because it is usually a superposition of

many sets of subspectra. Assignment of all subspectra before fitting the spectrum

and interpretation of the results after fitting must be carried out based on a cer-

tain physical model for the sample. The process of spectral fitting can be tedious.

There are many fitting methods, but they belong generally to two categories, ei-

ther fitting individual single lines or fitting the entire spectrum. The former is

based on the notion that the Mössbauer spectrum is a superposition of Lorent-

zian lines, while the latter is done by calculating the nuclear energy splittings

and transition probabilities based on the model for the sample. We will briefly de-

scribe several methods, among which the single-line fitting using the Gauss–

Newton method or a modified version is probably the most widely used.

In recent years, there have emerged a few novel methods for data analysis, such

as the genetic algorithm [35] and the artificial neural network (ANN) [36]. ANNs

are composed of elements that perform in a manner that is analogous to the ele-

mentary functions of the biological neurons. The elements are organized in a way

that may or may not be related to the cerebral anatomy. ANNs learn from experi-

ence, generalize from previous examples to new ones, and extract essential char-

acteristics from inputs containing relevant data. ANNs are used for the analysis of

experimental data over a wide range of scientific disciplines and are now applied

to fitting Mössbauer spectra. It may develop into a very convenient and highly ac-

curate method, and may become quite attractive to Mössbauer effect researchers.

3.6.1

Fitting Individual Lorentzian Lines

Based on the thin absorber approximation, the Mössbauer spectrum is a super-

position of Lorentzian lines. There are some differences in the fitting procedures

for crystalline and amorphous samples.
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3.6.1.1 Spectra from Crystalline Samples

If the experimental spectrum is a superposition of n Lorentzian lines (for a-Fe,

n ¼ 6), then

yðxi; cÞ ¼ ðE þ Fxi þGx2
i Þ þ

Xn
k¼1

Ak

1þ xi � xkð0Þ
Gk=2

� �2 i ¼ 1; 2; 3; . . . ;N

ð3:12Þ

where xi is the Doppler velocity, the quadratic term ðE þ Fxi þGxi
2Þ describes

the baseline, c represents a total of ð3nþ 3Þ parameters (Ak, xkð0Þ, Gk, and E, F,
G) to be determined, and N is the number of data points in the spectrum. Here

Ak, xkð0Þ, and Gk are the height, position (in mm s�1), and linewidth (in mm s�1)

of the kth Lorentzian line, respectively. This expression gives a theoretical model

and is used to fit the experimental spectrum. The usual method is the least

squares fitting, minimizing the following function:

w2 ¼
XN
i¼1

wi½yðxi; cÞ � yi�2 ¼ min ð3:13Þ

where yi is the g-ray counts in the ith channel and wi ¼ 1=yi is its weight factor. A
necessary condition for a minimum of the above quantity is

qw2

qcj
¼ 2

XN
i¼1

wi½yðxi; cÞ � yi� qyðxi; cÞ
qcj

¼ 0; j ¼ 1; 2; 3; . . . ; 3nþ 3: ð3:14Þ

This actually represents a set of nonlinear simultaneous equations, and the pa-

rameters cj cannot be solved analytically. One approach to this problem is to esti-

mate the initial values of the parameters (zeroth approximation)

cð0Þ ¼ ðc1ð0Þ; c2ð0Þ; c3ð0Þ; . . . ; cmð0ÞÞ; ðm ¼ 3nþ 3Þ

and to approximate the function yðxi; cÞ by its Taylor expansion about cð0Þ. We

then keep all the linear terms, and neglect all higher ones. The function yðx; cÞ
is linear with respect to the unknown parameters c1; c2; c3; . . . ; cm:

yðxi; cÞA yðxi; c
ð0ÞÞ þ qy

qc1

� �
cð0Þ
1

d
ð1Þ
1 þ � � � þ qy

qcm

� �
cð0Þm

dð1Þm ð3:15Þ

where dj
ð1Þ ¼ cj � cjð0Þ. Substituting (3.15) into (3.14), the simultaneous equations

become
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Xm
j¼1

d
ð1Þ
j

XN
i¼1

wi
qyðxi; cÞ

qcj

� �
cð0Þj

qyðxi; cÞ
qck

� �
cð0Þ
k

¼
XN
i¼1

wi
qyðxi; cÞ

qck

� �
cð0Þ
k

½yi � yðxi; c
ð0ÞÞ� k ¼ 1; 2; 3; . . . ;m: ð3:16Þ

This may be written in the matrix form

ðF TW yFÞdð1Þ ¼ F TW yðY � Y 0Þ;

and the solution is

dð1Þ ¼ ðF TW yFÞ�1F TW yðY � Y 0Þ ð3:17Þ

where

Y � Y 0 ¼

y1 � yðx1; cð0ÞÞ
y2 � yðx2; cð0ÞÞ

..

.

yN � yðxN ; cð0ÞÞ

2
66664

3
77775

F ¼

f11 f12 � � � f1m
f21 f22 � � � f2m

..

. ..
. ..

.

fN1 fN2 � � � fNm

2
66664

3
77775

Wy ¼

w1

w2 0
. .
.

0
wN

2
6666664

3
7777775

and

fij ¼ qyðxi; cÞ
qcj

� �
cð0Þ
j

;

with i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;m. Once the values in the matrix dð1Þ are cal-
culated, we obtain the first approximation of the parameters c:

cð1Þ ¼ cð0Þ þ dð1Þ:

Now we use cð1Þ as our initial values for the next round of calculations, which will

give us dð2Þ and cð2Þ. The iteration continues until a satisfactory convergence is
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reached. The convergence condition could be (1) when the relative change in c
values from the kth iteration to the ðkþ 1Þth iteration is smaller than a given frac-

tion (e.g., 0.01), or (2) when the function w2 shows almost no change and satisfies

0:8 <
w2

n
< 1:2, where n denotes the degrees of freedom of the w2 distribution.

The above description is only the basic principle of the Gauss–Newton method.

Because it has some disadvantages, several modified versions are available.

Mathematically, good fitting results can be easily achieved with this method.

But without an appropriate physical model, it would often be laborious to find a

satisfactory interpretation of the fitted spectrum.

3.6.1.2 Spectra from Amorphous Samples

In an amorphous material, the atoms occupy random sites, and consequently the

isomer shift d, quadrupole splitting DEQ, and magnetic hyperfine field B will have

continuous distributions. If all three interactions are involved, the spectrum

would be extremely difficult to analyze. In many cases, fortunately, only one is

dominant. For example, from Fe40Ni40P14B6 under certain conditions, only the

continuous distribution of quadrupole splitting was observed [37]. In some amor-

phous iron alloys, if the spectrum is a symmetric and broad sextet, it may be

taken as caused by a continuous distribution PðBÞ of the magnetic hyperfine

fields with DEQ ¼ 0 and an identical isomer shift for all Fe nuclei. In addition, it

is assumed that the area ratio within each sextet is the same, regardless of the

B-value, and that the recoilless fraction is also the same thus the total area of a

sextet is proportional to PðBÞ. Let SðvÞ represent the experimental spectrum

from the amorphous material. Under the thin absorber approximation, it can be

expressed as

SðvÞ ¼
ðy
0

PðBÞL6ðB; vÞ dB ð3:18Þ

where v is the Doppler velocity, L6ðB; vÞ is the Lorentzian sextet with the mag-

netic hyperfine field B, and PðBÞ is the normalized distribution function:

ðy
0

PðBÞ dB ¼ 1:

For calculating PðBÞ from the experimental spectrum SðvÞ, one may use one of

the following two methods developed by Hesse and Window, respectively.

(1) The Hesse method [38]. The range of the magnetic hyperfine fields in ques-

tion is equally divided by n, each interval being DB. The maximum field value is

therefore Bmax ¼ nDB and the hth field value is Bh ¼ hDB. The spectrum can be

now approximated by a finite series:

SðvjÞ ¼
Xn
h¼0

PðBhÞL6ðBh; vjÞ þ ej j ¼ 1; 2; . . . ;N ð3:19Þ
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where ej is a term representing the influence of the statistical error at vj. The ex-

pressions in (3.19) may be collectively written in the matrix form

S ¼ LP þ e: ð3:20Þ

In order to avoid unrealistic fluctuations in the calculated hyperfine field distribu-

tion due to the statistical errors in the experimental spectrum, the data should be

smoothed. To do this, we introduce a smoothing factor g and require

q

qPi

Xn�1

k¼2

gðPk�1 � 2Pk þ Pkþ1Þ2 þ
XN
j¼1

wje
2
j

" #
¼ 0:

This is a set of simultaneous equations with the probability values Pk as the un-

knowns, and may also be written in the matrix form

gDP þ LTW e ¼ 0 ð3:21Þ

where

D ¼

1 �2 1 0 0 0 � � � 0 0 0 0 0

�2 5 �4 1 0 0 � � � 0 0 0 0 0

1 �4 6 �4 1 0 � � � 0 0 0 0 0

0 1 �4 6 4 1 � � � 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 0 � � � 1 �4 6 �4 1

0 0 0 0 0 0 � � � 0 1 �4 5 �2

0 0 0 0 0 0 � � � 0 0 1 �2 1

2
66666666666664

3
77777777777775
:

We now substitute e from (3.20) into Eq. (3.21), and solve for P :

P ¼ ðLTWL � gDÞ�1ðL�1WSÞ; ð3:22Þ

which gives a set of values for the magnetic hyperfine field distribution.

(2) The Window method [39]. The probability PðBÞ is expressed as a Fourier

series in the range from 0 to Bmax:

PðBÞ ¼ a0
2
þ
XN
n¼1

an cos
npB

Bmax
:

Imposing a boundary condition PðBmaxÞ ¼ 0, the above series is reduced to

PðBÞ ¼
XN
n¼1

an fnðBÞ ð3:23Þ
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where

fnðBÞ ¼ cos
npB

Bmax
� ð�1Þn: ð3:24Þ

When Eq. (3.23) is substituted into (3.18)

SðvÞ ¼
XN
n¼1

an

ð Bmax

0

fnðBÞL6ðB; vÞ dB:

The integral in this expression can be calculated because each fn is a known func-

tion, and the coefficients an can be determined by minimizing the following ex-

pression:

X
v

½SðvÞ � SexpðvÞ�2 ¼ min: ð3:25Þ

Once values of an are calculated, Eq. (3.23) gives the magnetic hyperfine field dis-

tribution PðBÞ.
These two methods usually give similar results, both having the advantage of

not requiring a priori knowledge or constraints on the shape of the distribution.

But the calculated PðBÞ often exhibits oscillations at the low field end, and some-

times even shows unrealistic negative values. Several improved versions of these

methods are also available [40–42].

3.6.2

Full Hamiltonian Site Fitting

In this method, we assume that the entire spectrum is a superposition of several

subspectra of Lorentzian lines. Each subspectrum corresponds to one particular

crystal site (or one particular environment). The hyperfine interactions that would

result in a subspectrum have been discussed in Section 2.4. Using this method,

we are no longer mathematically fitting the Mössbauer spectral lines to obtain

certain parameters, but are studying physical problems such as the splitting of

the nuclear energy levels and the corresponding transitions in randomly oriented

magnetic fields or in a low-symmetry EFG. This means that, before carrying out

any calculations for fitting the spectrum, a Hamiltonian for the hyperfine interac-

tions in the sample should be established. In a general case, it is the sum of all

three types hyperfine interactions. Solving the secular equations would give the

eigenvalues and eigenvectors of the ground state and the excited state. The ener-

gies involved in the allowed transitions between these states will determine the

relative positions of the absorption lines. The transition probabilities will provide

information on the relative intensities of the absorption lines. Such a spectrum is

then characterized by a set parameters including isomer shift d, magnetic hyper-

3.6 Data Analysis 107



fine field B, quadrupole splitting DEQ, the asymmetry parameter h, linewidth,

area of the absorption line, external magnetic field orientation angles y and f,

and g-ray orientation angles a and b. During iterations using the Gauss–Newton

method, these parameters can only be adjusted under the constraints of quantum

mechanics to ensure that the fitting conforms to the proper physical model.

Therefore, fitting the entire spectrum is theoretically a much better method than

the earlier methods that fit only individual lines.

3.6.3

Fitting Thick Absorber Spectra

In reality, the thin absorber approximation may not be always practical. For in-

stance, the thickness of a metallic Fe foil corresponding to ta ¼ 1 is only 2.4

mg cm�2, and when ta < 1 is required, the physical sample would be too thin.

Therefore, it has been concluded that the above approximation is not valid for

most 57Fe absorbers [43]. As the thickness increases beyond the thin absorber

limit, the spectral lines will be broadened. The finite absorber thickness is not

likely to produce shifts in a Lorentzian distribution, i.e., it does not affect the

line positions but will bring appreciable changes in the line area or the line

height. Therefore, in this case it is necessary to evaluate accurately the transmis-

sion integral TðvÞ, defined in Eq. (1.19). Usually, fitting the data is either by nu-

merical method directly [44] or by analytic representations [45–47]. Fourier trans-

form is another way, which is relatively simple and easy to follow [48]. Especially

after the recent development of fast Fourier transform algorithms, this method

has attracted a great deal of attention and has been further studied [49–53].

If we assume that the emission spectral line is normalized and the background

has been corrected, Eq. (1.24) may be rewritten as

�eðvÞ
fs

¼ �Iðy; dÞ þ Iðv; dÞ
Iðy; dÞ fs ¼

ðy
�y

L E � v

c
E0

� �
½AðEÞ � 1� dE: ð3:26Þ

The right-hand side of this equation is a convolution of two functions. L is the

Lorentzian distribution function and AðEÞ ¼ exp½�sðEÞta� modifies the Lorent-

zian shape, thus distorts the Mössbauer line, due to a finite thickness of the sam-

ple. However, sðEÞ in the exponent is the absorber Lorentzian line shape. We are

aiming at calculating sðEÞ from the experimental spectrum eðvÞ using Eq. (3.26),

and in this process, the non-Lorentzian spectrum is converted to a Lorentzian

spectrum, eliminating the effect of finite thickness.

In order to calculate sðEÞ, we Fourier transform both sides of Eq. (3.26), and

use a theorem for convolution integrals:

F � eðvÞ
fs

	 

¼ FfLg �Ffexp½�sðEÞta� � 1g:

Let
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Ffexp½�sðEÞta� � 1g ¼ F � eðvÞ
fs

	 
�
FfLg1 n: ð3:27Þ

Applying inverse Fourier transform F�1 to Eq. (3.27):

exp½�sðEÞta� ¼ F�1fng þ 1;

and solving for sðEÞ,

�sðEÞta ¼ ln½F�1fng þ 1�: ð3:28Þ

Based on this method, the experimental spectrum is first fitted to give eðvÞ, which
is then treated according to Eq. (3.28) to obtain sðEÞ.
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Mössbauer spectra of amorphous

alloys. J. Phys. E 12, 1083–1090 (1979).

41 C. Wivel and S. Morup. Improved

computational procedure for

evaluation of overlapping hyper-

fine parameter distributions in
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4

The Basics of Lattice Dynamics

In a solid, atoms and ions are tightly bound to lattice points so that, when the

temperature is not extremely high, they can only execute small vibrations (ther-

mal motion) around their equilibrium positions. Lattice dynamics is a branch of

solid-state physics that studies such lattice vibrations. It was first initiated in the

1930s by the Born–von Karman theory, the details of which have be described in

the text by Max Born and Kun Huang [1]. Lattice dynamics is important in under-

standing various phenomena and properties of solids, such as thermodynamic

properties, phase transitions, soft modes, etc. However, further research has re-

vealed some of the difficulties with the Born–von Karman theory, especially con-

cerning the periodic boundary condition and the basic equation of motion. Ne-

glecting surface effects, the periodic boundary condition is only good for large

and perfectly ordered crystals. In many cases, the crystals are imperfect and sur-

face effects must be considered. In the basic equation of motion, the classical lat-

tice dynamics neglects the role of electrons. Nevertheless, the Born–von Karman

theory laid the foundations for lattice dynamics and, therefore, we first introduce

this theory, followed by a brief description of first-principles lattice dynamics,

which is a computational method developed in recent years. The distinctive fea-

ture of this method is its inclusion of the explicit effect of electrons on lattice

dynamics.

4.1

Harmonic Vibrations

4.1.1

Adiabatic Approximation

The adiabatic approximation, also known as the Born–Oppenheimer theorem [1],

allows one to decouple the motion of the atom (more precisely, ion core) from the

motion of the valence electrons. The essential idea of this approximation is that

the nucleus, being at least 103 times heavier, moves much more slowly than the

electrons. At any moment the electrons ‘‘see’’ the nuclei fixed in some (generally

displaced) configuration. During the atomic motion the electrons move as though

113



the nuclei were fixed in their instantaneous positions. We say that the electrons

follow the atomic motion adiabatically. In an adiabatic approximation, an electron

does not make abrupt transition from one state to others but will be in its ground

state for that particular instantaneous atom configuration. In the following, we

give an outline of some expressions in this approximation. The properties of a

crystal consisting ion cores and valence electrons are derived from the solution

of the Schrödinger equation

HCðr;RÞ ¼ eCðr ;RÞ ð4:1Þ

with the total Hamiltonian

H ¼ Tn þ Te þ VnnðRÞ þ VeeðrÞ þ Venðr;RÞ

¼
X
l

��h2

2Ml
‘2
R l
þ
X
i

��h2

2mi
‘2
r i
þ e2

2

X
l0l 0

ZlZl 0

jR l � R l 0 j

þ e2

2

X
i0j

1

jr i � r jj �
X
i0 j

Zle2

jr i � R lj ð4:2Þ

where r and R represent the coordinates of valence electrons (e) and nuclei (n),

respectively.

To obtain an exact solution of the many-body equation defined by (4.1) is

hopeless, but we can approximately break it down into two subsystems of the

valence electrons and the core due to the large difference in their masses, and

the problem can be substantially simplified. From (4.2) we abstract an electron

Hamiltonian

He ¼ Te þ VeeðrÞ þ Venðr ;RÞ ð4:3Þ

and diagonalize it for a given atomic configuration (i.e., R is not considered as a

variable but a parameter). The equation is

Hecðr;RÞ ¼ Eecðr;RÞ ð4:4Þ

where cðr ;RÞ is the wave function for the entire system of electrons. Assume

that the total wave function can be written as a product

Cðr ;RÞ ¼ cðr;RÞwðRÞ ð4:5Þ

where wðRÞ is the wave function for the entire system of nuclei.

Substituting Eq. (4.5) in (4.1) using (4.4), one obtains the following Schrö-

dinger equation for wðRÞ, determining the lattice-dynamical properties of a solid:

X
l

��h2

2Ml
‘2
R l
þ VðRÞ

" #
wðRÞ ¼ ewðRÞ ð4:6Þ
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with

VðRÞ ¼ VnnðRÞ þ EeðRÞ; ð4:7Þ

provided that the mixed terms

�h2

2M
hcj‘2

Rjci and
�h2

2M
hcj‘Rjci � ‘R

can be neglected [2]. Thus we obtain the adiabatic lattice equation (Eq. (4.6)) with

VðRÞ as an effective potential consisting of interatomic potential and electron

eigenvalue EeðRÞ, the latter being the mean contribution from the electrons.

However, the evaluation of EeðRÞ is very difficult. A more practical approach is

to assume certain phenomenological potential for VðRÞ which involves only a

few parameters (see Section 4.2.6).

The adiabatic approximation may break down in some cases, but we will as-

sume the validity of this approximation in our discussions here.

4.1.2

Harmonic Approximation

When an atom is at its equilibrium position (a lattice point), the attractive and

repulsive forces on it are exactly balanced. Because of thermal motion, the atom

moves away from the equilibrium position, the forces are no longer canceled, and

the net force tends to bring the atom back to its equilibrium position. The farther

from the equilibrium the atom is, the larger the restoring force. The displace-

ment of one atom also changes the potential energies of the surrounding atoms

and consequently causes them to move. A wave motion is produced because of

this type of vibrational motion propagating through the entire solid. In a perfect

solid, such a wave is known as the lattice wave. Since we are interested in atomic

vibrational displacements much smaller than the interatomic distances, the

method of small oscillations in classical mechanics can be applied to atomic

vibrations in a crystal.

Unless stated otherwise, in the following sections a crystal with a Bravais lattice

(one atom per cell) is used. Suppose the equilibrium position vector of each lat-

tice point (or each atom) is

l ¼ l1a1 þ l2a2 þ l3a3 ð4:8Þ

where l1, l2, and l3 are any three integers, while a1, a2, and a3 are three non-

coplanar basis vectors (Fig. 4.1). Suppose that the lth atom deviates from its equi-

librium position by uðlÞ. Its actual position is

R l ¼ l þ uðlÞ: ð4:9Þ
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For the mth atom in the lth unit cell within a non-Bravais lattice (Fig. 4.2), it

would be

R lm ¼ l þmþ uðlmÞ: ð4:10Þ

The total kinetic energy of the crystal is

T ¼ 1

2

X
a; l

M _uu2
a ðlÞ ð4:11Þ

where M is the mass of the atom, and a ¼ x; y; z. The potential energy VðRÞ is a
function of the instantaneous positions of all the atoms. The displacements uaðlÞ,
as mentioned above, are small and V can be expanded into a Taylor series:

V ¼ V0 þ
X
a; l

FaðlÞuaðlÞ þ 1

2

X
a; l

X
b; l 0

Fabðl; l 0ÞuaðlÞubðl 0Þ þ � � � ð4:12Þ

where

FaðlÞ ¼ qV

quaðlÞ
����
0

; ð4:13Þ

Fabðl; l 0Þ ¼ q2V

quaðlÞqubðl 0Þ
����
0

: ð4:14Þ

When each atom is at its equilibrium position, the potential energy value is

chosen to be zero, i.e., V0 ¼ 0. Under equilibrium, the net forces are zero

ðFaðlÞ ¼ 0Þ, thus the second term in (4.12) is also zero. Keeping only the qua-

dratic terms, we are taking the harmonic approximation, which is the basis for

Fig. 4.1 Primitive cell in a crystal.

Fig. 4.2 Displacement of an atom in a non-Bravais crystal.
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treating small oscillations [2, 3]. Terms higher than the second order are known

as anharmonic, and they need to be included when studying problems such as

thermal expansion.

Under the harmonic approximation, the vibrational Hamiltonian and the net

forces on the atoms are

H ¼ 1

2

X
a; l

M _uu2
a ðlÞ þ

1

2

X
a; l

X
b; l 0

Fabðl; l 0ÞuaðlÞubðl 0Þ; ð4:15Þ

FaðlÞ ¼ � qV

quaðlÞ ¼ �
X
b; l 0

Fabðl; l 0Þubðl 0Þ; ð4:16Þ

and the equation of motion for the lth atom in the direction aðx; y; zÞ takes the

form

M€uuaðlÞ ¼ �
X
b; l 0

Fabðl; l 0Þubðl 0Þ: ð4:17Þ

4.1.3

Force Constants and Their Properties

According to Eq. (4.16), the net force on atom l is a linear function of the displace-

ments ubðl 0Þ, and the coefficients Fabðl; l 0Þ are called atomic force constants. Their

physical meanings are very simple. Suppose only one atom l 0 has a displacement

(Fig. 4.3) while all other atoms are still at their equilibrium positions, then Eq.

(4.16) becomes

�Fabðl; l 0Þ ¼ FaðlÞ
ubðl 0Þ : ð4:18Þ

Fig. 4.3 Schematic illustration of the meaning of force constants.
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It is clear that �Fabðl; l 0Þ is the a direction force acting on atom l when atom l 0

has moved a distance of unit length in the b direction. The force constants have

the following properties.

1. Fabðl; l 0Þ ¼ Fbaðl 0; lÞ ð4:19Þ

which is due to the fact that the partial derivatives are

independent of the order in which the derivatives are taken.

2.
X
l 0

Fabðl; l 0Þ ¼ 0: ð4:20Þ

This is true because when each ubðl 0Þ in (4.16) is replaced by

an arbitrary constant cb , corresponding to a motion of the

crystal as a whole, there would be no changes in the relative

positions of the atoms, total potential energy, and its

derivatives. Therefore, FaðlÞ ¼ 0, which means

X
b

cb
X
l 0

Fabðl; l 0Þ ¼ 0

and because cb can be arbitrarily chosen, we have Eq. (4.20).

3. Fabðl; lÞ ¼ �
X
l 00l

Fabðl; l 0Þ ð4:21Þ

which comes directly from Eq. (4.20).

4. Fabðl; l 0Þ ¼ Fabð0; l 0 � lÞ ¼ Fabðl � l 0; 0Þ: ð4:22Þ

This indicates that a force constant depends only on the

difference between l and l 0, i.e., only on the relative position

between the atom pair.

5. When the force constants between atoms l and l 0 are
represented by a 3� 3 matrix, they exhibit certain symmetry

properties. When applied to a specific crystal, these symmetry

properties can greatly simplify the force constant matrix.

Some matrix elements may be equal to one another, and

others may be zero. Symmetry considerations are very

important in lattice dynamics.

As an example [4], suppose two lattice points l and l 0 in a simple cubic (sc) crys-

tal are at the origin O and at að100Þ, respectively. Let us obtain the force constant

matrix Fðl; l 0Þ between these two atoms. Because the potential energy is invariant
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under translations and rotations, Fðl; l 0Þ should remain the same when operated

on by a symmetric orthogonal rotational operator (matrix) S:

S�1Fðl; l 0ÞS ¼ Fðl; l 0Þ: ð4:23Þ

First, we assume

S ¼
1 0 0

0 �1 0

0 0 1

2
64

3
75

which describes an inversion with respect to the xz plane, leaving the bond

between the two atoms unchanged. Substituting S into (4.23), carrying out the

operations, and comparing the resultant matrix with Fðl; l 0Þ on the right-hand

side of (4.23), we find that �F12 ¼ F12, which means F12 ¼ 0. Also, we get

F21 ¼ F23 ¼ F32 ¼ 0. Similarly, we may let S be

1 0 0

0 1 0

0 0 �1

2
64

3
75 and

1 0 0

0 0 �1

0 1 0

2
64

3
75;

corresponding to an inversion with respect to the xy plane and a 90� rotation

about the fourfold symmetry axis, respectively. These operations lead to F13 ¼
F31 ¼ 0 as well as F22 ¼ F33, and the force constant matrix for the neighboring

atoms along the [100] direction must take the general form

F ¼ �
a 0 0

0 b 0

0 0 b

2
64

3
75 ð4:24Þ

where a describes the longitudinal ðlÞ force and b the transverse ðtÞ force. Because
of the axial symmetry, the two transverse forces have equal magnitudes (Fig.

4.4(a)).

The force constants between two atoms form a second-order tensor, and there

exists a principal coordinate system in which its matrix is diagonalized. But this

coordinate system may not be the principal system for the force constant tensor

between another pair of atoms. For example, if the coordinate system used in Fig.

4.4(a) is applied to a face-centered cubic (fcc) lattice, the force constant matrix

between the atom at origin and the atom at ða=2; a=2; 0Þ is

�
a g 0

g a 0

0 0 b

2
64

3
75
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which is not diagonal. The principal system for this matrix can be obtained by

rotating the original system by 45� with respect to the vertical axis, and the diag-

onalized matrix is

�
aþ g 0 0

0 a� g 0

0 0 b

2
64

3
75:

It is clear that the forces are no longer axially symmetric. If the forces between

atoms are central forces, then b ¼ 0 and a� g ¼ 0.

The force constant matrices between various atom pairs in crystals with fcc and

body-centered cubic (bcc) structures can be found in Appendix C.

4.1.4

Normal Coordinates

The kinetic energy in Eq. (4.15) is simply the sum of the quadratic terms, each of

which involves only one atom in the crystal. But the potential energy is more

complicated because of the cross products of atomic displacements, resulting in

coupled equations of motion and making it difficult to find their solutions. How-

ever, a linear transformation will allow us to find a new coordinate system in

which both kinetic and potential energies have only square terms and no cross

terms. As a result, the equations of motion become uncoupled. These new coor-

dinates are called the normal coordinates.

For a harmonic lattice, we try to solve equation (4.17) for an atom l. One
possible oscillatory solution is

uaðl; tÞ ¼ u0
aðlÞe�iot: ð4:25Þ

Fig. 4.4 Force constant matrices between the atom at origin and its

nearest neighbor for crystals with simple cubic (sc) and face-centered

cubic (fcc) lattices. For an fcc lattice, fl ¼ aþ g, ft 0 ¼ a� g, and ft ¼ b.
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Substituting (4.25) into (4.17) leads to the eigenvalue equation

ffiffiffiffiffiffi
Ml

p
o2u0

aðlÞ ¼
X
l 0; b

D 0
abðl l 0Þ

ffiffiffiffiffiffiffi
Ml 0

p
u0
b ðl 0Þ ð4:26Þ

where

D 0
abðl l 0Þ ¼

Fabðl l 0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
MlMl 0

p ð4:27Þ

are the elements of the matrix D 0.
For a total of N atoms in a solid, Eq. (4.26) has therefore 3N solutions labeled

by an index s which runs from 1 to 3N:

ffiffiffiffiffiffi
Ml

p
o2
s u

0
aðl; sÞ ¼

X
l 0; b

D 0
abðl l 0Þ

ffiffiffiffiffiffiffi
Ml 0

p
u0
b ðl 0; sÞ: ð4:28Þ

Since D 0 is a real symmetric matrix, its eigenvalues os
2 must be real and, to keep

the solid stable, os must not be negative.

There is a unitary matrix B with elements Baðl; sÞ which diagonalizes D 0 [3, 5]:

X
a; b; l; l 0

B�
a ðl; sÞD 0

abðl l 0ÞBaðl 0; s 0Þ ¼ o2
s dss 0 ; ð4:29Þ

and has the following properties:

X
a; l

B�
a ðl; sÞBaðl 0; s 0Þ ¼ dss 0 ;

X
s

B�
a ðl; sÞBbðl 0; s 0Þ ¼ dab dll 0 :

ð4:30Þ

Since Ml is diagonal, after diagonalization of the matrix D 0 the expression in

(4.28) becomes 3N separate equations, each of which describes a harmonic

vibration.

It is this very matrix B that transforms the Cartesian coordinates to a set of

normal coordinates qs through the formula

uaðlÞ ¼ 1ffiffiffiffiffiffi
Ml

p
X
s

Baðl; sÞqs: ð4:31Þ

In terms of the normal coordinates, both the kinetic energy and the potential

energy are without any cross terms:
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T ¼ 1

2

X3N
s¼1

_qq2s ¼ 1

2

X3N
s¼1

p2s ; ð4:32Þ

V ¼ 1

2

X3N
s¼1

o2
s q

2
s ; ð4:33Þ

and the Hamiltonian (4.15) changes into

H ¼ 1

2

X3N
s¼1

ðp2s þ o2
s q

2
s Þ: ð4:34Þ

With this Hamiltonian, one gets 3N uncoupled equations

€qqs þ o2
s qs ¼ 0; s ¼ 1; 2; 3; . . . ; 3N ð4:35Þ

where each equation is simply solved in the form of

qs ¼ Ase
�iost: ð4:36Þ

The vibration with a particular os is called a normal mode. If only one normal

mode os has amplitude As and all the others have zero amplitude, then (4.31)

becomes

uaðlÞ ¼ Baðl; sÞffiffiffiffiffiffi
Ml

p Ase
�ios t: ð4:37Þ

Here we see that different atoms in a crystal vibrate with the same frequency os.

In other words, a normal mode vibration is not the vibration of one single atom,

but a collective vibration of all atoms in the crystal, forming a so-called lattice

wave.

For a perfect crystalline solid, a normal mode s can be represented by the

branch index j and wave vector k so that os becomes ojðkÞ, and the coefficient

in (4.31) can be expressed as [6]

Baðl; kjÞ ¼ 1ffiffiffiffi
N

p eaðkjÞe ik�l ð4:38Þ

where eaðkjÞ is the a-component of the polarization vector. When Eq. (4.38) is

substituted into (4.37), we can clearly see the meaning of the polarization vectors

which describe the directions of the atomic vibrations in a normal mode.
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4.2

Lattice Vibrations

4.2.1

Dynamical Matrix

Inserting (4.36) and (4.38) into (4.31), we get a general expression for the dis-

placement of an atom in a Bravais lattice:

uaðlÞ ¼ 1ffiffiffiffiffiffiffiffi
NM

p
X
k; j

AðkjÞeaðkjÞ expfi½k � l � ojðkÞt�g: ð4:39Þ

A lattice wave traveling throughout the entire crystal results in displacements of

neighboring atoms differing by a phase factor k � l, while every atom will vibrate

with the same frequency oj. Substituting (4.39) into (4.17) with M ¼ Ml, we ob-

tain, for each mode kj

o2
j ðkÞeaðk jÞ ¼

X
b

DabðkÞebðkjÞ; ð4:40Þ

which is the eigenvalue equation determining the relation between the frequency

oj and the wave vector k. The eigenvectors eaðkjÞ satisfy the following orthonor-

mality and closure conditions:

X
a

e�a ðkjÞeaðkj 0Þ ¼ dj j 0 ;

X
j

e�a ðkjÞebðkjÞ ¼ dab :

ð4:41Þ

The matrix element Dab in (4.40) is

DabðkÞ ¼ 1

M

X
l 0�l

Fabð0; l 0 � lÞ exp½ik � ðl 0 � lÞ�

¼ 1

M

X
L

Fabð0; LÞ exp½ik � L� ð4:42Þ

where L ¼ l 0 � l is the position vector from atom l to atom l 0. This 3� 3 matrix D

is known as the dynamical matrix, which contains all the information about the

particular normal mode. One of the tasks of lattice dynamics is to find an explicit

expression of this matrix for a given crystal. Using the properties of Fab , we can

prove that D is Hermitian:

4.2 Lattice Vibrations 123



DabðkÞ ¼ D�
baðkÞ: ð4:43Þ

Based on (4.42), it can also be shown that

Dabð�kÞ ¼ D�
abðkÞ: ð4:44Þ

The condition for the simultaneous Eqs. (4.40) to have nontrivial solutions is

det½o2dab � DabðkÞ� ¼ 0: ð4:45Þ

For each k value, there are three eigenvalues oj
2ðkÞ ð j ¼ 1; 2; 3Þ, which are guar-

anteed to be real because D is Hermitian. Also, ojðkÞ should be either positive or

zero. For a particular j, the relation between the angular frequency o and the

wave vector k is known as the dispersion relation:

o ¼ ojðkÞ ð j ¼ 1; 2; 3Þ: ð4:46Þ

Each j represents one branch of the vibration spectrum. In general, different

branches have different dispersion relations. Within one branch, o is a continu-

ous function of the wave vector k.

The vibration amplitude AðkjÞ depending on the average energy of mode kj can
be expressed as [4]

jAðkjÞj2 ¼ EðkjÞ
o2
j ðkÞ

ð4:47Þ

where

EðkjÞ ¼ �hojðkÞ 1

expð�hojðkÞbÞ � 1
þ 1

2

� �
: ð4:48Þ

Each atom’s displacement from its equilibrium position can finally be written as

uaðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
�h

2NM

r X
k; j

cothð�hojðkÞb=2Þ
ojðkÞ

� �1=2
eaðkjÞ expfi½k � l � ojðkÞt�g: ð4:49Þ

For a non-Bravais crystal, let each unit cell have r atoms. The above derivation

is completely valid, provided that we use uaðlmÞ to replace uaðlÞ, and also use

Fabðlm; l 0m 0Þ, eaðmjkjÞ, and Dabðmm 0jkjÞ to replace the corresponding quantities,

where m ¼ 1; 2; . . . r. The dynamical matrix is no longer 3� 3, but 3r � 3r. For
each wave vector k, there will be 3r eigenvalues oj

2ðkÞ, j ¼ 1; 2; . . . ; 3r.
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4.2.2

Reciprocal Lattice and the Brillouin Zones

4.2.2.1 Reciprocal Lattice

A perfect crystal is composed of periodically arranged primitive cells; each is de-

scribed by three basis vectors a1, a2, and a3. We now define the following three

new vectors from the basis vectors:

b1 ¼ 2p
a2 � a3

a1 � ða2 � a3Þ ; b2 ¼ 2p
a3 � a1

a1 � ða2 � a3Þ ; b3 ¼ 2p
a1 � a2

a1 � ða2 � a3Þ : ð4:50Þ

These new vectors bi can be used to construct a new lattice, known as the recip-

rocal lattice. The original lattice is called the direct lattice. The position of each

reciprocal lattice point is

t ¼ h1b1 þ h2b2 þ h3b3 ð4:51Þ

where h1, h2, and h3 are integers and t is referred to as the reciprocal lattice

vector. The reciprocal lattice has the following properties:

1. The reciprocal basis vectors bi satisfy

ai � b j ¼ 2pdij ði; j ¼ 1; 2; 3Þ: ð4:52Þ

2. The dimensions of the direct lattice and reciprocal lattice are

L and L�1, respectively. Since the dimension of any wave

vector is also L�1, it may be represented in terms of the basis

vectors of the reciprocal lattice, and therefore the reciprocal

space is also known as the k-space. If the volume of the

direct primitive cell is Va, the reciprocal primitive cell volume

is ð2pÞ3=Va.

3. The scalar product of any reciprocal lattice vector with any

direct lattice vector yields an integer multiple of 2p.

t � L ¼ ðh1b1 þ h2b2 þ h3b3Þ � ðL1a1 þ L2a2 þ L3a3Þ
¼ 2pðh1L1 þ h2L2 þ h3L3Þ ¼ 2pm ð4:53Þ

where hi, Li, and m are all integers.

4. The vector t defined in Eq. (4.51) is perpendicular to a family

of lattice planes with Miller indices h1, h2, h3 in the direct

lattice. Each of the 14 different Bravais lattices has its specific

reciprocal lattice type. For example, a bcc direct lattice has an

fcc reciprocal lattice.
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It should be noted that the number of unit cells in the direct crystal is very

large and, therefore, the allowed k values form densely and uniformly distributed

points in the k-space. For example, in a one-dimensional atom chain of 1 cm in

length, the size of its Brillouin zone is about 108 cm�1. There are 108 allowed k-

values and they can be regarded as quasi-continuous.

4.2.2.2 Brillouin Zones

In the dynamical matrix, the wave vector k appears only in the exponent of e ik�L.
If k is increased by any reciprocal lattice vector, we have

e iðkþtÞ�L ¼ e iðk�Lþ2pmÞ ¼ e ik�L ð4:54Þ

and therefore

Dðk þ tÞ ¼ DðkÞ: ð4:55Þ

This shows that k and ðk þ tÞ are equivalent in both the dynamical matrix and

the dispersion relation. Therefore, it would be sufficient to confine k within the

following ranges:

� b1
2
< k1 a

b1
2
;

� b2
2
< k2 a

b2
2
; ð4:56Þ

� b3
2
< k3 a

b3
2
:

This region is called the first Brillouin zone, a reciprocal primitive cell.

Equation (4.56) also tells us how to construct the first Brillouin zone. We start

by selecting a particular reciprocal lattice point as the origin ðk ¼ 0Þ, and connect

this point to the nearest neighbor and next nearest neighbor reciprocal lattice

points with straight lines. Now we construct perpendicular bisector planes of the

lines. These planes form the smallest polyhedron that encloses the origin, and

the space inside the polyhedron is called the first Brillouin zone. Similarly, sec-

ond and third Brillouin zones can be constructed. Each zone has the same

volume, and none of the bisecting planes cuts through it. Figure 4.5 shows

three Brillouin zones for a two-dimensional square reciprocal lattice. If a vector

t ¼ �b1 is added to every point in area A2, it will be superimposed exactly onto

A1. Similarly, B2, C2, and D2 can be made to coincide with B1, C1, and D1, respec-

tively. In summary, any higher Brillouin zone is a repeat of the first Brillouin

zone.

The fcc lattice primitive cell and its reciprocal lattice first Brillouin zone are

shown in Fig. 4.6. The basis vectors of the primitive cell are
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a1 ¼ a

2
ð1; 1; 0Þ; a2 ¼ a

2
ð0; 1; 1Þ; a3 ¼ a

2
ð1; 0; 1Þ ð4:57Þ

with a volume Va ¼ a3=4. According to (4.52), the corresponding reciprocal lattice

basis vectors are

b1 ¼ 2p

a
ð1; 1;�1Þ; b2 ¼ 2p

a
ð�1; 1; 1Þ; b3 ¼ 2p

a
ð1;�1; 1Þ: ð4:58Þ

Similarly, the basis vectors of the bcc primitive cell are

a1 ¼ a

2
ð1; 1;�1Þ; a2 ¼ a

2
ð�1; 1; 1Þ; a3 ¼ a

2
ð1;�1; 1Þ ð4:59Þ

with a volume Va ¼ a3=2. The corresponding reciprocal lattice basis vectors are

b1 ¼ 2p

a
ð1; 1; 0Þ; b2 ¼ 2p

a
ð0; 1; 1Þ; b3 ¼ 2p

a
ð1; 0; 1Þ: ð4:60Þ

Fig. 4.5 First, second, and third Brillouin zones in a two-dimensional square reciprocal lattice.

Fig. 4.6 (a) Fcc lattice and (b) the corresponding reciprocal primitive

cell and the first Brillouin zone.
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Comparing the four sets of vectors in Eqs. (4.57)–(4.60), we can see that the

reciprocal lattice of fcc is bcc and the reciprocal lattice of bcc is fcc. The first

Brillouin zones of these two types of lattices are shown in Fig. 4.7.

4.2.3

The Born–von Karman Boundary Condition

The general method for solving crystal vibrations discussed above can actually

only be applied to an infinitely large crystal. A real crystal has a finite size and

those atoms on the surface vibrate differently from the atoms in the interior.

The forces between atoms are short ranged; thus there is only a small minority

of surface atoms whose vibrations would be governed by equations of motion

different from those discussed above. What complicates the matter is that the

equations of motion for vibrations of atoms are all coupled together. In order to

overcome the mathematical difficulty in solving the simultaneous equations,

Born and von Karman proposed a periodic boundary condition [7]. For a one-

dimensional chain of N atoms, it is modeled by a ring of N atoms as shown in

Fig. 4.8. If N is very large, the curvature is small, and motion along the circum-

ference is approximately the same as a one-dimensional motion along a straight

Fig. 4.7 First Brillouin zones of (a) a bcc lattice and (b) an fcc lattice,

with some special reciprocal lattice points as indicated.

Fig. 4.8 Born–von Karman boundary condition for a one-dimensional chain.
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line. The Born–von Karman boundary condition for a monatomic linear chain

requires that the vibration of the first atom is the same as that of the ðN þ 1Þth
atom:

uð1Þ ¼ uðN þ 1Þ:

According to Eq. (4.39), we have

e iNak ¼ 1 ð4:61Þ

which means

k ¼ 2p

Na
h ð4:62Þ

where h is an integer and a is the nearest neighbor distance in the chain. Since

k is restricted in the first Brillouin zone ð�p=a < ka p=aÞ, there are only N pos-

sible integer values for h ð�N=2 < haN=2Þ. These N different k values corre-

spond to N different lattice waves, which coincides with the total number of unit

cells in the chain, indicating that we have obtained all the possible normal modes.

For two- or three-dimensional crystals, similar boundary conditions are im-

posed. For example, the basis vectors for a three-dimensional primitive cell are

a1, a2, and a3, and there are a total of N ¼ N1N2N3 primitive cells where each

Ni is a large number. The boundary condition requires that

e iNiai�k ¼ 1 ði ¼ 1; 2; 3Þ:

The only difference is that a diagram depicting the three-dimensional boundary

condition would be much more complicated than Fig. 4.8 [5].

The addition of the periodic boundary condition does not change the solutions

to the equations of motion, nor the dispersion relations. The only difference is

that k-values are no longer continuous, but discrete. The limited number of dis-

crete values that k can take is equal to the total number of primitive cells in the

crystal. The continuous lattice vibrational spectrum becomes a discrete one.

4.2.4

Acoustic and Optical Branches

A slightly complicated one-dimensional lattice is the diatomic chain, each unit

cell containing two atoms. Solving the vibrations of this system is mathematically

simple, but it is important because it already contains most of the essential con-

cepts of the dynamics of atoms in a crystal [8].

Let m and M be the mass values of the two atoms, a be the interatomic distance

at equilibrium, and u and v be their displacements along the chain (Fig. 4.9). Sup-

pose each atom only interacts with its two nearest neighbors with a force con-

stant a. The net forces on the atoms m and M in the lth cell are respectively
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aðvl � ulÞ � aðul � vl�1Þ and aðulþ1 � vlÞ � aðvl � ulÞ. The corresponding equa-

tions of motion for the two types of atoms are

m€uul ¼ aðvl þ vl�1 � 2ulÞ
M€vvl ¼ aðulþ1 þ ul � 2vlÞ:

ð4:63Þ

For a chain with N unit cells, there are a total of 2N simultaneous equations. We

will try to solve Eq. (4.63) using traveling waves of the following forms:

ul ¼ Ae i½2lka�ot�

vl ¼ Be i½ð2lþ1Þka�ot�:
ð4:64Þ

Substituting these into (4.63), we obtain

�mo2A ¼ a½Bðe ika þ e�ikaÞ � 2A�
�Mo2B ¼ a½Aðeika þ e�ikaÞ � 2B�:

ð4:65Þ

These two equations do not depend on l, indicating that all pairs of equations in

(4.63) are reduced to the same equations in (4.65) as long as the solutions are in

the form of a lattice wave. What we have in (4.65) are two homogeneous linear

equations for A and B, and the condition for nontrivial solutions is

mo2 � 2a 2a cos ka

2a cos ka Mo2 � 2a

����
���� ¼ 0; ð4:66Þ

from which we obtain two solutions for o2:

o2
LA ¼ a

1

m
þ 1

M

� �
� a

1

m
þ 1

M

� �2
� 4

mM
sin2 ka

" #1=2
; ð4:67Þ

o2
LO ¼ a

1

m
þ 1

M

� �
þ a

1

m
þ 1

M

� �2
� 4

mM
sin2 ka

" #1=2
: ð4:68Þ

Fig. 4.9 Equilibrium positions and displacements of a one-dimensional diatomic chain.
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The first relation is for a longitudinal acoustic branch oLAðkÞ and the second for

a longitudinal optical branch oLOðkÞ. Their dispersion relations are shown in

Fig. 4.10.

If m ¼ M, the acoustic branch dispersion relation becomes

oLAðkÞ ¼ 2

ffiffiffiffiffi
a

M

r
sin

ka

2

����
���� ð4:69Þ

which is just the dispersion relation for a one-dimensional monatomic chain.

We now impose the same periodic boundary condition on the diatomic chain

with N unit cells. There are N possible integer k-values in the first Brillouin zone:

� p

2a
< ka

p

2a
:

For every k-value, (4.67) and (4.68) give two frequencies. Therefore, we obtain a

total of 2N lattice waves, a complete set of normal modes.

Let us analyze some characteristics of lattice waves in the two branches oLA and

oLO.

1. In the limit of k ! 0. For the acoustic branch dispersion relation,

sin2 kaA ðkaÞ2, and expanding Eq. (4.67) for small k gives

oLAAa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

m þM

r
k: ð4:70Þ

This shows two major characteristics of the acoustic branch: oLA is proportional

to k and when k ¼ 0, oLA ¼ 0. Furthermore, the ratio of the vibration amplitudes

of the two atoms is

Fig. 4.10 Dispersion curves of a one-dimensional diatomic chain.
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ðA=BÞLAA1: ð4:71Þ

This indicates that when k ! 0 (long wavelength), the two types of atoms vibrate

with nearly the same amplitude and the same phase. The wavelength is much

longer than the dimension of the unit cell. If all the atoms are moving towards

the right within one half wavelength, then the atoms in the next half wavelength

are all moving towards the left, with the linear atomic density varying like a wave,

as shown in Fig. 4.11(a). In this case, the lattice may be treated as a continuum,

and a long-wavelength lattice wave can be regarded as an elastic wave. It can be

shown that the phase velocities of the long waves and the continuum elastic

waves (sound waves) are the same, and hence the name ‘‘acoustic branch.’’

For the optical branch, when k ! 0 (long wavelength), we obtain the following

dispersion relation:

oLOA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

�
mM

m þM

� �s
ð4:72Þ

and the ratio of amplitudes

ðA=BÞLO ¼ �M=m: ð4:73Þ

The dispersion relation shows that the frequency is independent of wave vector k.
The amplitude ratio indicates that the two types of atoms vibrate in opposite

Fig. 4.11 Schematic illustration of displacements of a one-dimensional diatomic chain [9].
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directions and the center of mass of each unit cell remains stationary as shown in

Fig. 4.11(b).

Long-wavelength optical modes in ionic crystals can absorb infrared waves, and

light can be used to excite vibrations in the optical branch, hence the name ‘‘opti-

cal branch.’’

2. When k ¼Gp=2a. In this case

oLA ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2a=M

p
;

A

B
¼ 0; or A ¼ 0;

oLO ¼
ffiffiffiffiffiffiffiffiffiffiffi
2a=m

p
;

A

B
¼ y; or B ¼ 0:

ð4:74Þ

For the acoustic branch, atom m is stationary while for the optical branch, M
remains stationary (Figs. 4.11(c) and (d)). Compared to a monatomic chain, the

most important feature of a diatomic chain is the addition of an optical branch.

Furthermore, there is a gap between the dispersion curves ðoLO � oLAÞ, and the

Brillouin zone is only half as large.

4.2.5

Longitudinal and Transverse Waves

The lattice waves described in the last section are longitudinal waves (denoted by

the subscript L), propagating along the direction of atomic vibrations. If a wave is

propagating in a direction perpendicular to atomic vibrations, it is a transverse

wave (denoted by T). A perfect one-dimensional chain of atoms does not produce

transverse waves, but a real crystal can have both longitudinal and transverse

waves [9].

So far, a one-dimensional lattice vibration has been solved by applying New-

ton’s laws. For a three-dimensional crystal, the method given in Section 4.2.1

should be used. In this section, we use an fcc crystal as an example to show how

a transverse wave can exist and, more importantly, to demonstrate the process of

solving a general problem of lattice dynamics.

In order to solve Eq. (4.40) we must first find the dynamical matrix. In an fcc

crystal, each atom (or ion) has 12 nearest neighbors (Fig. 4.12), and the corre-

sponding 12 force constant matrices are given in Appendix C (actually only 6

distinctive matrices). The latter fact indicates that the dynamical matrix can be

expressed as follows:

D ¼
X6
i¼1

Di þ 1

M
Fð0; 0Þ ð4:75Þ

where Fð0; 0Þ is the self-force constant matrix of the atom at the origin, and it can

be calculated by Eq. (4.21):
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Fð0; 0Þ ¼ 2

4aþ 2b 0 0

0 4aþ 2b 0

0 0 4aþ 2b

2
64

3
75:

Suppose D1 is the contribution to D from two nearest neighbors atG
a

2
ð1; 1; 0Þ,

then [4]

D1 ¼ � 1

M

a g 0

g a 0

0 0 b

2
64

3
75 exp ik � a

2
ð1; 1; 0Þ

� �
þ exp �ik � a

2
ð1; 1; 0Þ

� �	 


¼ � 2

M
cos

ak1
2

þ ak2
2

� � a g 0

g a 0

0 0 b

2
64

3
75 ð4:76Þ

where k1, k2, and k3 are the components of k along the cubic crystal axes. The

other five matrices D2 to D6 can also be written down in a similar manner. Mak-

ing a sum of these contributions, we obtain D with the following elements:

D11 ¼ 4a

M
2� cos

ak1
2

cos
ak2
2

þ cos
ak3
2

� �� �

þ 4b

M
1� cos

ak2
2

cos
ak3
2

� �
; ð4:77Þ

and D22 and D33 have similar expressions, the off-diagonal components being

Fig. 4.12 Coordinates ðx; y; zÞ of the 12 nearest neighbors of the atom

at the origin in an fcc crystal.
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D12 ¼ D21 ¼ 4g

M
sin

ak1
2

sin
ak2
2

;

D13 ¼ D31 ¼ 4g

M
sin

ak1
2

sin
ak3
2

; ð4:78Þ

D23 ¼ D32 ¼ 4g

M
sin

ak2
2

sin
ak3
2

:

The first Brillouin zone is shown in Fig. 4.7. Let us calculate the vibrational

modes along the [100] direction, where k ¼ 2p

a
ðz; 0; 0Þ. Here z is the reduced

wave number along the [100] direction, and it changes from 0 (at the origin G) to

1 (at the zone boundary X). Using this notation

ak1
2

¼ pz;
ak2
2

¼ ak3
2

¼ 0;

the corresponding dynamic matrix can then be simplified to

D ¼ 4

M
ð1� cos pzÞ

2a 0 0

0 aþ b 0

0 0 aþ b

2
64

3
75: ð4:79Þ

In this case, D is already diagonal, and we can immediately write down the

eigenvalues:

o2
1 ¼ 8a

M
ð1� cos pzÞ,

o2
2 ¼ o2

3 ¼ 4ðaþ bÞ
M

ð1� cos pzÞ:

Substituting each eigenvalue back into the original equation (Eq. (4.40)) to find

the corresponding eigenvector:

eð1Þ ¼
1

0

0

2
64
3
75 ðL modeÞ;

eð2Þ ¼
0

1

0

2
64
3
75 ðT1 modeÞ; eð3Þ ¼

0

0

1

2
64
3
75 ðT2 modeÞ: ð4:80Þ

These are three unit vectors, none depending on k, in the x-, y-, and z-directions,
respectively. As mentioned above, a is the longitudinal force constant, so o1 is the
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longitudinal wave frequency. Inspecting Fig. 4.4 and the matrix in (4.79), we can

see that o2 and o3 represent vibrations perpendicular to the [100] direction, i.e.,

transverse waves. Therefore, the dispersion relations are

oLA ¼ 4

ffiffiffiffiffi
a

M

r
sin

ak

4
; ð4:81Þ

oTA ¼ 4

ffiffiffiffiffiffiffiffiffiffiffi
aþ b

2M

r
sin

ak

4
; ð4:82Þ

and the dispersion curves are shown in Fig. 4.13.

It is interesting to look at the patterns of atomic displacements for a mode at

the zone center ðz ¼ 0Þ or the zone boundary ðz ¼ 1Þ. Using the basis vectors ai
for the fcc lattice and Eq. (4.8), we can calculate the vector l for any atom in the

crystal, l ¼ a

2
ðl1 þ l3; l1 þ l2; l2 þ l3Þ, where l1, l2, and l3 are integers. In the case

of z ¼ 1, the atomic displacement is given by Eq. (4.39) whose exponent is

k � l ¼ 2p

a
ð1; 0; 0Þ � a

2
ðl1 þ l3; l1 þ l2; l2 þ l3Þ ¼ ðl1 þ l3Þp ¼Gsp: ð4:83Þ

Here s ¼ l1 þ l3 is also an integer labeling successive lattice planes all parallel to

the yz-plane and perpendicular to the wave propagation direction. When this is

substituted into (4.39), we obtain the displacement for an atom in the sth plane:

uðsÞ ¼ uð0Þe ispe�iot ð4:84Þ

which happens to be a standing wave, not a traveling wave. All the atoms in the

same plane have the same phase; for even s-values, e isp ¼ 1, and for odd s-values,

Fig. 4.13 Dispersion curves along the [100] direction in an fcc crystal.
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e isp ¼ �1; therefore atoms in alternate planes have opposite phases (Fig. 4.14(a)).

The wavelength of the standing wave is l ¼ 2p=k ¼ a, which is consistent with

Bragg’s condition, l ¼ 2d sin y. When y ¼ p=2, d ¼ a=2 is exactly the interplanar

separation. We conclude that a vibration mode with a wave vector k at the Bril-

louin zone boundary does not propagate in the crystal, but is repeatedly reflected

like a standing wave.

It should be noted that during the construction of DðkÞ only the first nearest

neighbor atoms are involved, but in practice one has to include interactions at

least out to the fifth nearest neighbors.

Now we turn our attention to the modes that propagate in the [110] direction.

The wave vector is k ¼ ð2p=aÞðz; z; 0Þ with z running from 0 (at the origin) to 3/4

Fig. 4.14 Schematic representations of atomic displacement vectors in

an fcc crystal [8]: (a) at the Brillouin zone boundary k ¼ 2p

a
ð1; 0; 0Þ; (b)

for k ¼ 2p

a

1

2
;
1

2
; 0

� �
, alternate odd planes move in opposite directions

while the even planes are stationary, l ¼ ffiffiffi
2

p
a.
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(at point K). Following the above procedure, we obtain the corresponding disper-

sion relations:

o2
1 ¼ o2

LA ¼ 8

M
ðaþ bÞ sin2 pz

2

� �
þ 4

M
ðaþ gÞ sin2 pz;

o2
2 ¼ o2

TA1
¼ 8

M
ðaþ bÞ sin2 pz

2

� �
þ 4

M
ða� gÞ sin2 pz; ð4:85Þ

o2
3 ¼ o2

TA2
¼ 16a

M
sin2 pz

2

� �
þ 4b

M
sin2 pz;

and the eigenvectors

eð1Þ ¼ 1ffiffiffi
2

p
1

1

0

2
64
3
75 ðLA modeÞ;

eð2Þ ¼ 1ffiffiffi
2

p
�1

1

0

2
64

3
75 ðTA1 modeÞ; eð3Þ ¼

0

0

1

2
64
3
75 ðTA2 modeÞ: ð4:86Þ

The patterns of atomic displacements for k ¼ 2p

a

1

2
;
1

2
; 0

� �
are shown in Fig.

4.14(b).

The modes along the [111] direction can also be calculated, and the results are

similar to those for [100], with sinusoidal functions for o and the degenerate

transverse waves [4].

The solutions in the above examples are relative simple, where the eigenvectors

are all independent of the vectors k, which are along three highly symmetric

directions. Hence the direction of atomic displacement is determined by the crys-

tal symmetry rather than the force constant, and both L-mode and T-mode are

strictly pure.

In a general case, the eigenvectors will depend on both the magnitude and

the direction of k; that is, their orientation relative to k depends on the force

constants and therefore the modes will not be purely longitudinal or purely

transverse.

One final point is that if each primitive cell has r atoms, the number of mode

branches is 3r. Among these, there are three acoustic branches, one longitudinal

(LA) and two transverse (TA) modes. The rest ð3r � 3Þ branches are optical

branches, also characterized by longitudinal (LO) and transverse (TO) modes.

4.2.6

Models of Interatomic Forces in Solids

Although this is one of the important issues in lattice dynamics, we will only

briefly discuss the methodologies here. In the general principles of the Born–
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von Karman theory described above, the force constants (a, b, g, etc.) in the dis-

persion relations ojðkÞ are still unknown. There are generally two methods for

calculating the vibration frequencies ojðkÞ. One is a phenomenological approach

and the other is a microscopic theory of lattice vibrations in which a general

expression for the force constants is derived from first principles based on the

electronic structure of the solid. Here we will confine ourselves to the phenom-

enological models of interatomic forces, the details of which can be found in

Ref. [8]. In this approach the force constants (a, b, g, etc.) are considered as

parameters adjusted to fit experimentally observed vibration frequencies ojðkÞ or
derived from an empirical potential model for the crystal under investigation to

calculate ojðkÞ. A good empirical potential model should contain a few feasible

and physically meaningful parameters.

When inert gases Ne, Ar, Kr, and Xe solidify at low temperatures, they form fcc

crystals. The interatomic interaction is characterized by a two-body central poten-

tial, the most successful being the Lennard-Jones potential expressed as

VðrÞ ¼ 4e
s

r

� �12
� s

r

� �6" #
ð4:87Þ

where r is the distance between the atoms, the first term represents the van

der Waals attraction, the second term represents the repulsive interaction, e is

the minimum value of the potential energy, and s is the minimum distance be-

tween two atoms when VðrÞ ¼ 0. The two parameters s and e can be deter-

mined from the measured lattice constant a0 and the heat of sublimation �L0,
respectively.

From this empirical potential one can obtain the force constants and then

phonon dispersion. For example, the observed ojðkÞ curves of 36Ar at 10 K are

satisfactorily consistent with the theoretical calculated dispersion relations [10].

This model has also worked quite well with a number of simple metals (such as

aluminum and alkali metals).

For ionic crystals in which the ions are not polarizable, the Born–Mayer poten-

tial is generally applied. It consists of a short-range repulsive term and a Cou-

lomb interaction term. But when the polarizabilities of ions and electrons need

to be included, the shell model must be used. In the latter, an atom is represented

by an unpolarizable ion core and a shell of valence electrons, and an electric di-

pole is generated by the relative displacement of the shell with respect to the core

[11].

Covalent crystals are clearly distinct from other crystals, because the covalent

bonds are highly anisotropic. Therefore, alternative models have been developed

which use angular (the Keating model [12]) or bond charge (the bond-charge

model [13]) to simulate the effects of the highly anisotropic distribution of elec-

trons in these crystals. Recently, a multibody empirical potential has been pro-

posed in the form of Morse pair potentials, which has provided more accurate

descriptions of the interatomic forces in covalent systems [14, 15].
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4.3

Quantization of Vibrations: The Phonons

In the previous sections we treated a normal mode in a crystal as equivalent to an

oscillator. Quantum mechanically, the eigenvectors of the crystal vibration can be

represented as a product of wave functions of a one-dimensional harmonic oscil-

lator. The energy of a particular normal mode with o is quantized and given by

En ¼ nþ 1

2

� �
�ho; n ¼ 0; 1; 2; . . . ð4:88Þ

where n is a positive integer (including zero), and 1
2 �ho is the oscillator energy at

absolution zero (zero point energy). At nonzero temperatures, a series of higher

energy levels ðn ¼ 1; 2; 3; . . .Þ are excited, the energy difference between adjacent

levels being �ho (Fig. 4.15). These quantum states for a particular normal mode

can be described by a set of integers n ¼ 0; 1; 2; 3; . . . , in units of �ho. Analogous
to the photon for the electromagnetic field, the energy quantum �ho for the lattice

waves is called a phonon. We see that one lattice wave or one type of vibration

produces one type of phonons, and n ¼ 1; 2, or 3; . . . is the number of phonons

of frequency o. Two equivalent ways for describing a normal mode are shown in

Fig. 4.15. The minimum energy exchanged between a g-photon (or an electron)

and the lattice is one phonon. The normal mode methodology is possible only

because of the harmonic approximation. Therefore, the introduction of the pho-

non concept is a direct consequence of this approximation.

Phonons are nonlocalized quasi-particles. Atoms or nuclei are the real particles

participating in the vibrations. Phonons are the energy quanta of their collective

motion. A phonon as a quasi-particle does not have mass, and it is impossible

to get a ‘‘phonon beam’’ out of a crystal. The wavelength of a phonon is usually

quite long; therefore it is a nonlocalized state.

Fig. 4.15 Two different descriptions of a normal mode ðoÞ.
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A phonon in a crystal does possess momentum. When it interacts with a

particle such as a photon or a neutron, it behaves as if it has a momentum of

�hk. Therefore, �hk is called the quasi-momentum of a phonon or the crystal

momentum.

Phonons are bosons. Each lattice wave corresponds to one type of phonons, and

they are all identical particles with zero spin (bosons). The higher the tempera-

ture is, the larger the amplitudes of lattice wave, and consequently the higher

the average energy and the higher the average number of phonons. Therefore,

the total number of phonons is not conserved. In a thermal equilibrium, the av-

erage phonon number hnðk jÞi is given by the Bose–Einstein statistics

hnðk jÞi ¼ 1

exp½�hojðkÞb� � 1
ð4:89Þ

where b ¼ 1=kBT . The average phonon energy for mode kj is

hEðojðkÞ;TÞi ¼ hnðk jÞiþ 1

2

� �
�hojðkÞ: ð4:90Þ

The total energy of the lattice is the sum of the above over all the vibration modes

hEðTÞi ¼
X
k; j

hEðojðkÞ;TÞi ¼
X
k; j

�hojðkÞ
exp½�hojðkÞb� � 1

þ 1

2

X
k; j

�hojðkÞ ð4:91Þ

where the second term is temperature independent.

The introduction of the phonon concept transforms the study of lattice vibra-

tions to a problem similar to that of an ideal gas – a phonon gas system. When

g-photons or neutrons are scattered by a solid, phonons can be created or annihi-

lated, and thus the dispersion relation ojðkÞ can be measured by such experi-

ments. A process in which no phonons are created or annihilated is precisely the

recoilless process in Mössbauer experiments.

Note that the phonon concept can be extended to disordered solids, where a

phonon represents a quantum of atomic vibration energy but without the crystal

momentum �hk.

4.4

Frequency Distribution and Thermodynamic Properties

4.4.1

The Lattice Heat Capacity

The heat capacity cv of a solid at constant volume is conventionally defined as

cv ¼ qE

qT

� �
v

where E is the average internal energy of the solid.
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It has two contributions, one from lattice vibrations (lattice heat capacity) and

the other from the thermal motion of electrons (electronic heat capacity). When

the temperature is not too low, electronic heat capacity can be neglected because

it is much smaller than lattice heat capacity. In this section, we discuss lattice

heat capacity only.

According to the classical equipartition of energy, the average energy of each

harmonic motion is kBT . If there are N atoms in the solid, the total number of

harmonic vibrations is 3N, and the average total energy is 3NkBT . From this, we

obtain cv ¼ 3NkB, which indicates that the lattice heat capacity is independent of

the material’s properties and temperature. This is the well-known law of Dulong

and Petit. For high temperatures, experiments agree with this law, but at low tem-

peratures, cv is no longer a constant and decreases as temperature drops. When

T ! 0, cv goes to zero for all solids. Quantum mechanics is required to explain

the low-temperature behavior of lattice heat capacity.

From the previous section, we know that Eq. (4.90) is the energy of a lattice vi-

bration mode. The temperature-dependent part of total energy in Eq. (4.91) may

be replaced by an integral over the frequency distribution, if we treat values of

ojðkÞ as almost continuous:

hEðTÞi ¼
X
k; j

�hojðkÞ
exp½�hojðkÞb� � 1

¼ 3N

ðom

0

�ho

exp½�hob� � 1
gðoÞ do ð4:92Þ

where gðoÞ is the normalized frequency distribution function

ðom

0

gðoÞ do ¼ 1 ð4:93Þ

and om is the maximum frequency. gðoÞ is termed the phonon spectrum or the

density of states (DOS). It describes the probability of lattice waves having fre-

quencies between o and oþ do, and hereafter it will be called DOS. The deriva-

tive of (4.92) with respect to temperature gives cv:

cv ¼ 3N

ðom

0

kBð�hobÞ2 expð�hobÞ
½expð�hobÞ � 1�2 gðoÞ do

¼ 3NkB

ðom

0

�hob=2

sinhð�hob=2Þ
� �2

gðoÞ do: ð4:94Þ

From this result, we see that when T ! 0, cv indeed approaches zero. At high

temperatures, kBT g �ho, cv approaches 3NkB. Both of these limits agree with

experiments. Now we need to find an appropriate frequency distribution function

so that the integral predicts cv for intermediate temperatures as well.

142 4 The Basics of Lattice Dynamics



4.4.2

The Density of States

Generally speaking, as long as we know the dispersion relations ojðkÞ, for all k in

the first Brillouin zone, the density of states can be calculated according to

gðoÞ ¼ 1

3N

X3
j

XN
k

dðo� ojðkÞÞ ð4:95Þ

where gðoÞ satisfies the normalization condition (4.93). Figure 4.16 shows the

ojðkÞ curves and the corresponding calculated gðoÞ curve for NaF.

Sometimes, it is more convenient to use another distribution function, defined

as

g1ðo2Þ ¼ 1

3N

X3
j

XN
k

dðo2 � o2
j ðkÞÞ ð4:96Þ

where

ðo2
m

0

g1ðo2Þ do2 ¼ 1; g1ðo2Þ ¼ gðoÞ=2o:

Recently, the first-principles quantum mechanical method, a very powerful

tool, has been used to calculate gðoÞ, which appears to be somewhat complex.

The two simplified models, namely the Einstein model and the Debye model,

have been widely used for a long time. In many cases they can give results con-

sistent with the experimental data.

Fig. 4.16 Dispersion curves ojðkÞ and phonon frequency distribution gðoÞ for NaF [16].
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4.4.2.1 The Einstein Model

Einstein postulated that all atoms are vibrating independently with the same fre-

quency oE. For a three-dimensional lattice at temperature T , the total vibration

energy is

E ¼ 3N�hoE

expð�hoEbÞ � 1
þ 3N

2
�hoE; ð4:97Þ

from which the lattice heat capacity can be calculated as

cv ¼ qE

qT

� �
¼ 3NkB

�hoEb=2

sinhð�hoEb=2Þ
� �2

¼ 3NkB
yE=2T

sinhðyE=2TÞ
� �2

ð4:98Þ

where

yE ¼ �hoE=kB ð4:99Þ

is called the Einstein temperature. At high temperatures, kBT g �ho, cvA3NkB,
the classical value. As temperature decreases, cv decreases, consistent with the

trend in the experimental results. But in the low temperature region, the pre-

dicted cv values decrease too fast and do not exactly match the experimental curve

(Fig. 4.17). The Einstein model is a good approximation for an optical branch

where o is a weak function of k.

Although the Einstein model played an important role in the development of

the quantum theory, it is over simplified. In a real crystal, the interactions be-

tween atoms are strong enough so that it is impossible for an atom to oscillate

without affecting its neighbors. We now turn to the following more realistic

model.

Fig. 4.17 Heat capacity of Ag as a function of temperature T: a

comparison between the Einstein model and the Debye model [16].
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4.4.2.2 The Debye Model

At low temperatures, the optical branch phonons have energies higher than kBT ,
and therefore almost none of the optical branch waves is excited. Only acoustic

waves (especially long-wavelength ones) contribute to the heat capacity. For an

acoustic branch, o ! 0 as k ! 0, and the Einstein model obviously fails to in-

clude this feature. The main assumption of the Debye model is that the Bravais

lattice is regarded as an isotropic continuum, and therefore the lattice waves are

elastic waves (one longitudinal branch and two independent transverse branches).

The frequency is not a constant but has a specific distribution with a cutoff

frequency oD, above which no shorter wave phonons are excited. In the Debye

model, gðoÞ takes the following form:

gðoÞ ¼ 3o2=o3
D; when o < oD;

0; when o > oD:

	
ð4:100Þ

We may also define

yD ¼ �hoD=kB; ð4:101Þ

which is known as the Debye temperature, an important quantity in solid-state

physics. One should note, however, that oD is merely a parameter, not the actual

maximum phonon frequency in the solid.

Substituting (4.100) into (4.94), we obtain

cvðTÞ ¼ 9NkB
T 3

y3D

ð xD
0

x4ex dx

ðex � 1Þ2 ¼ 9NkB fDðyD=TÞ ð4:102Þ

where x ¼ �hob, xD ¼ �hoDb ¼ yD=T , and fDðyD=TÞ is called the Debye heat

capacity function. The Debye model has been very successful in calculating the

heat capacities for many solids, which agree well with the experimental results.

When T g yD, cv approaches the classical value of 3NkB. In the low-

temperature region, Debye’s heat capacity is remarkable, because when T f yD,

Eq. (4.102) becomes

cv ¼ 12p4

5
NkB

T

yD

� �3
: ð4:103Þ

Here cv is proportional to T 3, known as the Debye T 3 law. The lower the temper-

ature, the better the Debye approximation, because almost all excited phonons be-

long to the long-wavelength waves in the acoustic branches and the crystal indeed

behaves like a continuum. However, the T 3 law is applicable only for T < yD=5.

The Debye temperature yD as defined in (4.101) is a temperature-independent

parameter. As more sophisticated low-temperature techniques are now available,

different yD-values have been observed at different temperatures. For many

materials, yD is a constant for Tb yD=2, it decreases as T decreases, reaches a
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minimum around yD=10, and rebounds at lower temperatures (Fig. 4.18). This

indicates that the Debye model has its own limitations, and does not completely

agree with experimental results.

In fact, the crystal cannot be completely treated as an elastic medium, but

should be modeled based on its atomic structures as in the Born–von Karman

theory. Neutron scattering experiments and theoretical calculations have shown

that each crystal has its own frequency distribution gðoÞ, and cv cannot be accu-

rately calculated unless gðoÞ is available.

4.4.3

Moments of Frequency Distribution

Today, because of the advances in computer science and neutron scattering, pho-

non spectra gðoÞ have been obtained theoretically or experimentally for a number

of perfect crystals, but for most of solids gðoÞ is still unknown. There exists, how-
ever, an approximate method for obtaining thermodynamic quantities similar to

cv without knowing gðoÞ itself. This is an average method using the moments

of frequency distribution, and several authors contributed to this method in the

early 20th century [18, 19].

The nth moment of the frequency distribution function is defined as

mðnÞ ¼
ðom

0

ongðoÞ do ð4:104Þ

where om is the maximum allowed frequency. When (4.95) is substituted into

(4.104), it becomes

mðnÞ ¼ 1

3N

X
k; j

on
j ðkÞ: ð4:105Þ

Fig. 4.18 Debye temperature yD of indium as a function of temperature T [17].
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The even moments mð2nÞ can be expressed as [20]

mð2nÞ ¼ 1

3N

X
k; j

o2n
j ðkÞ ¼ 1

3N

X
k

tr D nðkÞ ð4:106Þ

where the trace of D nðkÞ remains invariant under its diagonalization through a

unitary transformation, and the diagonal elements are just o2n
j ðkÞ. The fact that

the even moments mð2nÞ can be evaluated from the dynamical matrix makes

them vary useful in describing the characteristics of the unknown gðoÞ.
Now we derive cv in terms of mð2nÞ, the moments of frequency distribution

[19]. One uses the series expansion

x

ex � 1
¼ 1� x

2
�
Xy
n¼1

ð�1ÞnB2n
x2n

ð2nÞ! ðjxj < 2pÞ ð4:107Þ

where B are the Bernoulli numbers:

B2 ¼ 1

6
; B4 ¼ 1

30
; B6 ¼ 1

42
; B8 ¼ 1

30
;

B10 ¼ 5

66
; B12 ¼ 691

2730
; B14 ¼ 7

6
; etc:

Expanding the lattice energy (4.92) according to (4.107) and taking a derivative

with respect to T , we obtain an expression for cv:

cv
3NkB

¼ 1þ
Xy
n¼1

ð�1ÞnB2n
2n� 1

ð2nÞ!
�h

kBT

� �2n
mð2nÞ: ð4:108Þ

This series converges for T > 50 K [21]. In fact, only several low moments (e.g.,

up to n ¼ 3) are usually required to obtain a relatively good accuracy. This is the

most prominent feature of this method [22].

The moment method cannot give the low-temperature characteristics of cv.
Although Montroll [19] pointed out long ago that gðoÞ could be calculated if all

moments were known, high moments are usually not available because their cal-

culations are very complicated. If only a limited number of moments are used,

the resultant low-temperature phonon spectrum is only a poor approximation.

In the 1970s, modified moments were introduced, and this method was further

developed [23–25]. It has become a useful theoretical method in lattice dynamics

[26–28].

Just like the lattice heat capacity, there are some other quantities that need to be

evaluated as statistical averages using gðoÞ. Such quantities include hu2i and

hv2i, which are discussed in the next chapter.

4.4 Frequency Distribution and Thermodynamic Properties 147



Suppose that a Debye spectrum with a cutoff frequency oDðnÞ has its nth fre-

quency moment mDðnÞ exactly equal to the nth moment of the actual phonon

spectrum mðnÞ, we would have

ðoDðnÞ

0

on 3o2

o3
DðnÞ

do ¼ 3

nþ 3
on
DðnÞ ¼ mðnÞ

or

oDðnÞ ¼ nþ 3

2
mðnÞ

� �1=n
; n > �3; n0 0: ð4:109Þ

The temperature corresponding to this cutoff frequency is called the weighted

Debye temperature yDðnÞ, written this way to distinguish it from the usual Debye

temperature yD:

yDðnÞ ¼ �hoDðnÞ
kB

¼ �h

kB

nþ 3

2
mðnÞ

� �1=n
: ð4:110Þ

This is how mðnÞ can be calculated [29] using the parameter yDðnÞ, and the impor-

tance of yDðnÞ is analyzed as follows.

Each dynamical or thermal property of the solid depends on a different way in

which the phonon frequency spectrum is weighted. For instance, hu2i and recoil-

less fraction f are mainly determined by the low-frequency phonons whereas

hv2i is more sensitive to the high-frequency phonons. Furthermore, the Debye

temperatures yD obtained by measuring the entropy, the thermal energy, and the

heat capacity are not in general the same. A typical example is the study of KBr

crystals [30]. It is therefore more appropriate to use yDðnÞ of different n-values for
describing dynamical and thermal quantities than to use just yD. We now point

out the relations between several specific quantities and yDðnÞ with different n-
values [31–35].

At high temperatures, heat capacity, entropy, and the mean square atomic dis-

placement hu2i depend on yDð2Þ, yDð0Þ, and yDð�2Þ, respectively. Under the

limit T ! 0, the heat capacity is related to yDð�3Þ while hu2i is related to

yDð�1Þ. The yD derived from the elastic constant measurements should be equal

to yDð�3Þ [36].
For an ideal Debye solid, yDðnÞ ¼ yD for all n-values. But for a real solid, yDðnÞ

depends on n, which gives a measure of the difference between the actual pho-

non spectrum and the Debye spectrum.

In Mössbauer spectroscopy, yDð�1Þ and yDð�2Þ can be obtained by measuring

the recoilless fraction, while yDð1Þ and yDð2Þ can be deduced from the second-

order Doppler shift (see Chapter 5).
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4.4.4

The Debye Temperature yD

We now focus our attention on yD to obtain a better understanding of its physical

meaning. It will facilitate the analysis of Debye temperature yD (or yM) from

Mössbauer experiments and the comparison of yD with results from other

methods.

In the Debye model, a maximum cutoff frequency oD was introduced so that

the total number of vibration modes in a Bravais lattice is exactly 3N, and conse-

quently the Debye temperature was defined yD ¼ �hoD=kB. The Debye model is

most successful in describing the vibration frequency distribution gðoÞ in crystals

such as Fe, Cu, K, and Na (Fig. 4.19). There is clearly a sharp cutoff point, but the

cutoff frequency is not oD, and the distribution in the high-frequency portion has

large deviations from the Debye model. For most crystals, gðoÞ differs from the

Debye model significantly; however, the parameter yD can still be obtained. It

makes us wonder as to the exact meaning of yD. However, large amounts of ex-

perimental data indicate that the Debye model is essentially correct and yD is an

important parameter of the solid. As already mentioned above, because many

thermodynamic quantities are expressed as averages over the frequency distribu-

tion gðoÞ, they are not sensitive to its details. This may be one of the reasons for

the Debye model’s success. Therefore, the Debye temperature should be under-

stood as a parameter that may not correspond to the actual cutoff frequency oD

on DOS curve. Since yD is related to many other physical quantities through a

variety of expressions, we can investigate it using several theoretical and experi-

mental methods.

4.4.4.1 The Physical Meaning of yD
Only after a material’s yD is determined would the terms ‘‘high temperature’’ and

‘‘low temperature’’ be meaningful. High temperature means T > yD with all the

Fig. 4.19 Phonon DOS gðoÞ for a-Fe [37].
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vibration modes excited, whereas low temperature means T < yD with some of

the vibration modes beginning to be suppressed. For many solids, yD is obtained

through measuring cv, but the relation between yD and cv is very complicated.

The following two points would help us to find out which quantities are con-

nected with yD.

1. When k ! 0, acoustic branch waves resemble elastic waves. The classical

theory of elasticity may be applied to study the elastic properties of a crystal. Ex-

perimentally obtained elastic constants and elastic wave speeds can be used, even-

tually leading to yD according to Eq. (4.101). As an example, consider an fcc

crystal with short-range central forces between atoms. The elastic constants

c44 ¼ c11=2, and vl ¼ vt ¼ c44=r, where r is the density of the solid. In the long-

wavelength limit, yD can be calculated [4, 5, 16, 38] as

yD ¼ cvlA c
c44
r

� �1=2
¼ c 0

a

M

� �1=2
ð4:111Þ

where c and c 0 are constants, a is the force constant between adjacent atoms, and

M is the mass of each atom. It is clear that yD is proportional to the square root of

the force constant a and inversely proportional to the square root of the mass of

each atom. For example, diamond is light and hard, because the mass of the car-

bon atom is low and the interatomic covalent bond is extremely strong, and con-

sequently its Debye temperature yD is very high (2200 K). On the contrary, lead is

heavy and soft, and its yD is very low (102 K). However, the force constant may

vary over several orders of magnitude and therefore plays a larger role in deter-

mining yD. Solid neon, for instance, has a yD of only 63 K because the van der

Waals force between the Ne atoms is very weak. By the way, we could also derive

(4.111) directly from (4.81).

2. When the temperature of a solid rises, the amplitudes of atomic vibrations

increase, the forces between atoms fail to hold the atoms in the solid form, and

melting begins to take place. Since yD is proportional to the square root of the

force constant, it is not surprising that yD is related to the melting temperature

Tm of the solid and given by

yD ¼ c
Tm

MNAV
2=3

� �1=2
ð4:112Þ

where c is a constant, having values of 137 and 200 for metals and nonmetals,

respectively. When the temperature approaches Tm, the atomic motion can no

longer be treated as small oscillations, and thus the anharmonic effect becomes

significant. As a result, the yD value obtained from (4.112) usually has a poor

agreement with the yD values from other methods.

4.4.4.2 Comparison of Results from Various Experimental Methods

The methods for determining yD include elastic constant measurements, heat

capacity measurements, x-ray and neutron scattering, and the Mössbauer effect.
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The first two are macroscopic methods. Although they are based on different

principles, they give similar low-temperature results for yD (Table 4.1). As men-

tioned in the last section, different quantities such as cv, entropy and hu2i are re-

lated to different yDðnÞ in different temperature regions, not simply to a single

parameter yD. Therefore, yD values determined using different methods would

never be exactly the same. The last three are microscopic methods, in which

the Debye temperature yD is obtained through the measurements of either the

Debye–Waller factor or the recoilless fraction. Both these factors are exponential

functions of the mean-square displacement hu2i, and replacing gðoÞ in the

expression of hu2i with the Debye model distribution would give yD. From this

argument, it seems that the yD values obtained using neutron scattering and the

Mössbauer effect should be in good agreement, whereas the x-ray scattering re-

sults for yD in most cases are only slightly higher than the Mössbauer results

due to the possible deviation of the adiabatic approximation. When the Möss-

bauer atom is only one of the constituent elements in a sample, the x-ray result

may be noticeably larger than that from the Mössbauer effect (see Table 4.2).

Table 4.1 Debye temperature yD values (in K) of several solids obtained

from elastic constant, heat capacity, and melting temperature

measurements [39, 40].

Solid Elastic constant

method

Heat capacity

method

Melting temperature

method

Al 438 428 @400

Cu 365 345 @300

Ni 446 450

Pb 135 105

Zn 307 327

C (diamond) 2230 @2000

Na 164 158 @160

Table 4.2 Debye temperature yD values (in K) of three compounds

obtained from the M€oossbauer effect and x-ray diffraction [41].

Compound yD (Mössbauer effect) yD (x-ray diffraction)

Fe[Co(CN)6] 146(30) 245(25)

Fe[Rh(CN)6] 153(9) 274(30)

Fe[Ir(CN)6] 177(13) 287(30)
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4.5

Localized Vibrations

So far, we have been dealing with crystals of perfect periodic atomic arrange-

ments, and their vibrations form lattice waves. In reality, such ideally perfect crys-

tals are rare, and most crystals have impurities or other defects, which greatly in-

fluence their vibration properties. As the impurity concentration increases, the

vibrations become very complicated and lattice waves can no longer exist. In this

section, we will only discuss situations of extremely low concentrations of substi-

tutional atoms, namely, isolated impurity atoms. Due to these impurity atoms,

the physical picture for lattice vibrations is not easy to visualize; the mathematical

treatment also becomes very difficult and one usually resorts to the Green’s func-

tion method [42] or the molecular vibration method.

The Mössbauer effect is a suitable method for studying the dynamics of impu-

rity atoms, because it has absolute isotope selectivity and the Mössbauer nucleus

is often the impurity atom in a host crystal. The discovery of the Mössbauer effect

has greatly advanced the research of impurity dynamics. The development of im-

perfect crystal dynamics has been divided into two stages, and the advent of the

Mössbauer effect has been recognized as the beginning of the second stage [43].

While more details can be found in the next few chapters, here we will only de-

scribe the vibrations of isolated impurity atoms and their effects, in order to have

a basic understanding of the phenomenon of local vibrations.

As an example, suppose we have a diatomic chain of 48 atoms, M0 ¼ 31 u and

m ¼ 70 u (compound GaP) [44]. First, simultaneous equations (4.65) are solved

and 48 modes are obtained. Modes 1 through 24 form the acoustic branch,

and the remaining modes form the optical branch, with the maximum frequency

of om ¼ 370 cm�1. (Wavenumber frequency units are used here, 1 cm�1 ¼
3� 1010 Hz ¼ 18:8� 1010 rad s�1.) Now a lighter atom ðMÞ replaces an atom

ðM0Þ in the chain, and we assume that this substitution does not change the force

constant. A computer program can numerically solve a set of equations similar to

(4.65) and obtain also 48 modes, some of which are shown in Fig. 4.20. For clar-

ity, the atomic displacements along the chain are all drawn perpendicular to the

chain.

The most obvious change after substitution of the atomM is the emergence of a

new mode with oL ¼ 416:4 cm�1, which is higher than the maximum frequency

om of the lattice waves. The atomic displacement u in this mode is no longer a

sinusoidal function in space, but has a maximum at the position of M and decays

quickly to zero at a distance only a few atoms from M. This is known as localized

vibrations or a local mode, because it is restricted in a region near the impurity

atom.

For the above situation where there is only one impurity atom, the solutions to

the equations of motion can be categorized as either symmetric ðun ¼ u�nÞ or

antisymmetric ðun ¼ �u�nÞ. The impurity atom only influences the symmetric

modes, because the impurity atom is at rest in antisymmetric modes and thus

has no effect on them. As can be seen in Fig. 4.20, modes 4 and 24 are antisym-

152 4 The Basics of Lattice Dynamics



metric and their frequencies do not change, and modes 5, 25, and 47 are sym-

metric and their frequencies all become higher. As shown in Fig. 4.21, if M de-

creases, the localized vibration displacement u at M site increases, whereas the

spatial spread decreases accordingly. A measure of localization is usually defined

as

Fig. 4.20 Selected vibration modes of a 48-atom linear diatomic chain

with one impurity atom [44].
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h ¼ 1�M=M0: ð4:113Þ

Figure 4.21 indicates that besides the atom with M ¼ 5 u, the others hardly

move. The frequency of the localized mode is approximately

oLA
ffiffiffiffiffiffiffiffiffiffiffiffi
2a=M

p
: ð4:114Þ

The decrease of M has another important effect, namely it increases the intensity

of the entire acoustic branch (see Fig. 12 in Ref. [44]), which will be very useful.

When M > M0, the localized mode is situated between the optical and acoustic

branches, and thus known as a gap mode ogap.

As one of the heavier atoms m is replaced by m 0 and m 0 > m, the localized

mode falls within the acoustic branch, causing increases in vibration amplitudes

of nearby original atoms. This mode is therefore called a resonant mode, and it is

a quasi-localized mode.

The above discussion involves only a change in the atomic mass. If the force

constant also changes, a high-frequency localized mode can also be produced

even with a heavy defect ðM > M0Þ as long as its interactions with the surround-

ing atoms are much stronger than those in the original perfect crystal.

In a real solid, the localized vibrations are much more complicated than the

above model. The frequencies of localized modes are in the infrared region, and

thus the existence of high-frequency modes or gap modes can be verified using

infrared absorption experiments. Figure 4.22 shows infrared absorption spectra

of AgBr with its Ag replaced by natural lithium (92.6% 7Li and 7.4% 6Li) and

by lithium with enriched 6Li [45]. Figure 4.22(a) shows two absorption peaks at

Fig. 4.21 Displacement vectors of local modes when M ¼ 25; 20, and 5 u.
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191.8 and 205.9 cm�1, with an intensity ratio consistent with the natural abun-

dance ratio of 7Li to 6Li. When 6Li enrichment was used in the impurity atoms,

the spectrum becomes that of Fig. 4.22(b), also showing two peaks at the same

frequencies except a change in the relative intensities, as expected. Since the

lighter defect atom should result in a localized mode with a higher frequency,

this isomer effect verifies the existence of high-frequency modes.

4.6

Experimental Methods for Studying Lattice Dynamics

The experimental methods for studying lattice dynamics are all based on the

interactions of electromagnetic radiation or particles with the solid. According to

the subjects of investigations, the methods can be divided into three groups. The

first group involves the measurements of phonon dispersion curves ojðkÞ or DOS
curve gðoÞ. Currently, the best method is inelastic coherent neutron scattering,

which can give complete ojðkÞ curves in the entire Brillouin zone. Before neutron

scattering was available, dispersion curves for most crystals were unknown. In-

elastic x-ray scattering and inelastic nuclear resonant scattering as means of

obtaining ojðkÞ or gðoÞ have been developed only after synchrotron radiation

became accessible. The second group involves the studying of vibration modes

near the center of the Brillouin zone ðk ! 0Þ. The experimental methods include

infrared spectroscopy and Raman scattering to study optical modes and Brillouin

scattering or the method of elastic coefficients to study acoustic modes. The third

group is based on principles of statistical mechanics, obtaining the Debye–Waller

factor, and hence the atomic mean-square displacement hu2iand the mean-

square velocity hv2i, as well as yD. These quantities are weighted statistical aver-

ages over the phonon spectrum gðoÞ. The method of specific heat and later trans-

Fig. 4.22 Infrared absorption spectra of AgBr doped (a) with natural Li

and (b) with Li enriched by 6Li.
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mission Mössbauer spectroscopy, etc., all belong to this group. These are indirect

methods compared with those in the first group.

As can be seen from Table 4.3, only thermal neutrons so far are found to be

suitable for inelastic scattering to create or annihilate phonons in a solid with

considerable momentum transfer. They have energies comparable to typical

phonon energies and wavelengths comparable to atomic distances in crystals.

As to x-rays, for an appropriate wavelength, say 3 Å, the corresponding energy

ðEx ¼ hc=lxÞ is as high as 4136 eV. There is a large mismatch between the inci-

dent energy of x-rays and the phonon energy. Thus, to get the dispersion curve

it requires an energy resolution of 10�7 or better in the x-rays. In short, lattice

dynamical studies by conventional x-rays are limited.

The energy of visible light is much less than that of x-rays, and the wave vector

is proportionally reduced to about 10�3 Å. So visible light scattering is only used

for measuring those vibration modes of extremely long wavelengths.

In this section, we discuss neutron scattering, followed by x-ray scattering. In

Chapter 7, new methods using synchrotron radiation in combination with the

Mössbauer effect are described.

4.6.1

Neutron Scattering

Neutrons can be scattered by an atom through two mechanisms, nuclear scatter-

ing and magnetic scattering. Here we focus on the first mechanism. Through nu-

clear scattering, a neutron is scattered by the nucleus within the range of strong

nuclear force (10�12 cm). Neutron scattering may be elastic or inelastic, coherent

or incoherent. Coherent elastic scattering is usually called neutron diffraction,

which is mainly used for determining the crystal structure and the Debye–Waller

factor. To obtain the dispersion curve ojðkÞ, we need to detect inelastic scatterings

which involve the creation or absorption of phonons.

Table 4.3 Energies, wavelengths, and wave vectors of several radiations and particles.

Energy (eV) Approximate

wavelength (Å)

Approximate

wave vector (ÅC1)

Phonons 0.013 3 2

Thermal neutrons 0.025 2 3

Electrons 16 3 2

X-rays 4100 3 2

g-rays 14 400 0.86 1.6

Visible light 3 4000 10�3
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4.6.1.1 Theory

1. Basic formulation. For the sake of simplicity, we will neglect neutron spin for

the time being. Before scattering, the neutron has energy E0 and wave vector k0.

The scatterer has a wave function jli and energy El. After scattering, these quan-

tities become respectively E, k 0, jl 0i, and El 0 (Fig. 4.23). The changes in the neu-

tron energy and wave vector are, respectively

�ho ¼ E0 � E ¼ �h2

2m
ðk20 � k 02Þ; Q ¼ k 0 � k0 ð4:115Þ

where m is the mass of neutron. Within a solid angle DW in the y direction, the

neutron flux dF in an energy range from E to E þ DE recorded by the detector is

dFAFDWDEh ð4:116Þ

where F is the incident neutron flux and h is the detector efficiency.

The proportionality constant in Eq. (4.116) is called the double differential

cross-section, denoted by d2
s=ðdW dEÞ. According to the Born approximation

[46–48],

d2
s

dW dE
¼ k 0

k0

m

2p�h2

� �2X
l

pl
X
l 0

jhk 0
l 0jVðrÞjk0lij2dð�hoþ El � El 0 Þ ð4:117Þ

where the d-function is due to energy conservation. Here a summation is first

carried out over l 0, and it is then averaged over the initial states jli. The weight

pl ¼ expð�El=kBTÞP
l expð�El=kBTÞ

is the probability of having the initial state jli in the scatterer at temperature T .
The neutron–nucleus interaction V has the form of a Fermi pseudopotential:

2p�h2

m
bdðr � RÞ

Fig. 4.23 Neutron scattering process.
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where b is the scattering length, whose square is the cross-section of the low-

energy neutron–nucleus scattering

ds

dW
¼ b2:

The interaction potential between the neutron and the entire scatterer is

VðrÞ ¼ 2p�h2

m

X
l

bl dðr � RlÞ

where R l and bl are the position vector and the scattering length of the lth nu-

cleus, respectively. Substitution of this potential into Eq. (1.117) yields

d2
s

dW dE
¼ k 0

k0

X
l

pl
X
l 0

X
l; l 0

b�l bl 0hlje�iQ�R l 0 jl 0i

� hl 0je iQ�R l jlidð�hoþ El � El 0 Þ: ð4:118Þ

In order to carry out the summation over l 0 and the average over l, the d-function

needs to be expressed as a time integral:

dð�hoþ El � El 0 Þ ¼ 1

2p�h

ðy
�y

exp½�iðEl � El 0 Þt=�h�e�iot dt: ð4:119Þ

After substituting this into (4.118) and summing over l 0, we have [47]

d2
s

dW dE
¼ k 0

k0

1

2p�h

X
l; l 0

b�l bl 0
X
l

pl

ðy
�y

hlje�iQ�R lð0Þe iQ�R l 0 ðtÞjlie�iot dt

¼ k 0

k0

1

2p�h

X
l; l 0

b�l bl 0
ðy
�y

he�iQ�R lð0Þe iQ�R l 0 ðtÞiTe
�iot dt

¼ N

�h

k 0

k0

X
l; l 0

b�l bl 0Sll 0 ðQoÞ ð4:120Þ

where

Sll 0 ðQoÞ ¼ 1

2pN

ðy
�y

he�iQ�R lð0Þe iQ�R l 0 ðtÞiTe
�iot dt ð4:121Þ

is known as the scattering function which describes the dynamic properties of

the target system, N is the number of nuclei in the Bravais scatterer, and h. . .iT
represents a thermal average over the initial states jli. The scattering length b is

not a dynamic quantity, and therefore is taken out of the thermal average. Equa-
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tion (4.120) is then a simplified expression for the double differential cross-

section.

2. Coherent and incoherent scattering. The summation in Eq. (4.120) is to be

done over pairs of nuclei ðl; l 0Þ. The scattering function S contains the complete

information about the physics of the scatterer. Nuclear scattering lengths b are

different for different elements, and even for the same element in the scatterer,

b also depends on the nuclear spin orientations and the amount of different iso-

topes, which should be randomly distributed in general. Therefore, we should use

an average of b�l bl 0 over all possible nuclear states. If the b-values for different

nuclei are independent of one another, then

b�l bl 0 ¼ jbj2; l0 l 0

b�l bl 0 ¼ jbj2; l ¼ l 0:
ð4:122Þ

Using these in Eq. (4.120), the double differential cross-section can be written as

the sum of two terms:

d2
s

dW dE
¼ Nscoh

4p�h

k 0

k0

X
l; l 0

Sll 0 ðQoÞ þ Nsinc

4p�h

k 0

k0

X
l

SllðQoÞ ð4:123Þ

where

scoh ¼ 4pjbj2; sinc ¼ 4pðjbj2 � jbj2Þ:

The first term in Eq. (4.123) is the coherent scattering cross-section, which de-

pends on the correlation between positions of different atoms at different times

and therefore has an interference effect. The second term is the incoherent scat-

tering cross-section, which depends on the correlation between positions of the

same atom at different times, and has no interference effect.

4.6.1.2 Neutron Scattering by a Crystal

Suppose the scatterer is a Bravais crystal, in which atoms are vibrating around

their equilibrium positions. We see from Eq. (4.120) that neutron scattering by a

solid is essentially described by the S function. Substituting R l from Eq. (4.9) into

the S function in (4.123), we have

Scoh ¼
X
l; l 0

Sll 0 ¼ 1

2pN

X
l; l 0

ðy
�y

he�iQ�uðl; 0Þe iQ�uðl 0 ; tÞiTe
iQ�ðl 0�lÞe�iot dt; ð4:124Þ

Sinc ¼
X
l

Sll ¼ 1

2pN

X
l

ðy
�y

he�iQ�uðl; 0Þe iQ�uðl; tÞiTe
�iot dt: ð4:125Þ

If we carry out the thermal averages according to the quantum theory of har-

monic oscillators, we would obtain [46]
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Scoh ¼ 1

2p
e�2W

X
l

e iQ�l
ðy
�y

ehQ�uð0; 0ÞQ�uðl; tÞiT e�iot dt; ð4:126Þ

Sinc ¼ 1

2p
e�2W

ðy
�y

ehQ�uð0; 0ÞQ�uð0; tÞiT e�iot dt: ð4:127Þ

Suppose that the atomic displacements u are very small (harmonic approxima-

tion), then the first exponential factor can be expanded into polynomials:

eh���iT ¼ 1þ hQ � uð0; 0ÞQ � uð0; tÞiT

þ 1

2
hQ � uð0; 0ÞQ � uð0; tÞi2

T þ � � � ð4:128Þ

When this is substituted into (4.126) or (4.127), it will have three terms, de-

scribing zero-phonon (elastic scattering), one-phonon, and two-phonon processes,

respectively.

1. The Debye–Waller factor. In the above expressions for scattering cross-

sections, there is a common factor e�2W, known as the Debye–Waller factor. For

a cubic crystal, its exponent can be written as

2W ¼ h½Q � uð0; 0Þ�2iT ¼ Q 2hu2ð0; 0ÞiT

or

2W ¼ �h

2MN

X
s

ðQ � esÞ2
os

h2ns þ 1i ð4:129Þ

where s ¼ k j and M is the atomic mass. For a cubic Bravais crystal

ðQ � esÞ2 ¼ 1

3
Q 2; ð4:130Þ

and the above expression becomes

2W ¼ �h2Q 2

2M

1

3N

X
s

1

�hos
coth

1

2
�hosb

� �

¼ �h2Q 2

2M

ð
1

�ho
coth

1

2
�hob

� �
gðoÞ do: ð4:131Þ

To understand this factor e�2W, let us look at the process of coherent elastic scat-

tering. Here we have jk0j ¼ jk 0j, the neutron energy does not change after scatter-

ing, namely there is no creation or annihilation of a phonon in the crystal (the

zero-phonon process). The corresponding cross-section is
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ds

dW

� �
coh; el

¼ scoh

4p
N
ð2pÞ3
Va

e�2W
X
t

dðQ � tÞ ð4:132Þ

where Va is the unit cell volume of the crystal and t is a reciprocal lattice vector.

Since e�2W a 1, the intensity of the diffraction peak is reduced. The reason for

this is that as temperature rises, the atomic mean-square displacement hu2i in-

creases, causing e�2W to decrease drastically. When T ¼ 0, the atoms are at rest,

hu2i ¼ 0, and in this case e�2W ¼ 1. Therefore, the Debye–Waller factor is used

to describe how the diffraction intensity changes with temperature.

Inspecting the quantity �h2Q 2=2M in Eq. (4.131), we recognize that it equals the

recoil energy of a free nucleus when a neutron is scattered by it [46, 49]. Compar-

ing (4.131) with (1.82), we also see that, except for Q instead of the wave vector k

of the Mössbauer radiation, the Debye–Waller factor and the recoilless fraction

have exactly the same form, both having the same temperature dependence.

2. Coherent inelastic scattering. Let us now substitute the expansion (4.128) into

(4.126), and discuss the second term

Scoh ¼ 1

2p
e�2W

X
l

e iQ�l
ðy
�y

hQ � uð0; 0ÞQ � uðl; tÞiTe�iot dt ð4:133Þ

which describes the process of the creation or annihilation of a phonon. After

some manipulations, we obtain

d2
s

dW dE

� �G
coh

¼ scoh

4p

k 0

k0

ð2pÞ3
Va

1

2M
e�2W

X
s

X
t

ðQ � esÞ2
os

� ns þ 1

2
G

1

2

� �
dðoHosÞdðQH k � tÞ ð4:134Þ

where theG sign represents either the creation or the annihilation of one phonon

of the sth mode during the scattering of a neutron. The two d-functions indicate

the requirement of simultaneously satisfying the conservation of energy and

momentum:

G
�h2

2m
ðk20 � k 02Þ ¼ �ho; ð4:135Þ

Q ¼ k 0 � k0 ¼ tG k: ð4:136Þ

Later in this section, we will use these relations to measure the dispersion rela-

tions ojðkÞ.
3. Incoherent inelastic scattering. Similarly, if we focus on the second term in the

expansion (4.127), we obtain the cross-section of one-phonon incoherent neutron

scattering:
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d2
s

dW dE

� �G
inc

¼ sinc

4p

k 0

k0

1

2M
e�2W

X
s

ðQ � esÞ2
os

� ns þ 1

2
G

1

2

� �
dðoHosÞ: ð4:137Þ

It contains only one d-function, dðoHosÞ. Thus only the energy conservation

needs to be satisfied, i.e.,

Go ¼ os; or G
�h2

2m
ðk20 � k 02Þ ¼ �hos: ð4:138Þ

Using Eqs. (4.89), (4.95), and (4.128) we can evaluate (4.137) as

d2
s

dW dE

� �G
inc

¼ sinc

4p

k 0

k0

N

4M
Q 2e�2W gðoÞ

o
coth

1

2
�hob

� �
G 1

� �
: ð4:139Þ

This indicates that the phonon DOS gðoÞ can be measured experimentally by

one-phonon incoherent neutron scattering.

4. Measurement of dispersion curves. The experimental apparatus for this pur-

pose is the triple-axis neutron spectrometer, invented in 1955 by Bertram Brock-

house [49] who won the 1994 Nobel Prize in Physics for developing this appara-

tus and the constant-Q method. The triple-axis spectrometer is illustrated in Fig.

4.24. A beam of neutrons, obtained by a Bragg reflection (through an angle 2yMÞ
from a monochromator crystal, is scattered by the sample (through an angle y)

and the energy of this scattered beam is determined by a second Bragg reflection

(through an angle 2yA) from an analyzer. The orientation of the sample is defined

Fig. 4.24 Schematic diagram of the triple-axis neutron spectrometer. C1,

C2, C3, and C4 are collimators.

162 4 The Basics of Lattice Dynamics



by the angle c between a reciprocal lattice vector t and the incident neutron

beam.

Suppose we take a single-crystal Cu sample (fcc) and choose its reciprocal lat-

tice plane ð110Þ as the scattering plane, where the neutron beam, sample, and

analyzer are placed. All the phonons to be measured have their wave vectors lying

in this plane. The various Brillouin zones that this plane goes through are shown

in Fig. 4.25(a). As discussed in Section 4.2, the modes along the [100], [110],

and [111] directions are all pure longitudinal or pure transverse. The transverse

modes along the [100] and [111] directions are degenerate, while the two trans-

verse modes T1 and T2 along the [110] direction are non-degenerate. Therefore,

in the ð110Þ plane, we will be able to measure the three longitudinal modes

L[100], L[110], and L[111], as well as the transverse modes T[100], T2[110], and

T[111]. The transverse branch T1[110] will have to be measured in the scat-

Fig. 4.25 (a) Brillouin zones within the ð110Þ plane of a Cu crystal; (b)

a vector diagram of the constant-Q method; (c) scattered neutron

number N as a function of k 0.
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tering plane (100). Here three polarization vectors are mutually perpendicular

eð1Þ ? eð2Þ ? eð3Þ. Since Q � eð3Þ ¼ 0, the corresponding transverse mode will

not show up, according to (4.118). This simplifies the analysis of the results.

Now we briefly describe the constant-Q method for measuring the ojðkÞ curve
along the [100] direction in a Cu crystal. The energy of the incident neutron E0 is

kept constant, i.e., jk0j is fixed. A phonon wave vector k at point B in the direction

G ! X (Fig. 4.25(a)) is selected with jkj ¼ 0:55ð2p=aÞ. The vector diagram of Eq.

(4.136) is illustrated in Fig. 4.25(b), and a circle of radius jk0j is centered at (000).

So far, the sole unknown k 0 must be measured. Angles c and y are changed

such that point A as the common origin of k and k 0 moves but is confined on

the circle. At the same time, the number of scattered neutrons Nðk 0Þ is collected
as a function of k 0. When all conservation laws are satisfied, the curve Nðk 0Þ will
show one peak, which yields a particular k 0 value. Therefore, we can calculate

o for a fixed k and complete one experimental point on the dispersion curve

oðkÞ. During the measurement, Q is kept constant, hence the name constant-Q

method. Now we choose other k 0 values in the same direction, and eventually,

point by point, a complete dispersion curve of the T branch is measured [50]. Ro-

tating the sample about the crystalline axis ½110� will allow us to measure the L

branch. Figure 4.26 shows the Cu dispersion curves in four major symmetry di-

rections [51].

Fig. 4.26 Dispersion curves for fcc copper [51].
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5. DOS curves. As Eq. (4.139) indicates, a gðoÞ curve can be obtained by inco-

herent inelastic scattering provided sinc is large enough. Unfortunately, the num-

ber of materials having sufficiently large sinc is limited. For the metals Cu and Fe,

the ratio scoh=sinc is as high as 15.6 and 29.9, respectively. In these cases, one has

to measure the dispersion curves first, then calculate gðoÞ. Calculations based on

(4.95) cannot be carried out because the modes easily observed are only in certain

high-symmetry directions and only consist of a few of all the normal modes. At

present, there are several approaches to the calculation of gðoÞ from experimental

dispersion curves. A fast and more accurate one is the so-called ‘‘extrapolation

method’’ [52, 53], which is outlined here.

The first step is fitting the experimental dispersion curves by the Born–von

Karman theory to get the force constants, assuming the obtained constants can

be used to calculate the DOS curve throughout all Brillouin zones (BZs). Then,

the dynamical matrix DðkÞ is diagonalized for a relatively small number of k

evenly spaced in the irreducible section of the first BZ. The frequencies between

two successive wave vectors are obtained by linear extrapolation. The frequency

gradients required for this extrapolation are given by standard perturbation

theory. For bcc Fe, the calculated DOS curve is shown in Fig. 4.19.

4.6.2

X-ray Scattering

The theoretical description of inelastic x-ray scattering (IXS) is essentially the

same as for neutron scattering, so all formulas derived in neutron coherent scat-

tering are valid for x-ray scattering if the scattering length b is replaced by the

atomic form factor f ðQÞ. This reflects the adiabatic approximation in which the

electron density follows the nuclear motion instantaneously. In the early years,

the lattice dynamics study by inelastic x-ray scattering was limited because of

two main problems: insufficient radiation intensity and poor energy resolution.

As mentioned above, x-rays with wavelengths comparable to interatomic dis-

tances have relatively high energies and such hard x-rays can only be found in a

continuous spectrum where the intensity is very low even from high-power rotat-

ing anodes.

High intensities of x-rays emitted by synchrotrons provide the possibility of IXS

with an energy resolution of meV. Phonon dispersion curves measured by coher-

ent IXS were first reported in 1987 [54, 55]. In the last 10 years IXS has become a

powerful spectroscopic tool, complementing the well-established coherent neu-

tron scattering [56, 57].

4.7

First-Principles Lattice Dynamics

Recently, a first-principles quantum mechanical method (ab initio) based on the

density-functional theory has become one of the most promising tools for study-
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ing structural and dynamical properties of real materials. This advanced theoreti-

cal method is impressive because it only requires input information on the mate-

rial’s composition, such as the atomic number, atomic mass of the constituent el-

ements, and the lattice structure, with no need of any experimental results. The

agreement between the calculated phonon frequencies and the experimentally ob-

served dispersion curves is incredibly good. Therefore, it is now possible to map

accurate phonon frequencies onto a fine grid of wave vectors within BZs for

larger and larger lattice systems. Here, we describe the main features of this

first-principles method applied to lattice dynamics. Readers are referred to many

excellent reviews [58–60].

4.7.1

Linear Response and Lattice Dynamics

The first-principles theory takes into account the effect of electrons on lattice dy-

namics within the validity of adiabatic approximation (see Section 4.1.1), where

the electron system is assumed to be in the ground state with respect to the

instantaneous nuclear positions. The aim is to determine the interatomic force

constants through minimizing the total energy of a crystal with ‘‘frozen’’ nuclear

coordinates at any particular instance during the lattice vibration. The total en-

ergy Etot is an eigenvalue of the equation

HtotCðr;RÞ ¼ EtotCðr;RÞ ð4:140Þ

where

Htot ¼ Te þ VeeðrÞ þ Venðr;RÞ þ VnnðRÞ: ð4:141Þ

Here the meaning of each term is given in Section 4.1.1, but the Hamiltonian

Htot in (4.141) differs slightly from that in (4.2). Under equilibrium, the net force

acting on each individual nucleus vanishes, so

FðlÞ ¼ �‘R l
½Etotðr ;RÞ� ¼ 0: ð4:142Þ

Consequently, one can calculate the vibrational frequencies of nuclei by the

Born–von Karman theory within the harmonic approximation. This involves eval-

uating the force constant matrix (also known as the Hessian) by taking the sec-

ond derivatives of Etot, constructing dynamical matrix D at a given point in the

BZ, and solving a secular equation such as (4.45).

Systematic studies of the effect of electrons on lattice dynamics were carried

out in the 1960s [61, 62], revealing a linear response of electron charge density

rðrÞ to perturbation caused by a change in the nuclear positions in the crystal. In-

formation on the harmonic force constants of a crystal is then clearly imbedded

in this linear response. It was also found that by employing the Hellmann–

Feynman theorem [63, 64], one can simply obtain the forces on individual nuclei
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through the electron charge density and its linear response without having to cal-

culate the total energy. This theorem is expressed as

qEl

ql
¼ hCljqHl=qljCli ð4:143Þ

where l is a parameter (or a set of parameters) and Cl is the eigenvector of a

Hamiltonian Hl corresponding to the eigenvalue El, i.e., HlCl ¼ ElCl. Since

the nuclear coordinates are treated as frozen, the Hamiltonian in (4.141) is a para-

metric function of the electronic coordinates r , with the nuclear coordinates R as

parameters playing the role of l in Eq. (4.143). Taking derivatives with respect to

R is equivalent to taking derivatives with respect to uðlÞ, because R l ¼ l þ uðlÞ,
where l is the equilibrium position of the lth nucleus. Based on (4.143), the ex-

pression for the force will be

FðlÞ ¼ �‘uEtot ¼ �hCuðlÞj‘uHtotjCuðlÞi: ð4:144Þ

In the Hamitonian (4.141), the first two terms are independent of R, the third

term depends on R through the electron–ion interaction that couples to the elec-

tronic degrees of freedom only via the electron charge density, and the fourth

depends on R but not on r . Thus the expectation value in Eq. (4.144) can be

calculated:

FðlÞ ¼ �
ð
rðr;RÞ‘uVenðr;RÞ dr � ‘uVnnðRÞ ð4:145Þ

where rðr ;RÞ is the ground-state electron charge density with respect to the

nuclear positions R. Therefore, it is easy to obtain the force constants by taking

again the derivative of (4.145):

Faa 0 ðl; l 0Þ ¼ � qFaðlÞ
qua 0 ðl 0Þ ¼

q2Etot

quaðlÞqua 0 ðl 0Þ

¼
ð
qrðr;RÞ
qua 0 ðl 0Þ

qVenðr;RÞ
quaðlÞ dr þ

ð
rðr ;RÞ q2Venðr ;RÞ

quaðlÞqua 0 ðl 0Þ dr

þ q2Vnnðr ;RÞ
quaðlÞqua 0 ðl 0Þ : ð4:146Þ

The first two integrals are the contributions from the valence electrons, and last

term is from other nuclei in the crystal. The quantity qrðr ;RÞ=qua 0 ðl 0Þ indicates

the linear response to a distortion of the nuclear geometry.

It should be noted that the force constants are obtained without imposing any

analytical models for interatomic forces, which is necessary in traditional lattice

dynamics. With the above force constants, the sum of the first two integrals in

Eq. (4.146) and the dynamical matrix can be constructed. Its consequent diagonal-

ization will give the phonon frequencies.

4.7 First-Principles Lattice Dynamics 167



4.7.2

The Density-Functional Theory

The properties of a system of N interacting electrons can be obtained by solving a

set of Schrödinger equations

HC ¼ ½Te þ Vee þ V �C ¼ EC ð4:147Þ

where Te, Vee, and V are the kinetic energy, electron–electron interaction energy,

and the external potential operators, respectively, and C is a wave function of N
electrons. This is a typical many-body problem. Using the density-functional

theory (DFT), this set of equations can be simplified and solved.

As shown in (4.146), the effect of electrons on lattice dynamics in a solid is

directly presented by its charge density and its linear response. It is a special

case within a much more general theoretical framework, known as the density-

functional theory [65], for which Walter Kohn won a Nobel prize in 1998. It is

such a theory that provides a radically different approach, using the electron

charge density as the central quantity describing electron interactions, thus avoid-

ing dealing with N-electron wave functions. Note that each N-electron wave func-

tion is a complex function of all 3N electron coordinates, while the corresponding

electron charge density is a simple function of three variables.

First, the DFT asserts that the external potential vðrÞ corresponding to the oper-

ator V, and hence the total energy Etot, is a unique functional of the electron den-

sity rðrÞ. This predicts the existence of a one-to-one correspondence between the

external potential vðrÞ and the ground-state electron density rðrÞ. In other words,

the electron density uniquely determines the potential acting on the electrons,

and vice versa. As V operator defines the Hamiltonian of the system, every ob-

servable quantity must also be determined by vðrÞ or rðrÞ, i.e., it must also be a

functional of rðrÞ.
The first two terms ðTe þ VeeÞ of the Hamiltonian (1.414) describe the electron

interactions only, and do not depend on the specific system, whether it is an

atom, a molecule, or a solid sample under consideration. Their combined expec-

tation value can then be expressed as a universal functional of rðrÞ:

hC0jðTe þ VeeÞjC0i ¼ F½rðrÞ� ð4:148Þ

where C0 is the electron wave function in the ground state. The last two terms

Ven and Vnn represent the external potential operator V, which is not universal,

but system specific. Based on (4.147) an expression of the ground-state energy

can be obtained:

E½rðrÞ� ¼ hC0jðTe þ Vee þ VÞjC0i ¼ F½rðrÞ� þ V ½rðrÞ� ð4:149Þ

where
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V ½rðrÞ� ¼ hC0jV jC0i ¼
ð
VðrÞrðrÞ dr ð4:150Þ

is a functional of rðrÞ, specific to the system under investigation.

Secondly, the DFT states that the ground state energy can be obtained using

the variational principle: the density that minimizes the total energy is the exact

ground state density. Therefore, the functional (4.149) is minimized by the

ground state electron density r0ðrÞ corresponding to external potential vðrÞ and

the value of this minimum coincides with the true ground state energy Eðr0ðrÞÞ.
This statement may be formally written as

Eðr0ðrÞÞ ¼ min
rðrÞ

E½rðrÞ�: ð4:151Þ

DFT has now provided a variational methodology for obtaining r0ðrÞ and

Eðr0ðrÞÞ, but it does not specify those functionals F½rðrÞ� and V ½rðrÞ� for carry-

ing out the calculations. To do this, some approximation approaches are neces-

sary. For F½rðrÞ�, a non-interacting electron system is adopted for Te½rðrÞ� and
Vee½rðrÞ�, with an added compensation term called the exchange-correlation en-

ergy. For V ½rðrÞ�, the actual potential is often substituted with a pseudopotential

that produces exactly the same behavior of the valence electrons as the original

potential. These approaches have proven quite successful when applied to a vari-

ety of solid and molecular systems.

4.7.3

Exchange-Correlation Energy and Local-Density Approximation

The DFT states that all physical properties of a system of interacting electrons are

uniquely determined by its ground state electron charge density. Such an asser-

tion remains valid independently of the precise form of the electron–electron in-

teraction. This fact was used by Kohn and Sham [66] to turn the problem of a

system of interacting electrons into an equivalent non-interacting problem. As de-

fined in Eq. (4.148), the functional F½rðrÞ� has contributions from Te½rðrÞ� and
Vee½rðrÞ�. The first one is approximated by T0½rðrÞ�, the kinetic energy corre-

sponding to a non-interacting system of electrons. The second is usually approxi-

mated by the Hartree functional EH½rðrÞ�, which expresses the Coulomb mean-

field interaction among the electrons. To compensate the missing interactions in

this approximation, we add the so-called exchange-correlation functional Exc½rðrÞ�
[59]:

F½rðrÞ� ¼ T0½rðrÞ� þ EH½rðrÞ� þ Exc½rðrÞ�: ð4:152Þ

A practical calculation requires a specific, albeit approximate, expression for

exchange-correlation energy Exc½rðrÞ�. The most widely used is the local-density

approximation, which states that Exc½rðrÞ� can be given by assuming, for each
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infinitesimal element of density rðrÞ dr, the exchange-correlation energy is that of

a uniform electron gas of density r ¼ rðrÞ. Then

Exc½rðrÞ�G
ð
excðrÞrðrÞ dr ð4:153Þ

where excðrÞ is the exchange-correlation energy per electron in a uniform electron

gas of density r.

Using the variational principle, the energy functional (4.149) is minimized with

respect to all possible functions of rðrÞ, with the constraint that the total number

of electrons should not change. Because of the non-interacting model for the

electron kinetic energy, this variational procedure leads to a set of self-consistent

equations:

� �h2

2m
‘2 þ VSCFðrÞ

� �
fðrÞ ¼ efðrÞ; ð4:154Þ

but the wave funtion fðrÞ and energy e are only for one electron. Here VSCFðrÞ is
an effective potential, known as the self-consistent field (SCF) potential, in which

the electron seems to be immersed:

VSCFðrÞ ¼ vðrÞ þ dEH½rðrÞ�
drðrÞ þ dExc½rðrÞ�

drðrÞ : ð4:155Þ

The Schrödinger-like equations in Eq. (4.155) are known as Kohn–Sham equa-

tions. A total of N=2 solutions ðfnðrÞ, n ¼ 1; 2; 3; . . .N=2Þ can be obtained, called

the auxiliary Kohn–Sham orbitals. The ground state electron density and non-

interacting kinetic energy functional can be then given in terms of these auxiliary

orbitals, fn:

rðrÞ ¼ 2
XN=2

n¼1

jfnðrÞj2; ð4:156Þ

T0½rðrÞ� ¼ �2
�h2

2m

XN=2

n¼1

ð
f�
nðrÞ½‘2fnðrÞ� dr; ð4:157Þ

whereas the ground state energy is given in terms of the Kohn–Sham eigenvalues:

E½rðrÞ� ¼ 2
XN=2

n¼1

en � EH½rðrÞ� þ Exc½rðrÞ� �
ð
rðrÞ dExc½rðrÞ�

drðrÞ dr: ð4:158Þ

4.7.4

Plane Waves and Pseudopotentials

Up to now, most implementations of VðrÞ in the Kohn–Sham equations have

been based on the pseudopotential method in conjunction with plane-wave ex-
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pansion. The optimal choice of an orthonormal basis set to represent the electron

wave functions is dependent on the physical properties of a concrete system. For

solid-state calculations, the periodic character of wave functions naturally sug-

gests a plane-wave basis set, which has many attractive features [59]. We are

mainly interested in the valence electrons because they play a dominant role

in chemical bonding. This implies that we may replace the real electron–ion

interaction with a fictitious potential, acting on valence electrons only. Although

this pseudopotential is not required to produce any energy states for the core elec-

trons, it must satisfy the condition that it produces the same energy states of the

valence electrons as if they were in the original potential. Under the pseudopoten-

tial approximation the core electrons, which are supposed to be frozen, exert an

effective repulsion on the valence electrons due to mutual orthogonality of their

wave functions. As a result, this repulsion reduces to a large extent the attraction

from the atomic nuclei. In short, plane waves and pseudopotentials are a natural

combination and have become a quite useful method.

4.7.5

Calculation of DOS in Solids

Two approaches to calculating the phonon frequencies in solids are currently in

use: the linear response method and the direct method. In the first, the dynami-

cal matrix is obtained from the modification of electron charge density resulting

from the atomic displacements. The dynamical matrix can be determined at any

wave vector in the Brillouin zone using computational procedures similar to that

of a ground state optimization. However, this approach only allows studies of lin-

ear effects, such as harmonic phonons.

The direct approach is based on the solution of the Kohn–Sham equations and

allows one to study both linear and nonlinear effects. For phonons in a periodic

lattice, there exists a superlattice constructed from periodic arrangement of a

three-dimensional supercell. The motions of corresponding atoms in different

supercells are assumed to be identical. In this approach, therefore, a distorted

crystal due to atomic displacements is treated as a crystal in a new structure

with a lower symmetry than the undistorted one. We then treat the undistorted

and the distorted crystals separately but using exactly the same method. All of

the atoms (or ions) in both kinds of crystals are assumed to reside motionlessly

at their equilibrium positions; consequently the phonons are ‘‘frozen.’’ A com-

parison between the two crystals will provide the lattice dynamics information.

For a selected normal mode, the force constants can be calculated in two ways:

the second derivative of EtotðuÞ (per atom) with respect to the displacement u,

F ¼ q2EtotðuÞ
qu2

� �
u¼0

A
2DEtotðuÞ

u2
; ð4:159Þ

or using the Hellmann–Feynman force FðuÞ
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F ¼ � qF

qu

� �
u¼0

A�FðuÞ
u

ð4:160Þ

where

DEtotðuÞ ¼ EtotðuÞ � Etotð0Þ: ð4:161Þ

The first way involves the so-called frozen-phonon local density approximation

(LDA) calculations. The phonon frequency is then

o ¼
ffiffiffiffiffi
F

M

r
: ð4:162Þ

The direct method is rather straightforward computationally and very accurate.

But the supercell may only contain a small number of unit cells.

After the phonon frequencies at selected high-symmetry points of BZs are cal-

culated, the dispersion curves and thus the phonon DOS are easily obtained. As

an example, we illustrate the calculated results of crystal CuInSe2 by the direct

method [67]. The crystal structure of CuInSe2 has a D12
2d symmetry. A total

of eight coordination shells were considered with 19 independent force con-

stants and 136 independent potential parameters. A 1� 1� 1 supercell (crystallo-

graphic unit cell) with 16 atoms was used in all calculations. The partial and total

phonon DOS presented in Fig. 4.27 were obtained by sampling the dynamical

matrix at 10 000 randomly selected wave vectors. The total DOS (lower right in

Fig. 4.27) exhibits three well-separated bands: the acoustic region (0.0–2.5 THz),

the low optical region (3.0–4.5 THz), and the high optical region (5.5–6.8 THz).

Fig. 4.27 Calculated atomic partial DOS and total phonon DOS for CuInSe2 [67].
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5

Recoilless Fraction and Second-Order Doppler

Effect

As is well known, obtaining information on lattice dynamics of solids using

transmission Mössbauer spectroscopy is mainly through the measurements of

the recoilless fraction f and the second-order Doppler shift dSOD, from which

the atomic mean-square displacement hu2i, the mean-square velocity hv2i, the
anharmonic effect, Einstein temperature yE or Debye temperature yD, and the ef-

fective vibrating mass Meff are determined. All these quantities are discussed in

detail in the following chapters. On the one hand, f and dSOD can be accurately

measured experimentally using the Mössbauer effect. On the other hand, hu2i,
hv2i, and yD can be calculated through several models and methods, and can be

compared with the experimental results, allowing us to have a better understand-

ing of the dynamical properties of solids. Therefore, the Mössbauer effect can

play an important role in lattice dynamics research. Although hu2i may also be

measured using elastic scattering of neutrons or x-rays, the Mössbauer method

yields better accuracy. In cases where information on the hu2i of an impurity

atom is needed, the Mössbauer effect is the only method, provided that this im-

purity atom is a Mössbauer isotope.

In this chapter, we focus on the common theoretical and experimental issues

concerning the recoilless fraction f and the second-order Doppler shift dSOD,

such as how f depends on temperature and pressure, its anisotropy, its anhar-

monic effect, and how to measure f using absolute and relative methods.

5.1

Mean-Square Displacement hu2i and Mean-Square Velocity hv2i

Since we will frequently encounter these two quantities and they are also related

to each other, let us discuss their general expressions.

During the lifetime (usually 10�7 to 10�10 s) of the excited state of a Mössbauer

nucleus, an atom would have vibrated at least several hundred times around its

equilibrium position, and therefore hui ¼ 0 and hvi ¼ 0. However, hu2i and

hv2i are nonzero, and may have large magnitudes.
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Calculating hu2i as a thermal average [1, 2] according to (4.49), we obtain

hu2i ¼ hu � u�iT ¼ �h

2M

ð
1

o
coth

1

2
�hob

� �
gðoÞ do; ð5:1Þ

and similarly

hv2i ¼ 3�h

M

ð
coth

1

2
�hob

� �
gðoÞo do: ð5:2Þ

In order to carry out the above integrals, concrete phonon DOS gðoÞ must be

specified. If the Debye distribution is used, the above expressions become, respec-

tively

hu2i ¼ 3�h2

4MkByD
1þ 4

T

yD

� �2ð yD=T
0

x

ex � 1
dx

" #
; ð5:3Þ

hv2i ¼ 9kByD
M

1

8
þ T

yD

� �4ð yD=T
0

x3

ex � 1
dx

" #
: ð5:4Þ

At high temperatures (i.e., T > yD=2), we have

hu2iA
3�h2T

MkBy
2
D

1þ yD

6T

� �2" #
; ð5:5Þ

hv2iA
3kBT

M
1þ 1

20

yD

T

� �2" #
: ð5:6Þ

The expressions for low temperatures ðTf yDÞ are

hu2iA
3�h2

4MkByD
1þ 2p2

3

T

yD

� �2" #
; ð5:7Þ

hv2iA
9kByD
M

1

8
þ p4

15

T

yD

� �4" #
: ð5:8Þ

Another way to express hu2i and hv2i is using the frequency moment method,

the advantage of which is that the specific details of gðoÞ are not required. At

high temperatures ðT > yD=2Þ, hu2i and hv2i can be written as [3]

hu2i ¼ kBT

M
mð�2Þ þ 1

12

�h

kBT

� �2
� 1

720

�h

kBT

� �4
mð2Þ þ � � �

" #

A
3�h2T

MkB

1

y2Dð�2Þ 1þ yDð�2Þ
6T

� �2" #
ð5:9Þ
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and

hv2i ¼ 3kBT

M
1þ 1

12

�h

kBT

� �2
mð2Þ � 1

720

�h

kBT

� �4
mð4Þ þ � � �

" #

A
3kBT

M
1þ 1

20

yDð2Þ
T

� �2" #
: ð5:10Þ

In the limiting case of T ! 0

hu2iA
�h

2M
mð�1Þ ¼ 3�h2

4MkB

1

yDð�1Þ ; ð5:11Þ

hv2iA
3�h

2M
mð1Þ ¼ 9kByDð1Þ

8M
: ð5:12Þ

Comparing (5.5) and (5.9), one notices that the only difference is yD and

yDð�2Þ, the Debye temperature and the weighted Debye temperature (see Section

4.4), respectively. Other expressions also have similar patterns. It seems that

using the frequency moment method is closer to reality because it would give a

different Debye temperature value when the measurement is done in a different

temperature range.

If the Debye distribution is chosen for gðoÞ and various moments mðnÞ are cal-

culated according to (4.104), it is easy to verify that when the mðnÞ expressions are
used in (5.9) and (5.10), they indeed reduce to (5.5) and (5.6), as expected.

To show the magnitude of hu2i in a solid, Table 5.1 lists the hu2i values of Eu

atoms in the compound Eu1:15Ba1:85Cu3O7�d. It is easy to see that the amplitude

of Eu atomic vibration is of the order of 0.1 Å, which is the typical u-value for

most solids at room temperature.

Table 5.1 Mean-square displacement hu2i of Eu atoms in Eu1:15Ba1:85Cu3O7�d [4].

Temperature, T (K) f hu2i (10C3 Å2)

25 0.518(7) 5.5(1)

40 0.522(7) 5.4(1)

60 0.509(7) 5.6(1)

90 0.495(7) 5.9(1)

200 0.411(6) 7.4(1)

300 0.305(5) 9.9(1)
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5.2

Temperature Dependence of the Recoilless Fraction f

Under the harmonic approximation, the recoilless fraction f in Eq. (1.71) can be

simplified to

f ¼ jhe ik�uij2Ae�hðk�uÞ2i ¼ e�k2hu2i: ð5:13Þ

Therefore, the mean-square displacement hu2i along the direction of g-ray prop-

agation can be readily obtained by measuring the recoilless fraction f . The above

Fig. 5.1 Recoilless fraction f as a function of temperature T for the

14.4 keV transition in 57Fe and the 93.3 keV transition in 67Zn. yD is

used as a parameter in calculating each curve, with the top curve

corresponding to yD ¼ 360 K and the lower curves corresponding to

decreasing yD-values with intervals of 20 K. Liquid helium and liquid

nitrogen temperatures are represented by the vertical dashed lines.
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expression is a general form, applicable to all Bravais crystals, and its strong de-

pendence on temperature is embedded in hu2i. When the explicit expression for

hu2i in Eq. (5.3) is substituted into (5.13), the temperature dependence of f is

now through the two parameters ER and yD:

f ¼ exp � 3ER

2kByD
1þ 4

T

yD

� �2ð yD=T
0

x dx

ðex � 1Þ

" #( )

Fig. 5.2 Recoilless fraction f as a function of temperature T for the

23.9 keV transition in 119Sn and the 77.3 keV transition in 197Au. yD is

used as a parameter in calculating each curve, with the top curve

corresponding to yD ¼ 360 K and the lower curves corresponding to

decreasing yD-values with intervals of 20 K. Liquid helium and liquid

nitrogen temperatures are represented by the vertical dashed lines.
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which is Eq. (1.84). In Ref. [5], the temperature dependence of the recoilless frac-

tion f has been numerically calculated for 29 commonly used Mössbauer transi-

tions, among which four are shown in Figs. 5.1 and 5.2. In each graph, the first

curve from the top corresponds to yD ¼ 360 K, the lower curves are drawn for de-

creasing temperatures with intervals of 20 K, and the liquid nitrogen (77 K) and

liquid helium (4.2 K) temperatures are indicated. Most Fe compounds and some

other compounds have their yD above 300 K; therefore they have relatively large

f -values even at room temperature. For 67Zn, only at liquid nitrogen temperature

is f large enough for observation of its Mössbauer effect.

For the convenience of future reference, we substitute various forms of hu2i
into Eq. (5.13) to obtain explicit expressions for f in two difference temperature

regions. When T > yD=2, we have

�ln f ¼ 6ERT

kBy
2
D

1þ yD

6T

� �2" #
¼ 6ERT

kBy
2
Dð�2Þ 1þ yDð�2Þ

6T

� �2" #
; ð5:14Þ

and for the low-temperature limit ðT ! 0Þ

�ln f ¼ 3ER

2kByD
1þ 2p2

3

T

yD

� �2" #

¼ 3ER

2kByDð�1Þ 1þ 2p2

3

T

yDð�1Þ
� �2" #

: ð5:15Þ

5.3

The Anharmonic Effects

First, the Taylor series of the potential energy in Eq. (4.12) is represented by

V ¼ V0 þ V1 þ V2 þ V3 þ V4 þ � � �

The harmonic approximation ignores V3 and higher order terms, and V2 is just

the nonzero term proportional to the square of the atomic displacement u2 (i.e.,

the parabolic potential). This approximation fails to explain some phenomena

such as thermal expansion in solids, and the anharmonic terms V3 and V4 need

to be included. These terms couple one phonon to another, i.e., phonon–phonon

interaction. For most solids, the potential energy curve has the parabolic shape

only in a very small region near the atom’s equilibrium position. As the tempera-

ture rises, the amplitude of atomic vibration increases, and the anharmonic effect

becomes appreciable. For any potential energy deviating from the parabolic

shape, the anharmonic effect should not be overlooked, even at very low temper-

atures.

The recoilless fraction f (or the second-order Doppler shift dSOD) is closely re-

lated to the harmonicity or anharmonicity of the solid. Because the expression for
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f has the atomic mean-square displacement hu2i on the exponent, the anharmo-

nicity of a solid can be sensitively detected by measuring the recoilless fraction f .
Using the Mössbauer effect, several frequency moments of the phonon, including

those moments directly related to the anharmonic effect, can be accurately mea-

sured.

5.3.1

The General Form of the Recoilless Fraction f

To study the size of the anharmonic effect, the usual procedure is to include V3

and V4 in the potential energy, calculate the corresponding hu2i, and compare

the results with experimental data. Over the years, many theoretical methods [3,

6–10] have been developed for calculating hu2i. Here we describe a relatively

simple theory based on the work in Refs. [11–14]. The goal is to derive an expres-

sion for the recoilless fraction f that is explicitly dependent on anharmonic pa-

rameters.

For an anharmonic crystal, the recoilless fraction f can be written as

�ln f ¼ hðk � uÞ2i� 1

12
hðk � uÞ4iþ 1

4
hðk � uÞ2i2 þOðk6Þ: ð5:16Þ

For an fcc lattice, using the properties of the central forces between nearest

neighbors, the bracketed part in the second term can be shown to be approxi-

mately

hðk � uÞ4iA3hðk � uÞ2i2 (5.17)

which happens to make the second and the third terms cancel each other. This

means that for an anharmonic crystal, the recoilless fraction f can still be ade-

quately described by Eq. (5.13), except that u should be the actual atomic displace-

ment in the anharmonic vibration. We now focus on calculating uðlÞ, based on

Eq. (4.49) and using the creation and annihilation operators âaþ�kj and âakj:

uðlÞ ¼ �h

2MN

� �1=2X
kj

eðkjÞffiffiffiffiffiffiffiffiffiffiffi
ojðkÞ

p ðâakj þ âaþ�k jÞeik�Rl : ð5:18Þ

When (5.18) is substituted into the first term in (5.16),

hðk � uÞ2i ¼ �h

2MN

X
k; k 0

j; j 0

½k � eðkjÞ�½k � eðk 0j 0Þ�
½ojðkÞoj 0 ðk 0Þ�1=2

e iðkþk 0Þ�lhAkjA
�
k 0 j 0i ð5:19Þ

where

Ak j ¼ âakj þ âaþ�k j: ð5:20Þ

5.3 The Anharmonic Effects 183



The self-correlation function hAkjA�
k 0 j 0i can be expressed by the Green’s func-

tions (see Appendix F1). For a Bravais crystal, the anharmonic Hamiltonian is [11]

H ¼
X
kj

�hojðkÞ âaþ�kjâakj þ
1

2

� �

þ
X
k1k2k3
j1 j2 j3

F3ðk1 j1; k2 j2; k3 j3ÞAk1 j1Ak2 j2Ak3 j3

þ
X

F4ðk1 j1; k2 j2; k3 j3; k4 j4ÞAk1 j1Ak2 j2Ak3 j3Ak4 j4 þ � � � ð5:21Þ

where Fn ðnb 3Þ represents the Fourier transform of the partial derivative of the

potential function. The self-correlation function hAkjA�
k 0 j 0i can be expressed by

the retarded Green’s function

G jj 0

kk 0 ðoÞ ¼ � i

�h
yðtÞh½AkjðtÞ;Ak 0j 0 �i

which is similar to the definition (F.3). Using the two expressions

Jjj
0

kk 0 ðoÞ ¼ � lim
e!0

2

eb�ho � 1
Im Gjj 0

kk 0 ðoþ ieÞ
� �

;

hAkjA
�
k 0j 0i ¼

ðy
�y

J jj 0

kk 0 ðoÞ do ¼ �lim

ðy
�y

2 do

eb�ho � 1
Im Gjj 0

kk 0 ðoþ ieÞ;

which are also analogous to (F.21) and (F.27), respectively, the explicit form of the

Green’s function was achieved as follows [11, 14]:

G jj 0

kk 0 ðoÞ ¼ ojðkÞ
p

dk;�k 0dj j 0

o2 � o2
j ðkÞ � 2ojðkÞskjðoÞ

; ð5:22Þ

where skjðoÞ is the energy shift in phonon jkji due to the anharmonic effect. It is

composed of the real part and the imaginary part:

sk jðoþ ieÞ ¼ DkjðoÞ � iGkjðoÞ: ð5:23Þ

The real part DkjðoÞ is the actual shift in the phonon frequency ojðkÞ, while 1=Gkj

is the average lifetime of the phonon.

Using the Green’s function, Eq. (5.19) becomes [14]

�ln f ¼ hðk � uÞ2i ¼ �h

MN

X
kj

½k � eðkjÞ�2
ðy
0

coth
�hob

2

� �

� 2ojðkÞGkjðoÞ=p
½o2 � o2

j ðkÞ � 2ojðkÞDkj�2 þ ½2ojðkÞGkj�2
do: ð5:24Þ

184 5 Recoilless Fraction and Second-Order Doppler Effect



Because this includes all anharmonic effects due to the third-order and higher

terms in the Hamiltonian (5.21), it is a general expression for the recoilless frac-

tion f , valid for all Bravais crystals.

However, the above integral can only be carried out after proper approxima-

tions have been taken for the phonon frequency shift. The usual methods of ap-

proximation include the quasiharmonic and pseudoharmonic methods. Under

the harmonic approximation, the third and higher terms in the potential energy

function are neglected; therefore, skjðoÞ ¼ 0 and there is no thermal expansion.

Under the quasiharmonic approximation, it is assumed that thermal expansion is

the only cause for the temperature-dependences of phonon frequency and force

constants. Based on this assumption, the frequency shift is directly proportional

to the relative change in volume V:

D
qh
kj ¼ �gkjojðkÞDVV ð5:25Þ

where gkj is known as the Grüneisen constant. At room temperature, the quasi-

harmonic effect dominates and the resultant recoilless fraction f value agrees

with experimental data quite well. When the temperature is higher, the coupling

between phonons becomes significant and causes additional frequency shift doa
kj,

which can only be analyzed by the pseudoharmonic method. Therefore, the total

frequency shift is the sum of the above two contributions:

Dkj ¼ doa
kj � gkjojðkÞDVV ¼ �ek jojðkÞT ð5:26Þ

where the superscript a stands for anharmonicity and ekj is the anharmonic con-

stant, indicating the relative change in phonon frequency when temperature is

increased by 1 K. We will now convert (5.24) into a more practical form using

the pseudoharmonic approximation.

5.3.2

Calculating the Recoilless Fraction f Using the Pseudoharmonic Approximation

In the limit Gkj ! 0, the new phonon frequency is

oa
kj ¼ ojðkÞ þ Dk j ¼ ojðkÞð1� ekjTÞ: ð5:27Þ

The integrand in (5.24) is the Breit–Wigner type distribution, with a maximum at

o ¼ oa
kj. This distribution can be replaced by the following d-function:

d½o2 � ðoa
k jÞ2� ¼

1

p
lim
Gkj!0

2ojðkÞGkj

½o2 � ðoa
k jÞ2�2 þ ½2ojðkÞGk j�2

ð5:28Þ

where ðoa
kjÞ2Ao2

j ðkÞ þ 2ojðkÞDkj. Substituting (5.28) into (5.24), we obtain the

following expression of the recoilless fraction f for cubic lattices:
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�ln f ¼ k2hu2i ¼ ER

3N

X
kj

1

�hoa
k j

coth
�hoa

kjb

2

 !
: ð5:29Þ

This has the same form as the harmonic result (1.81), except for oa
kj replacing

ojðkÞ due to anharmonicity. As long as the temperature is not near the melting

point and the potential function of atomic interaction is nearly a parabola, the re-

coilless fraction f values derived from the pseudoharmonic approximation are in

good agreement with experimental results.

Equation (5.29) can be further simplified using the concept of frequency mo-

ments. First we define the anharmonic frequency moment, analogous to that in

Eq. (4.105):

maðn;TÞ ¼ 1

3N

X
kj

ðoa
kjÞn ¼ 1

3N

X
k j

on
j ðkÞð1� ek jTÞn ð5:30Þ

and the anharmonic characteristic temperature

yaDðn;TÞ ¼
�h

kB

nþ 3

3
maðn;TÞ

� �1=n
: ð5:31Þ

Unlike the corresponding harmonic approximation parameters mðnÞ and yDðnÞ,
these anharmonic parameters maðn;TÞ and yaDðn;TÞ are temperature-dependent

and may be expanded into power series of T:

maðn;TÞ ¼ mðnÞ 1� ne1ðnÞT þ nðn� 1Þ
2!

e2ðnÞT 2 þ � � �
� �

ð5:32Þ

and

yaDðn;TÞ ¼ yDðnÞ 1� e1ðnÞT þ n� 1

2!
½e2ðnÞ � e21ðnÞ�T 2 þ � � �

	 

; ð5:33Þ

where epðnÞ are the weighted anharmonic constants, defined as

epðnÞ ¼
X
kj

ðek jÞpon
j ðkÞ

�X
kj

on
j ðkÞ: ð5:34Þ

These coefficients diminish rapidly with decreasing temperature, and as long as

the temperature is not too high, maðn;TÞ is approximately a linear function of T.
Because e2ðnÞA e21ðnÞ, yaDðn;TÞ also depends linearly on T. The following are two

special cases.

1. When T > yaDð�2Þ=ð2pÞ, the function cothðxÞ in (5.29) can

be expanded for small x

coth x ¼ 1

x
þ x

3
þ � � �
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and (5.29) becomes

�ln f ¼ 6ER

kB

T

½yDð�2Þ�2

�
	
1þ 2e1ð�2ÞT þ yDð�2Þ

6T

� �2
þ � � �



: ð5:35Þ

This is a very practical formula, because it can be used to fit

the Mössbauer spectra for obtaining e1ð�2Þ and yDð�2Þ,
which characterize the size of the anharmonic effect. Figure

5.3 shows such a fitting example [12].

2. When T ! 0, the recoilless fraction f can be written as [13]

hðk � uÞ2i ¼ 3ER

2kB

1

yaDð�1Þ : ð5:36Þ

Here the superscript a is the only difference between (5.36)

and the first term in (5.15). This result shows that f is

independent of T at low temperatures and the slope of the

mean-square displacement versus T curve is zero near T ¼ 0

[3]. Therefore, the corresponding f -value should not be

exactly 1, and it is this deviation from 1 that provides a

measure of the zero-point mean-square displacement.

However, for intermediate temperatures, 5 KaT a

yDð�2Þ=ð2pÞ, the two formulas (5.35) and (5.36) are not

adequate.

Fig. 5.3 Recoilless fraction f of 57Fe in host materials Cu and Au as

functions of temperature. The dashed and solid lines represent results

using the harmonic and quasiharmonic approximations, respectively.
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5.3.3

Low-Temperature Anharmonic Effect

For some solids, the potential energy curve is never parabolic. Even at T ¼ 0,

hu2i is still much larger than predicted by (5.36). This phenomenon is known

as low-temperature anharmonicity, which was first observed [15] in light molecu-

lar solids such as Ne, D2, H2,
4He, and 3He.

For these light molecular solids, the atomic interactions are relatively weak.

Since the cohesive energy is small, the zero-point energy becomes important,

causing the interatomic distance to increase. In this case, there is a relatively

large and force-free volume (a cavity), and the potential energy curve deviates sig-

nificantly from a parabola (Fig. 5.4), causing low-temperature anharmonicity.

Generally speaking, whenever a crystal structure has cavities or atoms that are

loosely bonded, low-temperature anharmonicity is likely to exist. Inclusion com-

pounds, such as hydroquinone, C6H4(OH)2, form regularly spaced cavities, capa-

ble of containing isolated foreign atoms or ions. Ionic crystals (or solid solutions)

may also contain small impurity ions, such as Liþ in PtCl2 or PtB2, resulting in

several minima in the potential energy curve [15]. In these systems, the f -value is
relatively small and depends only weakly on temperature.

Measuring the recoilless fraction f to investigate low-temperature anharmonic-

ity is a straightforward method. In Fig. 5.5, curve (c) is a typical temperature de-

pendence of f . In the high-temperature region where thermal expansion can be

Fig. 5.4 Shape of potential energy between atoms is modified to wine-bottle-

like when the interatomic distance is increased.

Fig. 5.5 Characteristic temperature dependences of

f : (a) harmonic approximation, (b) high-temperature

anharmonicity present, and (c) low-temperature

anharmonicity present [17].
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neglected, the curve is fitted with a straight line, whose intercept with the vertical

axis is a measure of the size of the anharmonicity. The anharmonic effect causes

f to decrease from the harmonic predictions. Therefore, measuring f allows us

first to detect whether a solid is harmonic or anharmonic and then to study the

properties of the force constants and potential energy between the atoms.

Using such a method, low-temperature anharmonicity was detected in

many compounds, including FeCl2 [16], superconducting Nb3Sn [17] and

CuRh1:95Sn0:05Se4 [18], and the high Tc superconductor EuBa2Cu3O7�d [19, 20]

discovered recently. Here we discuss some of the results from FeCl2, which has

a layered structure. The Cl� ions form hexagonal layers, with Fe2þ hexagonal

layers sandwiched between every two layers of chloride ions. The Fe2þ ions are

located in the octohedral interstices of nearly perfect close-packed array of chlo-

ride ions. The radius of the octohedral interstices is larger than the radius of

Fe2þ by about 0.05 Å, suggesting that Fe2þ may be loosely bound. Another result

that supports this conclusion is that the stretching force constant in the molecule

is 2:23� 10�5 mN Å�1, but the average force constant between Fe2þ and the six

Cl� ions measured by the Mössbauer effect is only 0:46� 10�5 mN Å�1 [21].

Therefore, the size of the octahedron is determined not by the overlapping of

FeaCl electron clouds, but by that of the ClaCl electron clouds (covalent bonds).

Results for hu2i from Mössbauer effect measurements [16] are shown in Fig.

5.6, where the high-temperature data are fitted by the harmonic approximation

(solid curves). The slopes of the solid lines do not go through the origin, indicat-

ing the existence of low-temperature anharmonicity. When T < 120 K, the exper-

imental data points for FeCl2 are gradually higher than the solid line, demonstrat-

ing that the anharmonic effect becomes more significant at lower temperatures.

Fig. 5.6 Temperature dependences of mean-square displacement for FeCl2 and FeF2.
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The radii of the Fe2þ and Cl� ions are approximately 0.74 and 1.81 Å, respec-

tively. This difference is the key factor for FeCl2 to exhibit low-temperature anhar-

monicity. In the case of F� instead of Cl�, because the radius of F� is 25%

smaller than that of Cl�, Fe2þ can no longer enter the octahedron space in FeF2.

This is why FeCl2 and FeF2 are not isostructural, the former having the layered

CaCl2-type structure and the latter having the rutile SnO2-type structure. It is

easy to see from the FeF2 data in Fig. 5.6 that FeF2 has very little low-temperature

anharmonicity.

5.4

Pressure Dependence of the Recoilless Fraction f

Theoretical calculations [22] have predicted that the recoilless fraction f should

be affected significantly by an external pressure. This effect can be studied by

supposing that pressure causes a shift in each of the phonon frequencies from

ojðkÞ to ojðkÞ þ dokj, with dokj > 0 in most cases. However, there is a simpler

way to treat the effect of pressure on lattice dynamics by a change in the volume

of the solid, instead of a change in the phonon DOS. Using the Debye model, vol-

ume change will result in a change in the Debye temperature yD, and eventually

f can be expressed as a function of pressure [23–26].

The volume of a solid V and its Debye temperature yD have the following sim-

ple relationship:

q ln yD

q ln V
¼ �g ð5:37Þ

where g is the Grüneisen constant, the average value of gkj for individual modes

in Eq. (5.25). For different solids, the g-values range from 1 to 3.

Assuming g itself is independent of volume, then (5.37) can be written as

qyD

qV
¼ � yD

V
g: ð5:38Þ

On the other hand, volume and pressure are related by the isothermal compressi-

bility b:

1

V

qV

qp

� �
T

¼ �b: ð5:39Þ

The b-values are very small for most solids, generally no larger than 10�11 Pa�1.

For example, metallic Au has bA5:5� 10�12 Pa�1 [27].

Now we substitute (5.38) and (5.39) into

qyD

qp
¼ qyD

qV

qV

qp
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and integrate to obtain

yDðpÞ ¼ yDð0Þegbp ð5:40Þ

where yDðpÞ and yDð0Þ are the Debye temperatures when pressure is at p and 0,

respectively. Substituting this relation into Eq. (1.84), we arrive at an expression

for the recoilless fraction f as a function of pressure p, f ðpÞ, which can be used

for analyzing high-pressure Mössbauer spectra. Since f ðpÞ is not a simple func-

tion, we will discuss the following limiting cases.

1. In the low-temperature case ðT ! 0Þ, we have

ln f ðpÞ ¼ � 3ER

2kB

1

yDðpÞ A� 3ER

2kByDð0Þ ð1� gbpÞ: ð5:41Þ

2. In the high-temperature case ðT g yDð0Þ=2Þ, we have

ln f ðpÞ ¼ � 6ERT

kB

1

y2DðpÞ
A� 6ER

kBy
2
Dð0Þ

ð1� 2gbpÞ: ð5:42Þ

In both of these limiting cases, ln f is approximately a linear function of pres-

sure, except for different proportionality coefficients. However, the coefficients

are positive in both cases, indicating that f increases as pressure increases, as

shown by the examples in Fig. 5.7.

Recently, the phonon DOS of a-Fe and hcp-Fe have been observed by inelastic

neutron scattering and inelastic nuclear resonance scattering of synchrotron radi-

Fig. 5.7 Relations between absorption area A and pressure p for (a)
57Fe[(ethyl)2dtc]3, (b)

57Fe[(methyl)2dtc]3, and (c) 57Fe[(benzyl)2dtc]3
complexes. The vertical separation between data sets is arbitrary [26].
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ation at high pressures up to 153 GPa [28, 29]. Both results show significant

changes in the phonon DOS shifting towards the high-frequency region. The De-

bye temperature yD increases with pressure as described by Eq. (5.40), even

though the DOS curves at ultrahigh pressures deviate appreciably from the Debye

model. As for the recoilless fraction f , its dependence on pressure can be accu-

rately determined using the DOS gðoÞ.

5.5

The Goldanskii–Karyagin Effect

When the bonding forces on a Mössbauer nucleus in a crystal do not possess

cubic symmetry, the vibration amplitudes and thus hu2i values in different direc-

tions are not the same, resulting in an anisotropic behavior of the recoilless frac-

tion f . This consequently leads to the relative absorption intensities in the sub-

spectra split by hyperfine interactions having a different ratio, which was first

observed by Goldanskii [30] in polycrystalline samples and was first explained

theoretically by Karyagin [31]. Hence this phenomenon is known as the

Goldanskii–Karyagin (G-K) effect.

Since Mössbauer spectroscopy is a unique method that can measure atomic

mean-square displacements hu2i along different crystal axes, it is a method of

choice for investigating anisotropic lattice vibrations. A good example is the mea-

surement of the 81 keV 133Cs Mössbauer recoilless fraction f as a function of y,

the angle between the g-ray wave vector k and the c-axis of the cesium–graphite

intercalation compound C8Cs [32]. As shown in Fig. 5.8, f ð0�Þ was found to be

astonishingly 20 times larger than f ð90�Þ.

Fig. 5.8 133Cs recoilless fraction f as a function of the angle between

g-ray direction k and the c-axis of the intercalation compound C8Cs.
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Let us look at the influence of the G-K effect on the Mössbauer spectral inten-

sities from single-crystal and polycrystalline samples.

5.5.1

Single Crystals

Anisotropic recoilless fraction f has been studied, for example, using the 103.18

keV Mössbauer transition (3=2þ ! 5=2þ, M1 type) of 153Eu in Eu2Ti2O7 [33].

This crystal has a cubic structure of the pyrochlore type with a space group sym-

metry Fd3m. The Eu3þ ions occupy positions with a three-fold symmetry (3m
point symmetry), where the electric field gradient is axially symmetric ðh ¼ 0Þ
with its principal axis in the [111] direction. However, there are four equivalent

[111] directions, and the cosine of the angle between them is 1/3. In the Möss-

bauer experiment, the single-crystal sample is oriented such that the incident

g-ray is parallel to a particular [111] direction ðy ¼ 0Þ and consequently there are

two inequivalent Eu sites: one site with 1/4 of the population having y ¼ 0 and

another site with 3/4 of the population having cos y 0 ¼ 1=3.

According to Eq. (2.47), the angular distribution functions for a dipole radiation

are

F0
1 ðyÞ ¼ jw01 j2 ¼ sin2 y for Dm ¼ 0;

and

F1
1 ðyÞ ¼ jw11 j2 ¼

1

2
ð1þ cos2 yÞ for Dm ¼G1:

For the first Eu site, y = 0, thus F0
1 ð0Þ ¼ 0 and F1

1 ð0Þ ¼ 1. For the other three sites

with cos y 0 ¼ 1=3, F0
1 ðy 0Þ ¼ 8=9 and F1

1 ðy 0Þ ¼ 5=9. The intensities of Dm ¼ 0

transitions, as determined by their respective Clebsch–Gordan (C-G) coefficients,

would be multiplied by a ¼ 0f ð0Þ þ 3ð8=9Þ f ðy 0Þ, and those of Dm ¼G1 transi-

tions by b ¼ 1f ð0Þ þ 3ð5=9Þ f ðy 0Þ. Therefore, the relative intensities of the

Dm ¼ 0 transitions, as determined by the appropriate C-G coefficients, would be

multiplied by

B ¼ a

b
¼ 8

5þ 3f ð0Þ=f ðy 0Þ : ð5:43Þ

Suppose that the recoilless fraction f is axially symmetric and we use fk and f? to

represent f ð0Þ and f ð90�Þ, respectively, then [34]

f ðyÞ ¼ exp½�k2hx2i� e cos2 y� ¼ f? expð�e cos2 yÞ; ð5:44Þ

with

e ¼ k2½hz2i� hx2i� ¼ �ln
fk
f?

� �
ð5:45Þ
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where hz2i and hx2i denote the mean-square displacements along directions

parallel and perpendicular to the k direction, respectively. Applying this to the

Eu2Ti2O7 single crystal:

f ð0Þ
f ðy 0Þ ¼

fk
f? expð�e cos2 y 0Þ ¼ expð�eÞ expðe cos2 y 0Þ ¼ expð�8e=9Þ; ð5:46Þ

and (5.43) becomes

B ¼ 8

5þ 3 expð�8e=9Þ : ð5:47Þ

The 153Eu spectrum at T ¼ 36 K is shown in Fig. 5.9. The dashed line is the cal-

culated curve assuming an isotropic recoilless fraction f , and it obviously does

not fit the experimental data. Now the intensities of all Dm ¼ 0 transitions have

been multiplied by an attenuating factor to obtain the best fit (the solid line). Be-

cause this factor should be B in Eq. (5.47), the parameter e can be easily calcu-

lated. A nonzero e-value indicates anisotropic lattice vibrations and the existence

of the G-K effect. Table 5.2 lists values of B for the single-crystal Eu2Ti2O7 and

Fig. 5.9 153Eu M€oossbauer spectrum of single-crystal Eu2Ti2O7 at T ¼ 36 K.

Table 5.2 Parameters B and e derived from the analysis of 153Eu

M€oossbauer spectra of single-crystal and polycrystalline samples of

Eu2Ti2O7.

T (K) B (single crystal) e (single crystal) e (polycrystal)

4.1 0.40(2) �1.81(5) �1.95(15)

36 0.27(5) �2.4(1) �2.6(2)
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values of e for the single-crystal and polycrystalline samples [35]. From the data at

4.2 K, it has been derived that hz2i� hx2i ¼ �0:00226 Å2. From both the single-

crystal and polycrystalline samples of Eu2Ti2O7, the measured G-K effect

amounts (e-values) are consistent with each other.

5.5.2

Polycrystals

At a first glance, the G-K effect might not be apparent in polycrystalline samples.

But in fact, measuring the intensities of the quadrupole splitting lines is quite

straightforward to detect this effect. This is because when the recoilless fraction

f is isotropic, the two spectral lines (e.g., 3=2 ! 1=2 transition in 57Fe) should

have equal intensities. But if f is anisotropic, the two lines would have different

intensities:

I3=2
I1=2

¼

ð p
0

ð1þ cos2 yÞ f ðyÞ sin y dyð p
0

5

3
� cos2 y

� �
f ðyÞ sin y dy

0 1 ð5:48Þ

which are independent of the particular orientation of the sample. If the probabil-

ity of the g-transition was y-independent, the G-K effect would not be observed in

polycrystalline samples.

From Eq. (5.45), we know that e is proportional to k2, which is equal to

E2
g =ð�h2c2Þ. Because Eg of

133Cs is about 6 times that of 57Fe, the cesium recoilless

fraction f is much more sensitive to the changes in its mean-square displace-

ment than the iron recoilless fraction f . Therefore, high-energy Mössbauer tran-

sitions such as 2þ ! 0 (E2 transition) would be more advantageous for studying

the anisotropy in lattice vibrations [36]. In this case, the quadrupole split spec-

trum has simply three absorption lines. Such Mössbauer isotopes include 152Sm,
156Gd, 160Dy, 166Er, 170Yb, and 174Yb, all of which have relatively large Eg values

and therefore any G-K effects can be sensitively detected. For example, the lattice

vibrational anisotropy detected by the 170Yb Mössbauer effect is as high as 30

times that by 57Fe. In addition, E2-type radiation contains high-order harmonics,

which are more sensitive to the vibrational anisotropy [37].

Figure 5.10 shows 156Gd Mössbauer spectra from a polycrystalline Gd2Ti2O7

sample, which exhibits a relatively large G-K effect [38]. Analogous to the pre-

vious example, for Dm ¼ 0 and Dm ¼G2 transitions, two attenuation factors B0

and B2 are used to fit the data. For each temperature, B0 and B2 lead to e0 and e2

values that are equal to each other, strongly supporting the G-K theory. The exper-

imental results show that at T ¼ 4:2 K, hz2i� hx2i ¼ �0:00076 Å2.

There are two more points worth mentioning.

1. The G-K effect is sometimes very small and requires careful

experimental planning for its observation. An important

consideration is the saturation effect of the absorber [39]. To
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reduce this effect, thin samples are preferred, but this results

in smaller Mössbauer effect absorption and the accompanied

large statistical errors. A better alternative is to use emission

Mössbauer spectroscopy for studying the G-K effect [40–42].

2. Some polycrystalline samples may contain texture due to

preferential orientation, which could affect the Mössbauer

spectrum in a manner similar to the G-K effect. But the

texture effect should be basically independent of temperature,

while lattice vibration is strongly dependent on temperature

and the G-K effect should be larger when the temperature is

higher (see Fig. 5.10). Analysis of Mössbauer spectra from a

sample at different temperatures would allow us to

distinguish between these two effects.

5.6

Second-Order Doppler Shift

5.6.1

Transverse Doppler Effect

The second main methodology for obtaining information on lattice dynamics

through Mössbauer spectroscopy is analysis of the shift of the entire spectrum

due to the second-order Doppler effect.

Fig. 5.10 156Gd M€oossbauer spectra of polycrystalline Gd2Ti2O7. The

solid lines are fits to the experimental spectra, taking into account the

anisotropic f . The dashed lines are theoretical spectra with an isotropic f .
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Suppose we have two reference frames, one attached to the laboratory and the

other to the vibrating Mössbauer nucleus. When this nucleus emits or absorbs a

g-photon ðEg ¼ �ho0Þ, according to the special theory of relativity, the photon’s an-

gular frequency o as observed in the laboratory reference frame is

o ¼ o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
1� v cos y=c

ð5:49Þ

where v is the speed of the nucleus and y is the angle between the photon direc-

tion and the velocity of the nucleus. When vf c, the above equation can be ex-

panded as

oAo0 1þ v

c
cos y� v2

2c2
þ � � �

� �

or

DE

E0
A

v

c
cos y� v2

2c2
: ð5:50Þ

The first term is the usual first-order Doppler effect, used for modulating the

photon energy in Mössbauer experiments. The next term, which does not exist

in the classical theory, is the second-order Doppler effect, as a consequence of

the time dilation phenomenon in relativity theory [13, 43]. When the nucleus

moves in a direction perpendicular to the photon direction, cos y ¼ 0, the first-

order term vanishes and DE=E0 ¼ �v2=2c2. Therefore, the second-order Doppler

effect is also known as the transverse Doppler effect [44].

In a solid, the average atomic velocity is zero, hvi ¼ 0, so Eq. (5.50) becomes

hDEi ¼ �E0
hv2i

2c2
:

Since the typical value of atomic mean-square velocity for metallic iron at room

temperature is hv2iA6� 1010 mm2 s�2, the energy shift due to the second-

order Doppler effect is therefore hDEi ¼ �E0hv2i=ð2c2ÞA�4:8� 10�9 eV. Be-

fore the discovery of the Mössbauer effect, this small change in energy could not

be resolved by any other method.

Suppose that the source and the absorber are at different temperatures Ts and

T. The second-order Doppler shift as observed in the Mössbauer spectrum (in

units of mm s�1) can be expressed as

dSOD ¼ hv2iTs
� hv2iT
2c

: ð5:51Þ

If Ts is fixed, the first term is a constant ðc1Þ, and when the high- and low-

temperature expressions (Eqs. (5.6) and (5.8)) for hv2i are used in the second

term, we have
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dSOD ¼ c1 � 3kBT

2Mc
1þ 1

20

yD

T

� �2" #
for T > yD; ð5:52Þ

dSOD ¼ c1 � 9kByD
2Mc

1

8
þ p4

15

T

yD

� �4" #
for Tf yD: ð5:53Þ

The observed shift d of the entire Mössbauer spectrum is called the center shift,

which is the sum of isomer shift dIS and the second-order Doppler shift dSOD:

d ¼ dIS þ dSOD ¼ dIS þ
hv2iTs

2c
� hv2iT

2c
: ð5:54Þ

The second-order Doppler shift dSOD strongly depends on temperature while the

isomer shift dIS is a measure of the s-electron density at the nucleus and thus is

approximately independent of temperature. The specific details of hv2i are deter-

mined by the model chosen for the lattice vibration.

In 1960, Pound and Rebka [45] first proved the existence of the second-order

Doppler effect using the Mössbauer effect. They measured the relation between

second-order Doppler shift and temperature in 57Fe g-ray resonance absorption,

and used the Debye model for the distribution function gðoÞ in Eq. (5.2) with

yD ¼ 420 K. Their theoretical curve has an excellent agreement with the experi-

mental data (see Fig. 5.11). Since then, many studies on the temperature depen-

dence of dSOD have been carried out to give lattice dynamics parameters such as

yD or yDðnÞ, hv2i, and the effective vibrating mass Meff [46–49].

In the meantime, Josephson [1] derived the second-order Doppler shift from

the mass–energy relation, a different aspect of the special theory of relativity.

This was based on the notion that the mass of the Mössbauer nucleus in the ex-

cited state is larger than that of the same nucleus in the ground state, and the en-

ergy of the emitted g-photon corresponds to the difference in the mass values,

Fig. 5.11 Temperature dependence of second-order Doppler shift in the

14.4 keV g-ray resonance absorption.
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E0 ¼ c2dM. Now if the nucleus has kinetic energy, its expectation value would be

altered by the following amount:

dE ¼ hp2i

2ðM þ dMÞ �
hp2i

2M
A � hp2i

2M2
dM ¼ � hv2i

2c2
E0 ð5:55Þ

causing the photon energy reduction, which is identical to the second-order Dop-

pler shift. It should be noted that (1) these two apparently different origins of the

second-order Doppler shift can be shown to be equivalent, and (2) this kinetic en-

ergy difference before and after the g-emission is not to be confused with the re-

coil energy, which is an entirely separate quantity.

5.6.2

The Relation between f and dSOD

The recoilless fraction f and the second-order Doppler shift dSOD are related to

hu2i and hv2i, respectively. Once the phonon frequency distribution function

gðoÞ has been determined, both hu2i and hv2i (thus f and dSOD) can be accu-

rately calculated. Experimentally, however, f and dSOD are measured differently,

because f is related to the relative areas of the spectral lines and dSOD is related

to the positions of the lines. For a spectrum without overlapping lines, the preci-

sion in measuring line positions is much higher than that in determining the

areas. For example, the precision in line positions in a room temperature sodium

nitroprusside spectrum is 0.2%, while that in the spectral areas is only 0.7%. This

does not mean that the lattice dynamics parameters based on dSOD measurements

are more reliable. In fact, it is difficult to separate dSOD from dIS. In most cases of
57Fe work, the temperature variation of dIS is neglected, which brings certain

amount of error to dSOD. Also, it is not uncommon to find discrepancies between

the two yD-values from f and dSOD for the same solid, the reason being that the

actual phonon distribution of most solids deviates significantly from the Debye

distribution.

As we know from Eq. (1.84), the f -value can be determined from the Debye

temperature and it is sensitive to any changes in this temperature [50]. Conse-

quently, extraction of the f -value from dSOD data must be done with special care

[51]. In general, analysis of f and dSOD data is not carried out by the Debye model

only, even in the high-temperature range.

If we use a shorthand notation

ho li ¼
ð
coth

1

2
�hob

� �
o lgðoÞ do;

we can rewrite the definitions in Eqs. (5.1) and (5.2) as follows:

hu2i ¼ �h

2M
ho�1i;

hv2i ¼ 3�h

M
hoi:
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Also, we will define a new quantity ST in order to facilitate the discussion of the

relation between f and dSOD:

ST ¼ ln f

dSOD
¼ �k2hu2i

�hv2i=2c
¼ ck2

3

1

hoi=ho�1i
; ð5:56Þ

where hoi=ho�1i is known as the McMillan ratio. In the high-temperature limit,

experiments have shown that both hu2i and hv2i are nearly linear in tempera-

ture. Therefore, ST or the McMillan ratio is approximately a constant [52]. How-

ever, ST is not the same for different solids. Figure 5.12 shows the experimental

Fig. 5.12 Plots of ln f versus center shift d for dilute 57Fe in six

different hosts. ‘‘RT’’ indicates the room temperature data point(s). d is

measured with respect to the center shift of room temperature a-Fe [52].
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results of 57Fe impurities in six different fcc crystals, and it is convincing that ln f
and dSOD are linearly related in an extremely wide temperature range from 100 to

1020 K. Figure 5.13 shows the linear relations between ln f and dSOD for two
119Sn compounds.

The above mentioned linearity can be predicted by the Debye model. When the

absorber is at a high temperature, we can regard the source temperature Ts ! 0

and obtain from Eq. (5.52)

Fig. 5.13 Relations between the 119Sn recoilless fraction f and center

shift d for (a) SnTe with a SnTe source at 19.4 K and (b) Nb3Sn with a

Pd3Sn source at 19.4 K [52]. The temperature values next to the data

points are absorber temperatures.
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dSOD ¼ � hv2i

2c
¼ � 3

2

kB
Mc

T : ð5:57Þ

On the other hand, Eq. (5.14) gives

ln f ¼ � 6ERT

kBy
2
D

:

Therefore

ST ¼ 2E2
g

ck2By
2
D

; ð5:58Þ

which indicates that ST or the McMillan ratio depends on two constants Eg and

yD but not on temperature T. Because of this reason, studies of the second-order

Doppler effect are usually carried out in a relatively high-temperature region.

If the gðoÞ of a solid deviates substantially from the Debye model, the relation

between them could become very complicated [51].

5.7

Methods for Measuring the Recoilless Fraction f

Special attention has always been paid to the precise measurement of the recoil-

less fraction f . The precision has reached 1% when radioactive sources are used

and it can be better than 0.4% when synchrotron Mössbauer radiation is em-

ployed.

There are two main difficulties in the transmission method. One is the compli-

cated background, which cannot be accurately calibrated as done in other radioac-

tivity experiments. This severely limits the precision in determining the baseline

counts IðyÞ, and has been regarded as the main source of error in measuring the

recoilless fraction f [53, 54]. The second difficulty is that the sample always has a

finite thickness, causing some amount of distortion in the spectral shape. Com-

pletely correcting the thickness effect is also very difficult. Fortunately, these lim-

itations can all be overcome by a radically different experimental method in syn-

chrotron Mössbauer spectroscopy (see Chapter 7).

There are many methods for measuring the recoilless fraction f , categorized
mainly into to two groups: absolute methods and relative methods. All of them

are based on the measurements of spectral intensities (areas or heights), shapes,

and widths. Detailed descriptions of these methods can be found in Ref. [13].

5.7.1

Absolute Methods

In an absolute method, we obtain the recoilless fraction f by measuring AðtaÞ,
eðvrÞ, and Ga

exp and utilizing their relations with ta (note that ta is proportional

to f because ta ¼ na f s0d).
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The absorption area method is the most popular one, because the spectral area

AðtaÞ is approximately independent of the line shape of source emission and the

instrumental broadening [54]. When the sample thickness increases, AðtaÞ satu-
rates more slowly than the spectral height. Therefore, AðtaÞ is more sensitive to

the change in ta. For a single line absorption, the normalized area AðtaÞ can be

expressed as (see Appendix A):

AðtaÞ ¼
ðy
�y

eðvÞ dv ¼
ðy
�y

IðyÞ � IðvÞ
IðyÞ � Ib

dv ¼
ðy
�y

fs½1� TðvÞ� dv

¼ fsGap
ta
2

exp � ta
2

� �
I0

ta
2

� �
þ I1

ta
2

� �� �
ð5:59Þ

where Ib represents the background counts. If fs is known, we can calculate ta
from the measured absorption areas, thus obtaining the recoilless fraction f .
When ta < 1, Eq. (5.59) may be expanded into a polynomial series:

AðtaÞ ¼ p

2
fsGatað1� 0:25ta þ 0:0625t2a þ � � �Þ: ð5:60Þ

In the first-order approximation, the spectral area AðtaÞ is directly proportional to
ta or f :

AðtaÞA p

2
fsGata ¼ p

2
fsGanas0d

� �
f : ð5:61Þ

The accuracy of the absorption area method is limited by statistical errors in

counts IðyÞ and Ib. A small error in the baseline counts IðyÞ would cause a rel-

ative large uncertainty in the spectral area measurement. In addition, during the

measurement or fitting of the spectrum, the chosen velocity rangeGv1 not being

large enough will also add more uncertainties in AðtaÞ. As shown in Fig. 5.14, the

shaded area is equal to 2Ga=ðpv1Þ, and an AðtaÞ accuracy better than 1% would

require v1A64Ga [13].

The ‘‘white source’’ method can be used for accurate measurements of IðyÞ
and AðtaÞ [55]. This method uses a separate counter recording the total transmit-

ted g-rays when the source executes a constant acceleration motion between �v1

Fig. 5.14 Shaded area indicates the error introduced in the area of an

absorption peak if the velocity range is not wide enough.

5.7 Methods for Measuring the Recoilless Fraction f 203



and þv1. This is equivalent to the average of the counts for all velocities. Accord-

ing to Eq. (1.23),

Iðv1Þ ¼ 1

2v1

ð v1
�v1

IðvÞ dv ¼ IðyÞ � IðyÞ 1

2v1

ð v1
�v1

fs½1� TðvÞ� dv: ð5:62Þ

Obviously, when v1 ! y, the last integral in the above equation is the area AðtaÞ,
and therefore

Iðv1Þ ¼ IðyÞ � IðyÞAðtaÞ
2v1

; ð5:63Þ

which shows a linear relation between Iðv1Þ and 1=v1. Performing a linear regres-

sion on the experimental Iðv1Þ versus 1=v1 curve would then give IðyÞ and AðtaÞ,
whose uncertainties can be as good as 1 and 0.7%, respectively, based on experi-

ments using a 57Co/Pd source and an Fe/Rh absorber.

Another technique for eliminating the influence of background is the selective

modulation method [56]. Between the specimen absorber A and the source is in-

serted a so-called control absorber C (Fig. 5.15). For the sake of simplicity, sup-

pose that the control absorber’s isomer shift is the same as that of the source.

The control absorber is driven to move along the g-ray direction. When the con-

trol absorber is moving with a high speed, it will not resonantly absorb the inci-

dent g-rays. Under such a condition, what registers in the detector is IðyÞ, which
includes both recoilless and recoiled g-rays as well as background. Next, when

the control absorber is at rest, the recoiled g-rays and the background in the de-

tected intensity Ið0Þ should be identical to the previous case, but the recoilless

part will be reduced due to resonance absorption. The difference DI ¼ IðyÞ � Ið0Þ
represents the ‘‘pure’’ recoilless radiation, equivalent to a source that emits only

Mössbauer radiation. Now the specimen absorber is driven with a constant ac-

celeration mode, synchronous with the control absorber motion. During the

increasing half of the triangular wave, the control absorber is moving with a

high speed, while during the decreasing half of the triangular wave, the control

absorber is at rest.

Fig. 5.15 Positions of the two absorbers in the selective modulation

method.
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Two different spectra are obtained in a single experiment, and the difference

between them is a ‘‘pure’’ Mössbauer spectrum (with fs ¼ 1). The spectral area is

AðtaÞ ¼
ðy
�y

DIðyÞ � DIðvÞ
DIðyÞ dv

¼ Gap
ta
2

exp � ta
2

� �
I0

ta
2

� �
þ I1

ta
2

� �� �
ð5:64Þ

where y and v represent the ‘‘infinite’’ and ‘‘finite’’ velocity values of specimen

absorber. Drawbacks of this method include the requirement that the control ab-

sorber have the same isomer shift as the source and the inconvenience in high- or

low-temperature experiments. Of course, a serious drawback is the low activity of

such a ‘‘pure’’ recoilless g-source. A couple of improved setups have also been

developed [57, 58], and applied to the investigations of BaSnO3 and

K4Fe(CN)6�3H2O, with room temperature results of f ¼ 0:57G 0:02 and

f ¼ 0:281G 0:004, respectively. Figure 5.16 shows a comparison between Möss-

bauer spectra obtained using different methods, and the results are also similar to

those obtained by means of a ‘‘resonance’’ detector [59].

If fs cannot be accurately known, a usual method to circumvent this difficulty

is to use a series of specimens of the same material but with different thicknesses

d. The spectra are fitted using fs as one of the parameters. Reference [60] presents

one such example, where five EuBa2Cu3O7 samples were prepared with different

thicknesses d and after fitting all the spectra, f ¼ 0:26 was obtained. A compila-

tion of f -values of various materials is given in Table 5.3.

Fig. 5.16 119Sn M€oossbauer spectra of SnO obtained by (a) using no

control absorber and (b) using a control absorber of BaSnO3 [56].
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5.7.2

Relative Methods

The absolute methods are suitable only under various restrictions on line shapes,

widths, and experimental arrangements [54, 55]. When a relative method is em-

ployed, most restrictions can be removed and, especially, several sources of errors

that occur in an absolute method may be avoided. Therefore, the accuracy in a

relative method is usually higher than that in an absolute one. In fact, we are

more interested in how f changes with temperature or pressure in lattice dynam-

ics than its absolute value.

If the sample is very thin, Eq. (5.61) is valid, and the relation between spectral

area and temperature T is essentially the same as the relation between f and T:

Table 5.3 List of recoilless fraction f values of various materials.

Mössbauer nucleus Solid material f T (K) Ref.

57Fe a-Fe 0.93(3) 4.2 61

0.78 293 62

0.67 300 63

0.771(17) 298 64

0.688 293 65

a-Fe2O3 0.66 293 66

Na2[Fe(CN)5NO]�2H2O 0.468(7) 67

0.359 68

0.43(3) 65

0.37 69

Fe(C5H5)2 0.169 70

0.08 295 69

K4Fe(CN)6�3H2O 0.281(4) 58

FeS2 0.20(2) 71

119Sn SnO2 0.28(3) 72

BaSnO3 0.57(2) 56

0.52(2) 73

0.65(1) 74

151Eu EuBa2Cu3O7 0.26 60

159Tb TbAl2 0.108(3) 115 75

Tb4O7 0.237(15) 81 75

183W Metallic tungsten 0.299(1) 297 76

191Ir Metallic iridium 0.036(5) 80 76
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AðTÞ ¼ p

2
fsðTsÞGanas0d

� �
f ðTÞ ¼ cf ðTÞ ð5:65Þ

where Ts is the temperature of the source, which is usually kept constant during

experiments, and hence c is a constant. If the AðTÞ values are divided by the area

AðT0Þ deduced from a spectrum at a particular temperature T0,

AðTÞ
AðT0Þ ¼

f ðTÞ
f ðT0Þ ; ð5:66Þ

the other factors cancel out and we obtain the relative change in the recoilless

fraction f . Using this for fitting the spectral areas as a function of temperature

will allow us to extract lattice dynamics parameters such as yDð�2Þ, yD, and
eð�2Þ.
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Anharmonic contributions to the

Debye–Waller factor of aluminium.

Solid State Commun. 72, 1135–1140
(1989).

8 R.C. Shukla and H. Hübschle.
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temperature anharmonicity and

phonon anomalies at 151Eu sites in

Eu1þxBa2�xCu3O7�d. Solid State
Commun. 80, 705–708 (1991).

20 M. Capaccioli, L. Cianchi, F. Del.

Giallo, F. Pieralli, and G. Spina. Low-

temperature vibrational anharmo-

nicity of 151Eu in EuBa2Cu3O7�d. J.
Phys.: Condens. Matter 7, 2429–2438
(1995).

21 D.P. Johnson and J.G. Dash.
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the Mössbauer effect. Phys. Rev. 124,
1319–1320 (1961).

25 J.A. Moyzis Jr., G. DePasquali, and

H.G. Drickamer. Effect of pressure on

f number and isomer shift for Fe57

in Cu, V, and Ti. Phys. Rev. 172, 665–
670 (1968).

26 J.M. Fiddy, I. Hall, F. Grandjean, U.

Russo, and G.J. Long. Pressure

dependence of the Mössbauer spectra
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Mössbauer spectra of the 89 keV

gamma ray of 156Gd. Solid State
Commun. 15, 543–545 (1974).

39 R.W. Grant, R.M. Housley, and U.

Gonser. Nuclear electric field gradient

and mean square displacement of the

iron sites in sodium nitroprusside.

Phys. Rev. 178, 525–530 (1969).

40 R.M. Housley and R.H. Nussbaum.

Mean-square nuclear displacement of

Fe57 in Zn from the Mössbauer

effect. Phys. Rev. 138, A753–A754
(1965).

41 L. Niesen and B. Stenekes.

Anisotropic Debye–Waller factor of

iodine impurities in p-type silicon. J.
Phys.: Condens. Matter 3, 3617–3623
(1991).

42 M. Steiner, M. Köfferlein, W. Potzel,
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technique. Nucl. Sci. Techn. 3, 135–
138 (1992) (Chinese Nuclear Society).

49 Y.L. Chen, B.F. Xu, and J.G. Chen.
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6

Mössbauer Scattering Methods

So far, we have been using Mössbauer spectroscopy in transmission geometry.

The scattering of Mössbauer radiation is another method, but based on a differ-

ent principle. Compared with neutron and x-ray scattering methods, the develop-

ment of Mössbauer scattering has been slow and incomplete, mainly limited by

the lack of strong Mössbauer radioactive sources in the early days. Since synchro-

tron Mössbauer sources became available in the mid-1980s, research on Möss-

bauer scattering has been substantially reinvigorated.

In this chapter, we describe the basic principles of scattering methods and

some early experimental results using Mössbauer radioactive sources. It is shown

that the coherence phenomenon can play a crucial role in the nuclear resonance

scattering of Mössbauer radiation. Such scattering experiments can be imple-

mented using synchrotron radiation, which is discussed in detail in Chapter 7.

6.1

The Characteristics and Types of Mössbauer g-ray Scattering

6.1.1

The Main Characteristics

Generally speaking, compared with the transmission method, the scattering

method is much more complex, both conceptually and experimentally, but it can

provide more information. There are many excellent monographs and articles

available [1–4]. Figure 6.1 shows several arrangements for scattering experiments

[5, 6]. In Fig. 6.1(a), the scatterer does not contain the Mössbauer isotope, but in

Figs 6.1(b)–(d), the Mössbauer isotope must be present. For Figs 6.1(a) and (c), a

resonant absorber A in front of the detector serves as the energy analyzer by us-

ing the Mössbauer effect. In all of these arrangements, the source may be station-

ary or be driven to constant velocity or constant acceleration.

In order to reduce background counts in scattering experiments, shielding in

different parts of the apparatus is extremely important (not shown in Fig. 6.1).

For 57Fe, shielding may attenuate background counts to as few as 0.05 per min-
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ute. In addition, good collimators are required in order to ensure low dispersion

(within several arc seconds). In diffraction experiments, especially, the angular

measurements must be precise, within G0.1 00 [7]. For 57Fe, the source activity

usually falls between 3:7� 109 and 9:25� 109 Bq. It may take at least 100 hours,

and sometimes as many as 600 hours, to obtain a scattering spectrum.

In scattering experiments, several different types of scattered particles can be

detected. The most usual are the g-rays re-emitted by the Mössbauer nuclei after

resonance absorption. But if the excited state of the Mössbauer nucleus has a

large internal conversion coefficient, the instrument will also detect the conver-

sion electrons (an incoherent process) and accompanying products (see Chapter

3, Fig. 3.6), e.g., K-fluorescence photons.

In addition, there may be some interference phenomena between different

scattering processes, such as the interference between Mössbauer resonance scat-

tering and Rayleigh scattering, and the interference between conversion electrons

and photoelectrons. These constitute another characteristic of the Mössbauer

scattering method.

It is because of the complexity associated with the scattering method that more

information can be gathered by this method than by the emission or absorption

method. Mössbauer scattering has distinctive features in comparison with neu-

tron or x-ray diffraction. It can overcome the difficulties encountered by neutron

or x-ray diffraction to determine the phase in structure factors. Mössbauer scatter-

ing is capable of clearly resolving hyperfine interactions for elucidating magnetic

structures of crystals, which can provide important complementary information

Fig. 6.1 Schematic diagrams of various M€oossbauer scattering
experiments: (a) Rayleigh scattering, (b) nuclear resonance scattering

(NRS), (c) selective excitation double M€oossbauer (SEDM) spectroscopy,

where the source S undergoes constant-velocity motion and the

absorber A undergoes constant-acceleration motion, and (d) nuclear

forward scattering (NFS). R represents a Rayleigh scatterer, N

represents a nuclear scatterer, and D represents the detector.
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to neutron diffraction results (whereas x-ray diffraction detects no magnetic struc-

ture). Although most Mössbauer radiations share the same part of the electro-

magnetic radiation with x-rays (wavelengths between 0.1 and 1 Å), their scattering

behaviors are very different, chiefly due to the fact that the Mössbauer radiation

linewidth is about 8 orders of magnitude narrower than that of x-rays. As a con-

sequence, conventional x-ray diffraction can only provide spatial information due

to its lack of energy resolution.

In some Mössbauer scattering experiments (e.g., Rayleigh scattering), the scat-

terer does not necessarily contain the Mössbauer nucleus and is not limited to

solids either, so long as there is an additional resonance absorber (A). Therefore,

the scattering method can make use of the advantages of the Mössbauer effect,

and in principle extend the applications of Mössbauer spectroscopy. Because of

the ingenious method of Rayleigh scattering, which separates the elastic and

inelastic g-ray scattering components, it has become an important technique in

studying dynamics in solids and liquids.

In nuclear resonance scattering (NRS) the g-ray is first recoillessly absorbed,

then re-emitted by a nucleus in its exited state with a half-life of the order of

10�7 s. This is much longer than om
�1A10�14–10�13 s, where om is the maxi-

mum vibration frequency of the nucleus about its equilibrium position. Thus,

NRS is often regarded as a ‘‘slow’’ process. In contrast, Rayleigh scattering, a

non-resonance scattering by bound electrons, takes place in a time interval of

10�16–10�15 s < om
�1 and it is regarded as a ‘‘fast’’ process.

6.1.2

Types of Scattering Processes

In general, the scattering of Mössbauer g-rays with energies Eg < 200 keV may be

mainly categorized into three groups of processes, each being coherent or inco-

herent, elastic or inelastic [6]:

Elastic nuclear and Rayleigh Coherent: recoilless (elastic)

with recoil (inelastic or quasi-elastic)

Incoherent: recoilless (elastic)

with recoil (inelastic or quasi-elastic)

Inelastic nuclear Incoherent: recoilless (energy shifted)

with recoil (inelastic)

Compton scattering Incoherent: recoilless (inelastic)

We are familiar with the concepts of elastic and inelastic scattering. As to coher-

ent and incoherent scattering, they are discussed in Section 4.6.1. Essentially, co-

herence is the result of periodic arrangement of those scattering centers (atoms

or nuclei) that have the same scattering properties. Any crystal imperfections,

such as random distribution of the Mössbauer isotope 57Fe amongst natural

iron, or spin effects, would result in an incoherent component contributing to a

diffused background between the Bragg peaks.
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Figure 6.2 illustrates how inelastic and incoherent nuclear resonance scattering

can occur due to magnetic hyperfine splittings in 57Fe scatterers. During the

scattering process, a 57Fe nucleus in the ground state ðmg ¼ þ1=2Þ makes a

transition to the excited state ðme ¼ �1=2Þ, followed by emission of a g-photon

and returning to the mg ¼ þ1=2 state (transitions a and b). This is obviously

an elastic process. If the process follows transitions a and c instead, the scatter-

ing is clearly inelastic and leads to a change in the nuclear spin state

ðmg ¼ þ1=2 ! mg ¼ �1=2Þ. Since Rayleigh scattering does not change nuclear

spin, the fact that the scattering process with transitions a and c cannot have in-

terference with Rayleigh scattering indicates that it is incoherent.

Mössbauer diffraction, as an alternative method, has been chosen to verify the

above coherent and incoherent nuclear resonance scatterings [8]. In Fig. 6.3, a
57Co/Cr source is attached to the first vibrator (vb1) and the scatterer is an

a-Fe2O3 single crystal with an 85% 57Fe enrichment. A weak magnetic field is ap-

plied perpendicular to the scattering plane. When the scattering is chosen to be

from the (8 8 8) plane, the Bragg angle is yB ¼ 49�. The absorber A is a stainless

steel foil of thickness 10 mm, with 57Fe enriched to more than 20%, and is used as

an analyzer for energies of the diffracted rays. During the first part of the experi-

ment, the analyzer A is removed, vb1 works in the constant-acceleration mode,

and the detector measures the diffraction intensity as a function of the source ve-

locity. This gives the resonance scattering Mössbauer spectrum under the Bragg

condition, as shown in Fig. 6.4(a). From this spectrum, the source velocity re-

quired to cause transition a can be precisely determined to be �0.60 mm s�1.

The slight asymmetry in the spectral lines is due to the interference between res-

onance scattering and Rayleigh scattering processes. Now the second part of the

experiment is performed, where vb1 works in the constant-velocity mode with a

speed of �0.60 mm s�1. The absorber A is installed on the second vibrator (vb2)

Fig. 6.2 When there is a magnetic hyperfine field in the scatterer, there

are two possible de-excitation modes after a resonance absorption with

a transition from mg ¼ þ1=2 to me ¼ �1=2. Mode a–b is an elastic

coherent process, while mode a–c is an inelastic incoherent one.
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Fig. 6.3 Schematic diagram of a M€oossbauer diffraction experiment.

Fig. 6.4 Intensity of diffracted 57Fe g-rays: (a) as a function of source

velocity and (b) as a function of analyzer velocity.
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which works in the constant-acceleration mode and scans the velocity range of

G13 mm s�1. The resultant spectrum is a single line shown in Fig. 6.4(b), which

convincingly verifies that only g-rays associated with transition b are coherent

while those associated with transition c are incoherent. The coherently diffracted

g-rays are diffracted at the Bragg angle. As for the incoherently diffracted g-rays,

the change in energy is extremely small, DE=E ¼ Dl=lA2� 10�12, and thus the

Bragg condition is still satisfied. However, to a first approximation, these incoher-

ent diffracted g-rays have an isotropic distribution so that very little enters the

detector.

It should be noted that an experiment of this type is impossible with neutrons

or x-rays.

As the classical theory has pointed out [9], when the frequency of the incident

radiation o is much lower than the characteristic frequency or, ofor, Rayleigh

scattering is predominant. In the other extreme, i.e., ogor, the process is known

as Thomson scattering. For most Mössbauer transition energies, the latter can

be neglected and is not included in the above categorization. When the incident

g-rays are exactly at resonance for a single ‘‘unsplit’’ 57Fe nucleus, the differential

scattering cross-sections of nuclear resonant scattering, Rayleigh scattering,

and Compton scattering are, respectively, about 10�20, 10�24, and 10�24 cm2 [6].

The exact values depend on scattering angle, polarization, recoil effects, and the

abundance of the Mössbauer isotope. In the case of Fe, for instance, with the

natural abundance of 57Fe taken into consideration, the resonance scattering

cross-section will be effectively reduced to 1/45 of that if all Fe atoms were 57Fe

[1].

In Compton scattering, the photons are scattered by those electrons that are in-

dependent and loosely bound. Therefore, the scattering process is incoherent and

inelastic. This contributes to the background counts in various scattering experi-

ments. When Eg < 200 keV, the cross-sections of both Compton scattering and

Rayleigh scattering depend on the scattering angle y, as shown in Fig. 6.5 [10].

For Pb, sC and sR are equal when yA11�, and sR dominates at smaller scattering

angles. For Cu, similar behavior has been observed. For 57Fe, sC is smaller than

sR by a factor of about 8 [1].

At small scattering angles, Rayleigh scattering is predominant and Compton

scattering comes next. It has been pointed out [11] that more than three-quarters

of Rayleigh scattering is concentrated between y ¼ 0 and y ¼ y0, where

y0 ¼ 2 sin�1 0:026Z1=3 mec2

Eg

" #
: ð6:1Þ

For a Pb scatter with Eg ¼ 410 keV, we have y0 ¼ 14�, consistent with the re-

sults shown in Fig. 6.5. Since y0 can be calculated by Eq. (6.1) only if the quantity

in the brackets is less than 1, this formula may not be used for the majority of

Mössbauer radiation energies. In those cases, the largest portion of Rayleigh scat-

tering is no longer limited to the small scattering angle region [1].
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6.2

Interference and Diffraction

Interference and diffraction are the main characteristics of waves. Classical theory

can successfully describe the interference and diffraction phenomena of visible

light waves and electromagnetic waves (x-rays). Two interfering light sources

must satisfy coherent conditions, which require that they have not only the same

wavelength, but also a fixed phase difference. After the verification of the wave

nature of particles such as electrons and neutrons, quantum theory also has a

similar definition for coherence. At a point r in space, if the probability of finding

a photon from one source is jaj2 and from a second source is jbj2, then when

both sources radiate, the probability of finding a photon at that point is not

jaj2 þ jbj2 but

jaj2 þ jbj2 þ 2 Reða � b�Þ ð6:2Þ

where the last term represents interference, indicating that the two waves have

some degree of coherence. This concept is not as simple as it looks, and confu-

sion may arise in its applications. Unless one is very clear about the concept of

coherence and its physical requirements, one could be mislead to erroneous con-

clusions [12, 13].

In 1960, Black and Moon [14] demonstrated the Bragg reflection of the 14.4 keV

Mössbauer radiation from an enriched 57Fe crystal, the main g-ray scattering

being nuclear resonance scattering. A maximum intensity recorded at the Bragg

angle shows that the scattering is coherent. This is Mössbauer diffraction, which

Fig. 6.5 Cross-sections per unit solid angle for Rayleigh scattering (R)

and Compton scattering (C) of 410 keV g-rays by lead and copper, as

functions of the scattering angle. RþC represents the respective total

cross-section.
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is also called nuclear Bragg scattering (NBS). As will be shown, nuclear forward

scattering (NFS) is also elastic and coherent.

But such a diffraction is much more complex than optical diffraction, due to

the fact that recoilless resonance scattering is a ‘‘slow’’ process. As a result, the

spontaneous character of the nuclear decay becomes so marked that it is not

easy to decide theoretically whether the scattered g-rays due to transition b (Fig.

6.2) are coherent. But experimental facts have provided an affirmative answer.

Thus, we will begin with a description of some experimental results.

6.2.1

Interference between Nuclear Resonance Scattering and Rayleigh Scattering

Let f Rðhh0Þ and f Nðhh0Þ be the coherent Rayleigh and nuclear resonance scatter-

ing amplitudes, respectively, for incident radiation of polarization h0 and scat-

tered radiation of polarization h (where both h0 and h are þ1 for right- and �1

for left-circular polarizations). Also, assume that the scatterer is a single crystal

composed entirely of Mössbauer atoms. The scattering intensity for an unpolar-

ized beam can be written as [15]

I ¼ 1

2

X
hh0

j f Nðhh0Þ þ f Rðhh0Þj2

¼ 1

2

X
hh0

½j f Nðhh0Þj2 þ j f Rðhh0Þj2 þ 2c Reð f Nðhh0Þ � f R� ðhh0ÞÞ� ð6:3Þ

where a factor c is used to represent the degree of coherence between the two

scattered rays. The amplitude of Rayleigh scattering is [6]

f R ¼ �reFðyiÞe � e0 ð6:4Þ

where re is the classical radius of the electron, FðyiÞ is the atomic scattering

factor, yi is the incident angle, and e0 and e are the polarization unit vectors of

the incident photon and the scattered photon, respectively. In order to calculate

f Rðhh0Þ, it is necessary to use circular polarizations. The above expression can

be written as [15, 16]

f Rðhh0Þ ¼ f R0 dð1Þhh0
ðyÞ ð6:5Þ

where dð1Þhh0
ðyÞ, the reduced rotation matrix elements, take the followings values:

h0 h dð1Þhh0
ðyÞ

1 �1 1
2 ð1� cos yÞ

1 1 1
2 ð1þ cos yÞ ð6:6Þ

�1 1 1
2 ð1� cos yÞ

�1 �1 1
2 ð1þ cos yÞ
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As will be shown in Eq. (6.14), the amplitude for nuclear resonance scattering

can also be similarly written as

f Nðhh0Þ ¼ hh0 f
N
0 dð1Þhh0

ðyÞ: ð6:7Þ

Here f R0 and f N
0 are independent of polarization. Substituting Eqs. (6.5) and (6.7)

into Eq. (6.3), we obtain

I ¼ 1

2
j f R0 j2ð1þ cos2 yÞ þ 1

2
j f N
0 j2ð1þ cos2 yÞ þ 2c Reð f N

0 � f R�
0 Þ cos y (6.8)

where y ¼ ðk 0; k0Þ is the scattering angle. For M1 type transitions (e.g., 57Fe), the

angular dependences for both resonance scattering and Rayleigh scattering are in

the form of cos y, and thus the interference term vanishes when y ¼ 90�.
The coherent nature of nuclear resonance scattering is also demonstrated by

its ability to interfere with Rayleigh scattering. In the experiment by Black and

Moon mentioned above [14], the range of source velocity was less than the sepa-

ration between lines 3 and 4 in the sextet, and the observed diffraction maximum

indeed presented an asymmetric profile, as shown in Fig. 6.6(b). Such an asym-

metric resonance peak can only be explained by the interference between nuclear

resonance scattering and Rayleigh scattering by the same 57Fe atom, i.e., an intra-

atomic interference. These two scattering processes are in phase above resonance

and are antiphase below resonance, resulting in constructive and destructive inter-

ference, respectively. Since Rayleigh scattering is coherent, this experiment again

provides evidence that nuclear resonance scattering is also coherent.

Fig. 6.6 Third M€oossbauer absorption line (a), and the corresponding

scattering spectrum (b). The source is 57Co/Fe and the scatterer is an

Fe foil with 57Fe enriched to 56%.
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Soon after, Bernstein and Campbell [17] obtained total reflection of the 14.4 keV

g -rays with a glancing angle of 2 mrad by an optically flat 57Fe mirror and then

proved the interference between nuclear resonance scattering and Rayleigh scatter-

ing. In this case, the interference took place between different atoms, indicating

spatial coherence of the nuclear resonance scattering for an ensemble of nuclei.

Using various reflection planes of an iron single crystal of natural abundance

in a diffraction experiment [18, 19], one can also clearly see the interference effect

between nuclear resonance scattering and Rayleigh scattering processes (Fig. 6.7).

Fig. 6.7 57Fe M€oossbauer scattering spectra (14.4 keV g-rays) of metallic

Fe at three scattering angles corresponding to Bragg reflections from

(a) the (3 3 2) plane, (b) the (3 2 1) plane, and (c) the (2 1 1) plane.

The y values are scattering angles, y ¼ yB.
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For the (3 3 2) plane, y ¼ 90�, the spectrum is symmetric, indicating absence of

interference. At lower angles, as shown in Figs. 6.7(b) and (c), the spectral shapes

are more asymmetric.

Using the 23.8 keV 119Sn Mössbauer radiation, the g-rays scattered from the

(0 2 0) plane ðyB ¼ 5� 7 0Þ of a single-crystal tin foil (88% 119Sn) produce a typical

interference pattern [20, 21]. The shape of the spectrum depends on the ratio

x ¼ f N= f R. One method to vary x is to lower the scatterer temperature; for exam-

ple, at T ¼ 110 K, the recoilless fraction f N increases drastically from its room

temperature value, causing a 7-fold increase in the x-value. Another method

for varying x is to use second- or third-order reflections, so that the correspond-

ing f R-value is lower. In addition, the spectral shape also depends on the ratio

z ¼ mr=ma. Figure 6.8 shows spectra obtained with several different x-values. As

the f N-value increases, the curves sharpen and the peak positions shift leftward

gradually.

When there exists a magnetic hyperfine field, the spectral shape becomes very

complex. This can be illustrated using an a-Fe2O3 single crystal [22], by applying

Fig. 6.8 Normalized M€oossbauer diffraction spectra of 23.8 keV g-rays by

the (0 2 0) plane of a single-crystal 119Sn foil (thickness 2 mm) [20].
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a magnetic field B ¼ 0:1 T along the (1 1 1) plane, either parallel or perpendicular

to the scattering plane ðk 0k0Þ. Interference between resonance scattering and

Rayleigh scattering exists in even-order Bragg reflections (2n 2n 2n). Figure 6.9

shows the curves of the dispersion type in two spectra from the (6 6 6) reflections,

where the dashed lines indicate the positions of absorption lines in transmission

geometry for the same sample and the solid curves are fitted results. The spectra

from the (4 4 4) reflections also show asymmetric dips, and those from the (8 8 8)

and (10 10 10) reflections show complex asymmetric peaks.

The main reason for such a complexity is that the scattering polarization factor

is no longer simply ð1þ cos2 yÞ as in Eq. (6.8), but depends on the type of transi-

tion Dm and the direction of the hyperfine field as well as on the scattering angle

y.

It is quite clear that the coherence phenomenon can play a crucial role in

the nuclear resonance scattering of Mössbauer or synchrotron radiation by an en-

Fig. 6.9 Bragg diffraction spectra of 14.4 keV M€oossbauer g-rays

scattered from the (6 6 6) plane of single-crystal a-Fe2O3.
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semble of Mössbauer nuclei. In addition to what has been described so far, other

interesting phenomena also occur, such as interference effects in the presence of

quadrupole splitting, interference between photoelectrons and internal conver-

sion electrons, anomalies in the width of resonance peak in dynamic Mössbauer

diffraction, and suppression of inelastic channels. The reader may find details in

Refs. [23–30].

It is often necessary to separate nuclear resonance scattering from Rayleigh

scattering, to avoid possible complications caused by the interference between

them. In the following sections, we discuss each of the two scattering processes

in detail.

6.2.2

Observation of Mössbauer Diffraction

The chief interest in Mössbauer diffraction comes from the usually large cross-

section attainable at resonance. In order to observe pure Mössbauer g-ray diffrac-

tion, the amplitude of Rayleigh scattering should be reduced to a negligibly small

amount or completely eliminated. Mössbauer diffraction was first observed

in K4Fe(CN)6�3H2O (90% 57Fe) [31]. Using the (0 6 0) reflection and an off-

resonance source velocity v0 vr, the angular dependence of scattered intensity

has been measured and is shown in Fig. 6.10(a). Because in this case there is no

nuclear Bragg scattering, the relatively large diffraction peak at yB ¼ 8� 50 0 is due
to Rayleigh scattering. When the (0 8 0) reflection is chosen to repeat the above

measurements, the detected counts are very low and independent of the scatter-

ing angle, as in Fig. 6.10(b). This indicates that Rayleigh scattering of the 57Fe

atoms is canceled by Rayleigh scattering of the other atoms in the unit cell [31].

When the source velocity is on-resonance v ¼ vr, the nuclear Bragg scattering, by

Fig. 6.10 Scattering intensity versus scattering angle for 14.4 keV 57Fe

g-rays from the (0 6 0) and (0 8 0) planes of single-crystal

K4Fe(CN)6�3H2O.
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contrast, is not canceled and gives a diffraction peak as in Fig. 6.10(c), which is

pure Mössbauer diffraction, centered at yB ¼ 11� 50 0.
The above example of separating Mössbauer diffraction from Rayleigh scatter-

ing is a rare, fortuitous case. A more systematic method is based on the relation

between the resonance scattering amplitude and orientation of nuclear spins. For

an antiferromagnetic a-Fe2O3 single crystal [32, 33], it is known that for an odd-

order Bragg reflection from the (1 1 1) plane, there should be no Rayleigh scatter-

ing due to extinction. This is verified by the (1 1 1) reflection result for an off-

resonance radiation ðv0 vrÞ in Fig. 6.11(a), which is similar to that in Fig.

6.10(b). When the source velocity is v ¼ vr ¼ 8:6 mm s�1, the resonance absorp-

tion of �1=2 ! �3=2 takes place, and a pure nuclear diffraction peak appears at

yB ¼ 5� 20 0, as shown in Fig. 6.11(b). The corresponding Mössbauer spectrum in

Fig. 6.11(c) is obtained at the fixed Bragg angle of yB ¼ 5� 20 0. The fact that the

Fig. 6.11 14.4 keV g-ray Bragg reflections from the (1 1 1) and (2 2 2)

planes of single-crystal a-Fe2O3 (enriched to 85% 57Fe): (a) v0 vr, (b)

v ¼ vr, and (c) the corresponding M€oossbauer spectra for fixed Bragg

angles.
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peak is symmetric indicates that this diffraction peak is solely due to the radiation

from the �3=2 ! �1=2 transition, with no Rayleigh scattering. The right-hand

side of Fig. 6.11 shows the results from the (2 2 2) reflections as a comparison.

In this case, Rayleigh scattering occurs, the amplitude of which can be seen in

Fig. 6.11(a) and whose interference with Mössbauer diffraction results in the

asymmetric peak in Fig. 6.11(c).

Mössbauer diffraction has attracted a great deal of attention, and it may be used

to obtain unique results not available from any other diffraction methods for

studying crystalline and magnetic structures of solids. For example, x-ray diffrac-

tion cannot provide information related to magnetic hyperfine interactions. At the

present time, this technique relies on the availability of synchrotron Mössbauer

radiation, and there have been many reports of interesting applications, such as

the measurements of the magnetic structures and the phase of structure factors.

The use of Mössbauer diffraction for determining the magnetic structures in

Fe3BO6 is given here as an example. By the magnetic structure of a magnetically

ordered crystal, we mean how the magnetic moments of magnetic atoms (ions)

are periodically arranged. The intensity and shape of the Mössbauer diffraction

spectrum are closely related to the orientations of the magnetic hyperfine fields

at the nuclear position. The hyperfine fields are in turn related to the atomic mag-

netic moments; thus information on the magnetic structure can be extracted from

a diffraction spectrum. Let us look at how this method is applied to Fe3BO6 [34],

an antiferromagnet below its Néel temperature of TN ¼ 508 K. Fe3BO6 has an

orthorhombic unit cell with a ¼ 10:5 Å, b ¼ 8:55 Å, c ¼ 4:47 Å, and belongs to

the space group D16
2hðPnmaÞ. The Fe atoms (ions) are located at two nonequivalent

crystallographic sites 4c and 8d. Two different magnetic structures (Fig. 6.12)

were proposed after bulk magnetization measurements. Neutron diffraction by a

polycrystalline sample indicated that structure I is likely to be the correct one [35].

In structure I, the moments are ferromagnetically coupled within each of the two

planes, and they are antiferromagnetically coupled between the planes. If the mo-

ments of the 4c sites are inverted, structure I becomes structure II.

Fig. 6.12 Two possible magnetic structures allowed by the symmetry of

the Fe3BO6 crystal. Black circles represent Fe ions in 8d sites and white

circles represent Fe ions in 4c sites.
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In the diffraction experiment, the 14.4 keV g-rays were allowed to diffract from

the (7 0 0) plane of a 57Fe3BO6 single crystal, with the antiferromagnetic axis in

the scattering plane ðk 0k0Þ. The diffraction spectrum is shown in Fig. 6.13(a). The

solid curves in Figs. 6.13(a) and (b) represent theoretically calculated results based

on structures I and II, respectively. It is obvious that structure I agrees with the

experimental result whereas structure II is in conflict. Therefore, nuclear reso-

nance diffraction unequivocally verified the correctness of structure I, achieving

what neutron diffraction was not able to do. Also, for neutron diffraction, it was

necessary to use a 11B-enriched sample of Fe3BO6 to reduce the absorption by 10B.

This example illustrates that Mössbauer diffraction is extremely sensitive to the

magnetic structure of the material, an important characteristic of this method.

Between the two possible magnetic structures, the only difference is the magnetic

moment reversal of the 4c Fe ions, which amount to only 1/3 of the total, but the

difference causes substantial changes in the spectral shape.

Fig. 6.13 Experimental and theoretical nuclear Bragg diffraction spectra

of (7 0 0) reflection from a Fe3BO6 single crystal using 14.4 keV g-rays.

The solid curves in (a) and (b) are calculated based on magnetic

structures I and II, respectively. Arrows show where the resonance

absorptions are expected for 57Fe nuclei in 4c and 8d positions.
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6.3

Coherent Elastic Scattering by Bound Nuclei

In studying either nuclear Bragg scattering (NBS), or nuclear forward scattering

(NFS) of Mössbauer g-rays, it is necessary to consider carefully the scattering

amplitude, scattering cross-section, Lamb–Mössbauer factor fLM and the Debye–

Waller factor fD. We now discuss each of these quantities in detail. Incoherent in-

elastic nuclear resonance scattering, an equally important topic, is considered in

Chapter 7.

6.3.1

Nuclear Resonance Scattering Amplitude

Suppose there is a magnetic hyperfine field (or an electric field) at a Mössbauer

nucleus in the scatterer. The amplitude of the g-ray scattered by this nucleus for

a given incident radiation is [36]

f Nðk 0k0; ee0Þ ¼ 2p

k0

hwje�ik 0 �R l jw0ihw0je ik0�R l jw0i
Eg � E0ðme;mgÞ þ iG=2

�
X
L 0l 0

X
Ll

hIgm
0
gL

0M 0jIemeihIgmgLMjIemei

� e �Y ðl 0Þ
L 0M 0 ðk 0Þ � Y ðlÞ �

LM ðk0Þe0½GgðL 0l 0ÞGgðLlÞ�1=2

� exp½iðhL 0l 0 � hLlÞ� ð6:9Þ

where jw0i and jwi represent the wave functions of initial and final states of the

crystal, l ¼ 1 and 0 in ðLlÞ represent electric and magnetic multipole radiations,

and GgðLlÞ is the g-radiation linewidth for the 2L-order multipole radiation (pro-

portional to the emission probability of this radiation). The ratio of the linewidths

is equal to the mixing parameter d2 of the multipole radiations, i.e., d2 ¼
GgðE2Þ=GgðM1Þ. If the invariance of time T is correct, hL 0l 0 � hLl should be equal

to either 0 or p. When the problem depends on angular momentum, it would be

more convenient to transform Eq. (6.9) using the circular polarization unit vec-

tors (eþ1 and e�1) as defined in Eq. (2.75) and the D function to replace e, e0,

and Y ðlÞ
LM , respectively, and hence

e �Y ðl 0Þ
L 0M 0 ðk 0Þ � Y ðlÞ �

LM ðk0Þe0

¼ 1

8p
hl 0þ1hlþ1

0 ½ð2L 0 þ 1Þð2Lþ 1Þ�1=2DðL 0Þ �
hM 0 ðk 0zÞDðLÞ

h0M
ðk0zÞ: ð6:10Þ

The Mössbauer isotopes currently used for diffraction experiments, such as
57FeðM1Þ, 119SnðE1Þ, 125TeðM1Þ, 141PrðM1Þ, and 183TaðM1Þ, all have pure dipole

transitions, thus d2 ¼ 0. For 57Fe, L 0 ¼ L ¼ 1, and l ¼ l 0 ¼ 0. The elastic scatter-

ing amplitude per nucleus in the jmgi state can be then calculated using Eqs.

(6.9) and (6.10) [37, 38]:
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f N
hh0

¼ hh0

X
M

3

2
Dð1Þ�

hM ðk 0zÞDð1Þ
h0M

ðk0zÞjhIgmg1MjIemeij2

� Gg

2k0

fLM
Eg � E0ðme;mgÞ þ iG=2

ð6:11Þ

where fLM is discussed in Section 6.3.3, and h0, h ¼G1 denote right and left cir-

cular polarizations. The elements of the rotation matrix D are

Dð1Þ
hMðf; y;cÞ ¼ e�ihfdð1ÞhMðyÞe�iMc ð6:12Þ

where the values of dð1ÞhM are given in Eq. (6.6). The summation in Eq. (6.11) over

M means adding up contributions from all me ! mg transitions.

6.3.2

Coherent Elastic Nuclear Scattering

6.3.2.1 Scattering Amplitude

Suppose the solid scatterer is a perfect crystal composed entirely of Mössbauer

atoms, the ground state nuclear spin of the Mössbauer isotope is zero, and the

scatterer is very thin. In this case, the elastic scattering amplitude (6.11) is also

the elastic coherent scattering amplitude.

When the above conditions are not satisfied, the process contains a certain de-

gree of incoherence. As has been mentioned before, there are mainly two reasons

for the incoherence. The first reason is due to the presence of different isotopes,

even though the crystal is perfect. For example, the random distribution of 57Fe in

a perfect bcc Fe metal does not give a fixed phase for the scattered waves. The re-

sult in Eq. (6.11) should be multiplied by the Mössbauer isotope abundance am to

take the isotope incoherence into account. The second reason is due to spin inco-

herence, because the elastic scattering amplitude depends on the mg-component

of the nuclear ground state spin Ig. If Ig 0 0, we need to average Eq. (6.11) over

different mg states to obtain the coherent elastic scattering amplitude [4]:

f N
coh ¼ am

X
mg

pmg
f Nðhh0Þ ð6:13Þ

where pmg
is the relative occupation of the sublevel mg. If the nuclear spins in the

solid are randomly oriented, pmg
¼ ð2Ig þ 1Þ�1.

When the magnetic splittings ðDEÞ of the energy level are either very large or

negligibly small compared to G, Eq. (6.13) can be simplified. In the first case

ðDEgGÞ, the amplitude f N
coh has only one term due to a particular transition be-

tween the excited and the ground sublevels. In the second case ðDEfGÞ, we can
sum over mg, replace all E0ðme;mgÞ by E0, and obtain [36]
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f N
cohðk 0k0; hh0Þ ¼ 3

2

ð2Ie þ 1Þam
3ð2Ig þ 1Þ dð1Þhh0

ðk 0k0Þ Gg

2k0

fLM
Eg � E0 þ iG=2

ð6:14Þ

where the values of dð1Þhh0
are given in Eq. (6.6).

6.3.2.2 Nuclear Bragg Scattering (NBS)

When k0 � k 0 ¼ t, coherent elastic nuclear scattering becomes Bragg scattering.

If the incident radiation is unpolarized, the differential cross-section of the

scattered radiation by a unit cell is

ds

dW
¼ ð2pÞ3

Va
jFr j2dðk0 � k 0 � tÞ ð6:15Þ

where Va is the unit cell volume, t is a reciprocal lattice vector, and

Fr ¼
X
l

f N
cohðk 0k0; hh0Þ exp½iðk0 � k 0Þ � R l�: ð6:16Þ

The summation in (6.16) is for all Mössbauer nuclei, and jFr j2 represents the av-

erage over photon polarization. Based on Eq. (6.8), we obtain

jFr j2 ¼ jFr j2 1þ cos2 y

2
: ð6:17Þ

6.3.2.3 Nuclear Forward Scattering (NFS)

In forward scattering k 0 ¼ k 0, and, according to (6.6), dð1Þhh0
ð0Þ ¼ dhh0

. The four

amplitudes for forward scattering are given by Eq. (6.14):

f N
cohð0; 11Þ ¼ f N

cohð0;�1� 1Þ0 0;

f N
cohð0; 1� 1Þ ¼ f N

cohð0;�11Þ ¼ 0: ð6:18Þ

These indicate that the circular polarization of incident radiation is not changed

after forward scattering. This is true even when the condition DEfG is not sat-

isfied [39]. The forward coherent scattering amplitude calculated according to Eq.

(6.14) is

f N
cohð0; hh0Þ ¼ k0am

8p
dð1Þhh0

ð0Þs0 fLM G

Eg � E0 þ iG=2
: ð6:19Þ

Forward scattering experiments using isotopic Mössbauer sources are very diffi-

cult, and they should be performed using synchrotron Mössbauer radiation.

6.3.2.4 Scattering Cross-Sections

If we integrate the square of Eq. (6.14) and sum over the h-values, we obtain the

coherent elastic scattering cross-section for that nucleus:
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scoh ¼ 2pa2m
3

2Ie þ 1

2Ig þ 1

� �2
Gg fLM

2k0ðEg � E0 þ iG=2Þ
����

����2: ð6:20Þ

Furthermore, according to an optical theorem, we can calculate the total cross-

section sT ¼ ð�4p=k0Þ Im½ f ð0Þ� by using Eq. (6.19):

sT ¼ 2pam
2Ie þ 1

2Ig þ 1

GgG

4k20

fLM

ðEg � E0Þ2 þ G2=4
: ð6:21Þ

For comparing cross-section values, the numerical results for a-Fe at resonance

are calculated according to Eqs. (6.20) and (6.21):

scohA8am
2 � 103b;

sTA4am � 106b

where G ¼ Ggð1þ aÞ, fLMðT ¼ 300 KÞ ¼ 0:67, and a ¼ 8:20 were used. It is obvi-

ous that the coherent scattering cross-section is smaller than the total cross-

section by 2 or 3 orders of magnitude.

6.3.3

Lamb–Mössbauer Factor and Debye–Waller Factor

As we know, in a scattering process the Lamb–Mössbauer factor fLM very closely

resembles the Debye–Waller factor fD. In fact, they originate from the same ex-

pression under the condition of either the ‘‘slow’’ or the ‘‘fast’’ scattering process.

This expression is hwje�ik 0 �R l jw0ihw0je ik0�R l jw0i as in Eq. (6.9). In order to illus-

trate the differences between the two factors fLM and fD, it is better to transform

the resonance elastic scattering amplitude f N into a time-dependent representa-

tion [40]:

f N ¼ Gg

2ik

ðy
0

dte iðo�o0Þte�ðG=2�hÞthe�ik 0 �R lðtÞe ik0 �R lð0Þi: ð6:22Þ

Due to the long lifetime of its excited state, Mössbauer resonance scattering is a

‘‘slow’’ process. Typical scattering times are �h=GA10�9–10�6 sgom
�1, where

om is the maximum vibration frequency of the nucleus about its equilibrium po-

sition and is of the order of 1013 rad s�1. Therefore, for all practical purposes

t ! y and the correlation positions R lðt ! yÞ and R lðt ¼ 0Þ can be neglected.

This permits one to carry out the thermal average of the g-ray absorption and re-

emission processes separately. As a result, the Lamb–Mössbauer factor can be re-

duced to

fLM ¼ hexp½�ik 0 � R lðt ! yÞ� exp½ik0 � R lðt ¼ 0Þ�i

¼ exp � 1

2
ðk 0 � R lÞ2

� �
exp

1

2
ðk0 � R lÞ2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðk 0Þ f ðk0Þ

q
ð6:23Þ
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where f ðk0Þ and f ðk 0Þ are the recoilless fractions of g-ray absorption and emis-

sion in the directions k0 and k 0, respectively. In nuclear resonance scattering the

above expression is usually called the Lamb–Mössbauer factor. If the motion of

scattering nuclei is isotropic, then

fLM ¼ ½ f ðk 0Þ�2 ¼ ½ f ðk0Þ�2 ¼ f : ð6:24Þ

On the other hand, for non-resonance Rayleigh scattering and x-ray scattering,

the characteristic scattering times are �h=GA10�16–10�15 s and hence these pro-

cesses are fast compared to om
�1. In this case, we have effectively tA0, which

gives the Debye–Waller factor:

fD ¼ hexp½�ik 0 � R lðtA0Þ� exp½ik0 � R lðt ¼ 0Þ�i
Ahexp½�iðk 0 � k0Þ � R l�i: ð6:25Þ

Therefore, the two factors are not identical but provide the same information con-

cerning the dynamics of a given crystal, because they contain the following com-

mon factor due to the same thermal averaging:

ð
1

o
coth

1

2
�hob

� �
gðoÞ do:

For a harmonic lattice, the Lamb–Mössbauer factor fLM in forward scattering or

in transmission geometry is simply related to the Debye–Waller factor fD by

ln fLM ¼ k20
Q 2

ln fD ð6:26Þ

where vectors k0 and Q are in the same direction.

6.4

Rayleigh Scattering of Mössbauer Radiation (RSMR)

6.4.1

Basic Properties of RSMR

Rayleigh scattering is an elastic scattering of electromagnetic waves, and it occurs

widely in light, x-ray and g-ray scatterings by electron shells of atoms in a variety

of condensed matter materials. Its scattering cross-section, proportional 1=l4, is

considered as a characteristic feature. In RSMR experiments, the scattered g-ray

is analyzed by a resonant absorber inserted between the scatterer and the detec-

tor. In other words, RSMR can detect an energy change comparable to the typical

width of a Mössbauer line (@10�9 eV for 57Fe). So, RSMR may be regarded as x-
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ray spectroscopy with high energy resolution. Therefore, the elastic and inelastic

scatterings can be separated with a high precision. As a result, this method has

been used widely for studying liquids as well as solids, not containing the Möss-

bauer isotope. As discussed above, RSMR is not only elastic, but also coherent.

There have been published a special monograph [41] and several review articles

[6, 42–45] on this new methodology. A disadvantage of this technique is its very

low count rate when a radioactive Mössbauer source is used, but this has been

recently overcome by using high-intensity synchrotron radiation sources.

The general theory of Rayleigh scattering is essentially the same as that of con-

ventional x-ray scattering. The scattering differential cross-section is written in a

form similar to Eq. (4.120):

IðQ;oÞ ¼ d2
s

dW dE
¼ NjFðQÞj2SðQ;oÞ ð6:27Þ

where N is the number of atoms in the crystal, the factor FðQÞ is given by the

Thomas–Rayleigh formula, and SðQ;oÞ is the scattering function. We are mostly

interested in SðQ;oÞ, which describes the dynamic properties of the scatterer, as

has been introduced earlier in Eq. (4.121). Unlike neutron scattering, the energy

transferred in x-ray (and g-ray) scattering (i.e., the phonon energy) is much

smaller than the incident energy. Therefore, SðQ;oÞ is difficult to measure, and

one usually obtains the total integrated function instead:

SðQÞ ¼
ðy
�y

SðQ;oÞ do: ð6:28Þ

Accordingly, integrating Eq. (6.27) gives

ds

dW
¼ NjFðQÞj2SðQÞ: ð6:29Þ

To find an explicit expression for SðQÞ, we substitute (4.124) into (6.28) and get

SðQÞ ¼ 1

N

X
ll 0

he�iQ�uðl; 0Þe iQ�uðl 0; 0Þie iQ�ðl 0�lÞ: ð6:30Þ

If we take the harmonic approximation again by expanding Eq. (6.30) according

to Eq. (4.128):

SðQÞ ¼ S0ðQÞ þ S1ðQÞ þ S2ðQÞ þ � � � ð6:31Þ

where the first term corresponds to elastic scattering, SelðQÞ ¼ S0ðQÞ, while the

other terms involve one or more phonons and correspond to inelastic scattering

processes, SinðQÞ ¼ S1ðQÞ þ S2ðQÞ þ � � �
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The scattering function SelðQÞ can be derived directly from (6.30) for the zero-

phonon process:

SelðQÞ ¼ e�2W

N

X
ll 0

e iQ�ðl 0�lÞ: ð6:32Þ

For a single crystal, SelðQÞ is nonzero only when Q ¼ t, which predicts a diffrac-

tion peak at the Bragg angle.

Inelastic scattering is basically the familiar thermal diffuse scattering (TDS)

caused by lattice vibrations. Because TDS overlaps with the Bragg diffraction

peak and is not easy to separate, it is difficult to extract the lattice dynamics infor-

mation contained in it. Fortunately, RSMR provides a means to separate inelasti-

cally scattered radiation from elastically scattered radiation, and this has re-

kindled research interest in TDS.

It can be shown that the scattering function SinðQÞ takes the following form:

SinðQÞ ¼ 1� e�2W þ 1

N
e�2W

X
l0l 0

½eQ 2huðlÞ�uðl 0Þi � 1�e iQ�ðl�l 0Þ: ð6:33Þ

For a perfect crystal, we may use the general expression for uðlÞ to show how

photons are scattered by phonons. If we consider only the single-phonon process:

S1ðQÞ ¼ 1

N
e�2W

X
l0l 0

hQ � uðlÞQ � uðl 0Þie�iQ�ðl 0�lÞ ð6:34Þ

and after substituting for uðlÞ, it becomes [41]

S1ðQÞ ¼ 1

2M
e�2W

X
j

½Q � eðkjÞ�2 h2njðkÞ þ 1i

ojðkÞ : ð6:35Þ

Now we will be able to calculate the scattered g-ray intensity in the single-phonon

process. If we first assume T ¼ 0, then according to Eqs. (6.27) and (6.35) we

obtain

I1in ¼ NjFðQÞj2 1

2M
e�2W

X
j

½Q � eðkjÞ�2 1

ojðkÞ : ð6:36Þ

When the temperature is raised such that kBTg �hojðkÞ, which means

hnjðkÞiþ 1=2AkBT=�hojðkÞ, then

I1in ¼ NjFðQÞj2e�2W kBT

�hM

X
j

½Q � eðkjÞ�2 1

o2
j ðkÞ

: ð6:37Þ
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The above two intensity expressions describe TDS in the reciprocal space, and

both intensity distributions are relatively flat. But for small k-values and when Q

falls near a reciprocal lattice vector t, TDS increases drastically. This indicates that

the TDS contribution originates mainly from the phonons in the acoustic branch

ðoz kÞ; thus the intensity is proportional to 1=k. An important conclusion is that

the maxima of TDS occur at the reciprocal lattice points, which correspond to the

Bragg diffraction positions. In most cases, the relation between TDS and temper-

ature can be expressed as

I1inATe�2W : ð6:38Þ

Regarding deriving the Debye–Waller factor fD ¼ e�2W from TDS, it is exactly

the same as that in neutron scattering. The g-photon energy change is usually

less than 10�3 eV in TDS. The energy resolution of ordinary x-ray spectroscopy

is very poor, not enough to separate the small TDS from elastic scattering, both

of which contribute to the same Bragg peak. Consequently, using Eq. (6.32) to

analyze x-ray diffraction intensity will not give an accurate result for the Debye–

Waller factor e�2W , and for the subsequent determination of the mean-square

displacement hu2i and the Debye temperature yD. Furthermore, because of the

incomplete separation, the phonon information contained in TDS is also very

difficult to extract. But these two scattering components can be separated by the

RSMR method.

6.4.2

Separation of Elastic and Inelastic Scatterings

An experimental method for separating the Bragg peak and TDS was developed

in 1963 [46], and its main principle is indicated in Fig. 6.1(a) where the analyzer

A is at rest. The source velocity is adjusted to vr so that after the incident g-ray is

scattered from the single crystal it may be resonantly absorbed by the analyzer A.

If the g-ray is inelastically scattered and loses or gains an amount of energy larger

than 10�9 eV (for 57Fe), the energy will not be resonantly absorbed, but transmit-

ted through the analyzer A. Therefore, this method cleanly separates the elastic

and inelastic scattering components. Also, the probability for a non-resonant inci-

dent g-photon having the resonance energy after inelastic scattering is extremely

small.

First, let IyðyÞ and IrðyÞ be the counts of scattered photons at angle y for off-

and on-resonance between the source and analyzer, respectively. The scattering

angle y is related to the Bragg angle yB by y ¼ 2yB. The following ratio is pro-

portional to the fraction of recoilless g-rays which are scattered elastically by the

crystal:

x ¼ IyðyÞ � IrðyÞ
IyðyÞ : ð6:39Þ

236 6 Mössbauer Scattering Methods



Next, the scatterer is removed, and the analyzer A together with the detector is

rotated counterclockwise by an angle y. The counts of transmitted photons are

then recorded as IðyÞ and IðvrÞ, from which the parameter eðvrÞ is evaluated ac-

cording to Eq. (1.24):

eðvrÞ ¼ IðyÞ � IðvrÞ
IðyÞ :

It is easy to see that the elastically scattered fraction of incident radiation is

x=eðvrÞ, and the inelastically scattered fraction is 1� x=eðvrÞ. Therefore, the re-

spective scattered intensities are

Iel ¼ IyðyÞ x

eðvrÞ ¼
IyðyÞ � IrðyÞ

eðvrÞ ð6:40Þ

Iin ¼ IyðyÞ 1� x

eðvrÞ
� �

¼ IyðyÞ � Iel: ð6:41Þ

When using these two expressions, one must pay attention to the following two

points. (1) The accurate measurement of eðvrÞ may be complicated by background

counts. A 122 keV photon from a 57Co source after Compton scattering may

cause background counts. Although background in the numerator of the eðvrÞ ex-
pression is canceled, the one in the denominator remains. It has been pointed

out [49] that eðvrÞ ¼ 0:39 and 0.47 for without and with background correction,

respectively. Therefore, background correction must be included or the resultant

Iel value would be overestimated. (2) Even when the background in a scattering

experiment is very small, it may still be significant when the inelastic portion is

to be evaluated, because the fraction of inelastic Rayleigh scattering is also very

small.

In order to circumvent the difficulties of measuring background, an approach

using four measurements was developed [41, 47], and it is briefly described be-

low.

When the source velocity is large so that no resonant absorption takes place in

the analyzer A placed between the scatterer and the detector, the photon count is

IyðyÞ ¼ Ið0ÞPe�mad þ Ib ð6:42Þ

where ma is the atomic mass absorption coefficient, d is the thickness of analyzer

A, Ib is the background count, Ið0Þ is the total number of photons from the

source due to all Mössbauer transitions, and

P ¼ IyðyÞ
IðyÞ ¼ Iel þ Iin

IðyÞ ¼ Pel þ Pin ð6:43Þ

is the total scattering probability of the incident g-rays being scattered in the y

direction.
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The second measurement is carried out after the source velocity is adjusted to a

resonant energy, and the photon count is

IrðyÞ ¼ Ið0Þ fsPele
�ðmaþmrÞd þ Ið0Þ fsPine

�mad þ Ið0Þð1� fsÞPe�mad þ Ib ð6:44Þ

where the first and second terms correspond to the intensities of elastic and in-

elastic scatterings of the recoilless radiation, and the third term is the scattered

intensity of the non-recoilless radiation. Comparing this with Eq. (1.17), we see

that the energy distribution of the incident radiation has not been taken into

consideration.

We then move the analyzer so that it is now between the source and the scat-

terer, and carry out the third and fourth measurements, obtaining

I 0yðyÞ ¼ Ið0Þe�madP þ I 0b ð6:45Þ

and

I 0rðyÞ ¼ Ið0Þ fse�ðmaþm rÞdP þ Ið0Þð1� fsÞe�madP þ I 0b: ð6:46Þ

To facilitate the understanding of each term, we have written the factors in each

of the terms in Eqs. (6.42), (6.44), (6.45), and (6.46) in the same order as the se-

quence of events in each process. For example, Ið0Þe�madP indicates that the radi-

ation is first absorbed then scattered, while Ið0ÞPe�mad indicates the reverse order.

Also, the detector is assumed to have a 100% efficiency.

According to the results of these four measurements

DI ¼ Iy � Ir ¼ Ið0ÞPel fse
�madð1� e�mrdÞ; ð6:47Þ

DI 0 ¼ I 0y � I 0r ¼ Ið0ÞP fse
�madð1� e�mrdÞ: ð6:48Þ

Therefore, the final results are

Iel
Iel þ Iin

¼ Pel

P
¼ DI

DI 0
; ð6:49Þ

Iin
Iel þ Iin

¼ 1� DI

DI 0
: ð6:50Þ

Because measuring background is not required in this method and parameters

such as ma, mr, f , and Ið0Þ do not appear in (6.49) and (6.50), the separation of

elastic and inelastic scatterings is much more accurate. Strictly speaking, if the

energy distribution of the incident radiation is considered, Iel should be propor-

tional to the area under the Mössbauer spectrum. If the scattering spectrum

does not change its shape, then the above separation method is still valid except

that the intensity should be understood as the integrated intensity.
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The experimental procedure of the four-measurement method is very tedious.

A well-planned two-measurement experiment has been reported [48], and a sepa-

ration accuracy was achieved of better than 1% with 57Co/Rh as the source and
57Fe/Rh as the analyzer. The source and the scatterer could be rotated in two mu-

tually perpendicular planes, with accurate goniometers. Shielding was by multi-

layers of lead, brass, and aluminum, and the collimator was made of pure alumi-

num (99.999%). The background count rate was reduced to 0.02 per second. The

output of a high energy-resolution Si(Li) detector was processed by two multi-

channel analyzers, one in multichannel scaling (MCS) mode and the other in

pulse-height analysis (PHA) mode, the latter used for background determination.

The distance between source and scatterer was 15.5 cm, and that between scat-

terer and detector was 9.5 cm. The divergence of the scattered beam was 0.65� in
the horizontal direction and 1.4� in the vertical direction. Figure 6.14 shows the

Rayleigh scattering results from the single-crystal Si(4 0 0) plane, and Table 6.1

lists the elastic fractions and their accuracies for four different scattering angles.

From the above example, we see that the Mössbauer effect can be used to iso-

late the elastic scattering, accurately measure the Bragg peak intensity, and there-

fore provide more reliable values of the Debye–Waller factor, hu2i, and the Debye

temperature yD, all very useful parameters in structural analysis and lattice dy-

namics studies.

Now the inelastic portion of the scattering has been separated from the total

scattering. Although the phonon spectrum still cannot be deduced, other dy-

Fig. 6.14 RSMR intensity as a function of scattering angle near the

Bragg angle for reflection from the single-crystal Si (4 0 0) plane.
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namic information can be extracted. Figure 6.15 shows inelastic scattering in-

tensity Iin as a function of temperature for single-crystal Si and KCl [49, 50]. For

the Si(4 4 4) reflection, the line in Fig. 6.15(a) is the calculated result using the

single-phonon approximation, which agrees with the experiment. However, for

the KCl(10 0 0) reflection, the single-phonon approximation produced a poor

agreement as shown by the dashed line in Fig. 6.15(b), and only when multiple-

phonon processes were included did the calculated result (solid line) yield a good

fit. Figure 6.16 shows similar results, but the inelastic scattering intensity is plot-

ted against the scan angle near yB. The solid lines in Fig. 6.16 were calculated us-

ing the single-phonon approximation. For the Si(8 0 0) reflection, when the scan

angle is larger than 2.5�, the discrepancy grows, indicating that the single-phonon

process is mainly concentrated near yB.

Other RSMR experimental methods have also been developed, e.g., using

the transmission Laue method instead of Bragg scattering, and using amorphous

solids or viscous liquids instead of single crystals or polycrystals. Rayleigh scatter-

ing of Mössbauer radiation has been recognized as a valuable method, especially

Table 6.1 Elastically scattered fraction x=eðvrÞ near the (4 0 0) Bragg reflection.

y (̊ ) x/e(vr)

17.97 0.79(1)

18.30 0.898(9)

18.48 0.888(9)

18.64 0.916(8)

Fig. 6.15 Inelastic scattering intensity Iin as a function of temperature

for g-rays scattered from (a) the (4 4 4) plane of single-crystal Si and

(b) the (10 0 0) plane of single-crystal KCl. In (b), assuming only the

single-phonon process produced the dashed line, and multiple-phonon

processes were required to yield a satisfactory fit (solid curve).
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in surface sciences and for studying the structures and dynamics of large biolog-

ical molecules.

6.4.3

Measuring Dynamic Parameters Using RSMR

For Rayleigh scattering, the Debye–Waller factor is

fD ¼ e�2W ¼ e�Q 2hu2i:

For a Bragg reflection ðQ ¼ k 0 � k0 ¼ tÞ, we have

W ¼ B
sin yB

l

� �2
ð6:51Þ

where B ¼ 16p2hu2i and l ¼ 0:8602 Å (for Eg ¼ 14:4 keV).

The following two experimental approaches can be used to obtain dynamic pa-

rameters. In the first approach, at a fixed temperature, W is measured for differ-

ent values of sin yB=l, which will give hu2i and thus the Debye temperature yD.

In the second approach, the scatterer temperature is changed and hu2i is ob-

tained as a function of temperature, which will also give yD.

Fig. 6.16 Dependence of the ratio of the inelastic scattering intensity Iin
to the Bragg intensity IBragg on the scan angle for reflections from (a)

the (4 0 0) plane and (b) the (8 0 0) plane of single-crystal Si [48].
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6.4.3.1 The Fixed Temperature Approach

The incident g-ray beam is not completely parallel but has a certain divergence.

Also, the scatterer is not an ideal crystal, but may contain some defects. These

imperfections cause the diffracted rays to be not completely concentrated at the

Bragg angle yB, but having an angular distribution. Therefore, to calculate the

actual diffraction intensity, we need to integrate Eq. (6.32) over a region within

yB GDyB. The integrated diffraction intensity is proportional to the elastic scatter-

ing intensity recorded by the detector within a specific time period, and it is given

by [51]

IelðyBÞ ¼ CjFðyBÞj2e�2W 1þ cos2 2yB
sin 2yB

ð6:52Þ

where C is a constant. With the definition

IelðyBÞ sin 2yB

jFðyBÞj2ð1þ cos2 2yBÞ
1EðyBÞ

and combining Eqs. (6.51) and (6.52), we get

ln EðyBÞ ¼ lnðCe�2WÞ ¼ ln C � 2B
sin yB

l

� �2
: ð6:53Þ

The scattering form factor FðyBÞ has been tabulated and is readily available. From

the experimental Iin data, the quantity EðyBÞ can be calculated, and when its log-

arithm is graphed against ðsin yB=lÞ2, a linear relation is expected and the slope

is just �2B.
This method has been used to study the Rayleigh scatterings from single-

Fig. 6.17 Total scattering intensity (filled circles) and elastic scattering

intensity (open circles) as functions of scattering angle for single-crystal KCl.
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crystal Al(1 1 1) and KCl(2 0 0) reflections (Fig. 6.17) [51]. The Debye tempera-

tures yD derived from these experiments are listed in Table 6.2, where in column

a under the RSMR method are the yD-values calculated from total scattered inten-

sities and in column b are the yD-values from the elastically scattered intensities.

One important observation is that the yD results from the elastically scattered in-

tensities are always somewhat lower than the corresponding results from the total

scattered intensities (which include inelastic scattering). The Debye temperature

for aluminum has been measured by several authors using x-ray diffraction, and

their results are slightly higher than the RSMR result. The x-ray data contained

relatively large errors because of small number of experimental data points.

At each fixed temperature, a B-value can be measured, which leads to hu2i and

fD. Therefore, this approach allows absolute measurements of these parameters,

and is a very useful method.

6.4.3.2 The Variable Temperature Approach

The scattering angle is now fixed at the Bragg angle yB. The elastically scattered

intensity is measured as a function of temperature, and an experimental fDðTÞ
curve is obtained. Using the explicit expression for hu2i based on the Debye

model, Eq. (6.51) can be used to fit the experimental data. In this approach,

more data points may be measured to reduce experimental uncertainty. Debye

temperature values have been obtained using this approach of the RSMR method

from the Al(1 1 1) and KCl(4 0 0) reflections as well as from a Ni crystal. The

yD-values for Al and KCl using this approach are 387 and 202 K, respectively.

Table 6.3 lists the yD-value for Ni from this method, along with the results from

other methods. Note that the Ni yD-value from the RSMR method is smaller than

that from the x-ray diffraction method.

Unfortunately, it is very difficult to obtain the phonon spectrum from the

isolated inelastic portion of Rayleigh scattering. The Mössbauer effect does not

Table 6.2 Results of Debye temperature yD (K) for Al and KCl at room

temperature. Under the RSMR method, values in column a were

obtained from the total scattered intensities while those in b were

obtained from the elastically scattered intensities.

RSMR method [51]X-ray diffraction

method [52]

a b

Neutron scattering

method [53]

Al 390G 10 400G 14 387G 14 386G 10

410G 9

397

389G 2

KCl 240 213G 5 202G 5 –
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seem to have any advantage, and there have been no reports of measurements of

phonon spectra using RSMR.

6.4.4

RSMR and Anharmonic Effect

6.4.4.1 Using Strong Mössbauer Isotope Sources

In principle, RSMR is a very accurate method for studying the Debye–Waller fac-

tor fD, but its application has been limited because the Mössbauer isotope sources

are not strong enough. For the most common 57Co source, its activity is seldom

higher than 9:25� 109 Bq (250 mCi) due to reasons such as self-absorption. Even

when such a strong source is used, it would still take several months to complete

the measurements for a sample [48]. There had been no reports of drastic im-

provement of accuracy in measuring fD before the 1980s, when a strong 183Ta

source was successfully produced (@2:6� 1012 Bq) by placing a thin 181Ta foil

irradiated under a flux of 4� 1014 neutrons cm�2 s�1 for a week [56]. A 183Ta

source has Eg ¼ 46:48 keV and a half-life of 5.1 days. Although 183Ta has a short

lifetime and a small maximum resonance cross-section s0, the estimated Mössba-

uer intensity of the 2:6� 1012 Bq 183Ta source is higher than a 3:7� 109 Bq 57Co

source by a factor of 500. In addition, the self-absorption in the 183Ta source is

negligibly small. The natural linewidth of the 46.48 keV Mössbauer radiation is

2:5� 10�6 eV, which is about four orders of magnitude smaller than the typical

phonon energy and is suitable for separating the elastic and inelastic components

in RSMR. Using such a strong source, the absorption spectrum and recoilless

fraction f of metallic tungsten have been extensively studied [57], and the f -
values are listed in Table 6.4. It can be seen that the accuracy of the f -values
is better than 1%, a significant improvement over previous results. Fitting the

experimental data using the Debye model gave yD ¼ 336:5 K. Also, the internal

conversion coefficient was determined to be a ¼ 8:76. The first Mössbauer study

of metallic W using the 46.48 keV radiation was in 1962 [58], in which

yD ¼ 320þ70
�40 K and a ¼ 11:0 were deduced. The internal conversion coefficient in

that study was obviously too high.

A special instrument known as QUEGS (quasi-elastic gamma-ray scattering)

was designed [56] to be used for scattering experiments including RSMR. In

addition to using a strong Mössbauer source, this instrument also has better

specifications, such as angular resolution Dy improved from 2.4� to 0.08� and mo-

Table 6.3 Results of Debye temperature yD (K) for Ni at room temperature.

X-ray diffraction

method [54]

Specific heat

method [54]

RSMR

method [54]

Mössbauer absorption

method [55]

Ni 417 441 406 413–437
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mentum resolution from 0.340 to 0.011 Å�1. Also, between the source and the

scatterer is inserted a LiF(2 0 0) monochromator, which elastically scatters the

46.48 keV Mössbauer radiation with an almost 100% efficiency while greatly re-

ducing other radiations.

6.4.4.2 Using Higher Temperature Measurements

The anharmonic effect is usually studied by accurate measurements of the

Debye–Waller factor, as discussed in Chapter 5. However, this effect becomes sig-

nificant only when higher order Bragg reflections are measured at high enough

temperatures. Under such experimental conditions, the thermal diffuse scatter-

ing component is also very large. Therefore, neutron or x-ray scattering experi-

ments give poor results for the anharmonic effect. The ability to separate differ-

ent scattering components in RSMR therefore becomes very advantageous [59,

60].

When the anharmonic effect exists, fD is the same as Eq. (5.16), except for scat-

tering vector Q replacing the wave vector k:

e�2W ¼ exp �Q 2hu2
Qi�Q 4

12
½3hu2

Qi
2 � hu4

Qi� þOðQ 6Þ
	 


ð6:54Þ

where hu2
Qi is the atomic mean-square displacement in the Q direction and the

quantity in brackets is known as the non-Gaussian term. The above expression

has been discussed in detail in the literature [61, 62]. For cubic crystals at high

temperatures ðT > yDÞ, we have [63]

hu2
Qi ¼ 3�h2

MkBy
2
D

T þ g2T
2 þ g3T

3 ð6:55Þ

and

Table 6.4 The f -values of metallic W at various temperatures (not

corrected for thermal expansion).

Temperature (K) f (T )

80 0.634(2)

297 0.299(1)

373 0.229(1)

469 0.155(1)

572 0.104(1)

621 0.0847(3)

663 0.0696(4)

770 0.0460(2)

869 0.0298(2)
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3hu2
Qi

2 � hu4
Qi ¼ g4T

3: ð6:56Þ

Because V3 0 0 and V4 0 0 in Eq. (4.12), g2 and g3 represent contributions from

the isotropic anharmonic effect (including thermal expansion) and g4 represents

the anisotropic anharmonic contribution depending on Miller indices. These an-

harmonic effect coefficients can be obtained by fitting the experimental data of

Debye–Waller factor fD as functions of Q and T. This is because the elastically

scattered intensity is

IelðQ;TÞ ¼ Ce�2WðQ;TÞ

or

ln IelðQ;TÞ ¼ �2WðQ;TÞ þ C:

Using Eqs. (6.54), (6.55), and (6.56), we obtain

�ln IelðQ;TÞ ¼ 2WðQ;TÞ � C

¼ Q 2 3�h2

MkBy
2
D

T þQ 2g2T
2 þQ 2g3T

3 þQ 4

12
g4T

3 � C: ð6:57Þ

Consider the Cu(2 0 0) and Cu(4 0 0) reflections, with the corresponding scatter-

ing vectors Q1 and Q2. Suppose we now measure the Bragg scattering intensities

at two temperatures T0 and T from these two reflections: IelðQ1;T0Þ, IelðQ1;TÞ,
IelðQ2;T0Þ, IelðQ2;TÞ. Let the non-Gaussian terms be

g4T
3
0 1DðT0Þ and g4T

3 1DðTÞ:

Substitute these into Eq. (6.57) and after simple rearrangements, we obtain

DðTÞ � DðT0Þ ¼ 12

Q 2
1 �Q 2

2

1

Q 2
1

ln
IelðQ1;T0Þ
IelðQ1;TÞ

� 1

Q 2
2

ln
IelðQ2;T0Þ
IelðQ2;TÞ

� �
: ð6:58Þ

On the other hand, from the definitions of DðT0Þ and DðTÞ, we get

DðTÞ � DðT0Þ ¼ g4ðT 3 � T 3
0 Þ: ð6:59Þ

Suppose we measure IelðQ1;T0Þ and IelðQ2;T0Þ at T0 ¼ 300 K, and measure

IelðQ1;TÞ and IelðQ2;TÞ at various higher temperatures T. Using the measured

intensity values in Eq. (6.58), we can calculate DðTÞ �DðT0Þ and plot this quan-

tity as a linear function of T 3 � T 3
0 , whose slope is g4. The experimental results

for Al [42], NaCl [59], and Zn [60] are shown in Fig. 6.18. Similar linear relations

are also found for Cu [63, 64] and KCl [65]. For metallic Zn, the straight line does
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not go through origin, indicating that the anharmonic effect is only appreciable at

room temperature.

Based on the Rayleigh scattering data from a fixed plane at different tempera-

tures, quantities related to the Debye–Waller factor e�2W can be deduced. Figure

6.19 shows the results for Cu scatterers using different radiation sources. In Fig.

6.19(a), the calculated curves using the harmonic approximation and Morse an-

harmonic potential are included for the (2 0 0) reflection. The anharmonic coeffi-

cients derived from the fittings are listed in Table 6.5 and dynamic parameters

for Cu obtained from different Mössbauer sources are listed in Table 6.6. It can

be seen from Fig. 6.19 that the fitted curves agree with experiments very well, in-

dicating that the measurements were made quite accurately.

However, discrepancies are often found among results reported by different au-

thors, due to the fact that the anharmonic effect is relatively small and due to dif-

ferences in experimental conditions and in single-crystal sample qualities. For ex-

ample, the g4 values for NaCl reported by different authors show a considerable

disagreement.

Fig. 6.18 Plots of the non-Gaussian term ½DðTÞ � DðT0Þ� versus ½T 3 � T0
3� for T0 ¼ 300 K.

6.4 Rayleigh Scattering of Mössbauer Radiation (RSMR) 247



Fig. 6.19 Raleigh scattering results from Cu scatterers using M€oossbauer

radiation from (a) a 183Ta source and (b) a 57Co source.

Table 6.5 Dynamics parameters of Cu, Ag, and Pb [63].

Crystal yD (K) g2 (Å
2 KC2) g3 (Å

2 KC3) g4 (Å
4 KC3)

Cu 312(3) 4:3ð8Þ � 10�9 �2ð8Þ � 10�13 6:0ð8Þ � 10�14

Ag 214(4) 2ð1Þ � 10�9 7:7ð9Þ � 10�12 4:2ð7Þ � 10�13

Pb 83(10) �7ð2Þ � 10�8 2:0ð3Þ � 10�10 8ð1Þ � 10�12
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1373 (1968)].

21 V.K. Voitovetskii, I.L. Korsunskii,

Yu.F. Pazhin, and R.S. Silakov.

Resonant Bragg scattering of gamma

rays by nuclei in high orders of

reflection, and production of directed
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original: ZhÉTF 64, 261–272 (1973)].

23 R.M. Mirzababaev, V.V. Sklyarevskii,

and G.V. Smirnov. Azimuthal

dependence of the purely nuclear

diffraction for 14.4 keV resonant

gamma-rays. Phys. Lett. A 41, 349–

350 (1972).

24 H. Bokemeyer, K. Wohlfahrt, E.

Kankeleit, and D. Eckardt. Mössbauer
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(1965)].

27 Yu. Kagan, A.M. Afanas’ev, and I.P.

Perstnev. Theory of resonance Bragg

scattering of g quanta by regular

crystals. Sov. Phys. JETP 27, 819–824

(1968) [Russian original: ZhÉTF 54,
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ZhÉTF 42, 115–123 (1962)].

59 N.M. Butt and G. Solt. Anharmonic

non-Gaussian contribution to the

Debye–Waller factor for NaCl. Acta
Crystallogr. A 27, 238–243 (1971).

60 G. Albanese, A. Deriu, and C. Ghezzi.

Anharmonic contributions to the

Debye–Waller factor for zinc. Acta
Crystallogr. A 32, 904–909 (1976).

61 A.A. Maradudin, P.A. Flinn, and C.

Ghezzi. Anharmonic contributions to

the Debye–Waller factor. Phys. Rev.
129, 2529–2547 (1963).

62 G.A. Wolfe and B. Goodman.

Anharmonic contributions to the

Debye–Waller factor. Phys. Rev. 178,
1171–1189 (1969).

63 J.T. Day, J.G. Mullen, and R.C.

Shukla. Anharmonic contribution to

the Debye–Waller factor for copper,

silver, and lead. Phys. Rev. B 52, 168–

176 (1995). Erratum: Phys. Rev. B 54,

15548 (1996).

64 C.J. Martin and D.A. O’Connor.

Anharmonic contributions to Bragg

diffraction: I. Copper and aluminium.

Acta Crystallogr. A 34, 500–505 (1978).

65 C.J. Martin and D.A. O’Connor.

Anharmonic contributions to

Bragg diffraction: II. Alkali halides.

Acta Crystallogr. A 34, 505–512

(1978).

66 J. de Launay. The theory of specific

heats and lattice vibrations. In Solid
State Physics, vol. 2, F. Seitz and D.

Turnbull (Eds.), pp. 219–303

(Academic Press, New York, 1956).
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7

Synchrotron Mössbauer Spectroscopy

It was in 1974 that the possibility of using synchrotron radiation (SR) as a source

for Mössbauer measurements was proposed [1], but not until 1985 did a break-

through take place when SR with an energy width of 10�8 eV at 14.413 keV was

obtained and used to observe the transmission spectrum of stainless steel [2]. SR

provides polarized pulsed radiation of high intensity, high collimation, and nar-

row beam. The only drawback is that SR is far from monochromatic. However,

its energy can be adjusted and it can cover an energy range for a majority of

Mössbauer transitions. Initially, the high intensity of the SR source was exploited

for scattering experiments where conventional radiation sources could not pro-

vide adequate results. Soon after, it was realized that the pulsed nature of SR is

most suitable for measuring time spectra – using a short SR pulse (<10�10 s) to

excite a nuclear ensemble to form a so-called exciton and observing its coherent

decay at different time intervals. The third-generation synchrotron storage rings

can give a pulse of 100 ps every 2–3 ns. Therefore, the method measuring time

spectra is called time domain Mössbauer spectroscopy whereas the transmission

method is referred to as energy domain Mössbauer spectroscopy. In the past two

decades, significant progress has been made in synchrotron Mössbauer spectros-

copy, especially in the time domain method, providing a direct and efficient

approach to the study of the Mössbauer effect and hyperfine fields. There have

emerged several new research areas which are not accessible with the conven-

tional radiation sources. One of the exciting advances was the phonon DOS mea-

sured by SR sources in 1995. It had been known as soon as the Mössbauer effect

was discovered that a phonon DOS could be measured by this effect, but because

of technical difficulties it was not realized until SR became available.

At the present time, third-generation SR sources are in operation, such as those

at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), the

Advanced Photon Source (APS) in Argonne (USA), and the Super Photon ring

(SPring-8) in Hyogo (Japan). The most distinct advantage of SR is its high bril-

liance (measured in photons s�1 eV�1 sr�1 mm�2). The brilliance of a third-

generation SR source is about 9 to 10 orders of magnitude higher than that of a

rotating target x-ray generator, and about 12 orders of magnitude higher than that

of a 57Co source of 3:7� 108 Bq. However, SR sources require an enormously

large and costly facility, and will not be available in ordinary Mössbauer laborato-
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ries. The time spectra are usually quite complicated. Therefore, the SR sources

will not replace the conventional radiation sources. The fact that transmission

Mössbauer spectroscopy is regarded as a ‘‘classical’’ method by some authors im-

plies that synchrotron Mössbauer spectroscopy has opened a modern era of this

research field. In this chapter, we briefly describe synchrotron Mössbauer spec-

troscopy and its possible applications in lattice dynamics. The reader may find

more in a specialized volume devoted to the theory and experiments of this sub-

ject [3].

7.1

Synchrotron Radiation and Its Properties

When a charged particle undergoes a circular motion in a magnetic field, it radi-

ates electromagnetic waves because of its large centripetal acceleration. It was dis-

covered in 1948 that the radiation from electrons in a synchrotron accelerator is

very unique (known as synchrotron radiation), having high intensity, narrow

beam width, adjustable energy, and a broad energy spectrum. It was soon recog-

nized that SR can serve as ideal radiation sources in the energy range of 10 eV to

100 keV for applications in all scientific research. High-energy electron synchro-

trons for producing SR have been constructed in many countries around the

world. Both classical and quantum mechanical theories of SR have been success-

fully developed and described in detail in textbooks [4, 5]. Here, we will simply

quote the results to discuss some of the properties of SR.

7.1.1

The Angular Distribution of Radiation

If we consider the electron motion as nonrelativistic, the radiation has the dipole

pattern, and its power distribution is

dP

dW
¼ e2

16p2e0c
3
j _vv j2 sin2 c ð7:1Þ

where c is the angle between the radiation direction unit vector n and the accel-

eration vector _vv. It is easy to see that the power is maximum in the directions per-

pendicular to acceleration, and it is zero along the acceleration. When the elec-

tron energy is very high, the motion must be treated as relativistic ðb ¼ v=cA1Þ,
and after Lorentz transformation the dipole radiation in the rest frame of the elec-

tron is now concentrated in the direction of the electron velocity. Let x, y, and z be

the axes of the laboratory reference frame, and the electron’s orbit be in the y–z
plane. When its velocity v and acceleration _vv are in the z and y directions (Fig.

7.1), respectively, the angular distribution of radiation in terms of the observer’s

spherical coordinates y and f is
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dPðy; fÞ
dW

¼ P0j _vvj2
ð1� b cos yÞ3 1� ð1� b2Þ sin2 y sin2 f

ð1� b cos yÞ2
" #

ð7:2Þ

where P0 ¼ e2=ð16p2e0c3Þ. Now we analyze this angular distribution in two spe-

cial planes, one horizontal (yz plane) and one vertical (xz plane) with respect to

the electron orbit, and the angle y will be written as yh and yv in these two respec-

tive planes.

1. If the observer is in the yz plane, f ¼Gp=2, and Eq. (7.2) becomes

dPðyh; fÞ
dW

¼
P0j _vvj2
ð1� bÞ3 !b!1

y; when yh ¼ 0

0; when yh ¼Gcos�1 b:

8><
>: ð7:3Þ

Therefore, when observed in the direction of the instantaneous velocity v, the SR

is limited within an angle of Dyh centered at v , which can be approximately ex-

pressed as

Dyh ¼ 2 cos�1 bA2g�1 ð7:4Þ

where g ¼ ð1� b2Þ�1=2 ¼ E=ðm0c2Þ. For an orbiting electron with an energy of

E ¼ 2 GeV, this angle is very small, Dyh ¼ 1:7 0. As the b-value approaches 1, Dyh
becomes smaller, so the radiation along the v direction intensifies whereas the ra-

diation in the opposite direction ð�zÞ diminishes.

(2) If the observer is in the xz plane, f ¼ 0 or p, and Eq. (7.2) becomes

dPðyv; fÞ
dW

¼ P0j _vvj2
ð1� bÞ3 ; when yv ¼ 0

¼ P0j _vvj2; when yv ¼ p

2
:

8>><
>>: ð7:5Þ

Fig. 7.1 Radiation distribution for an electron for (a) nonrelativistic

motion and (b) relativistic motion in a circular orbit. (c) The laboratory

frame.
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Although there does not exist a critical value of yv above which the radiation ap-

proaches zero, the ratio of the intensity at yv ¼ 0 to that at yv ¼ p=2 is

1=ð1� b2Þ3. When b ! 1, this ratio is extremely large, and the majority of radia-

tion can still be considered [5] as distributed within the angle of

DyvA2g�1: ð7:6Þ

In summary, SR is concentrated in a narrow cone in the z-direction, similar to a

beam from a searchlight.

7.1.2

The Total Power of Radiation

Integrating Eq. (7.2) over all angles, we obtain the total power radiated by the

electron:

P ¼ 1

6pe0

e2

c3
j _vvj2g4: ð7:7Þ

As mentioned earlier, g@ 104; therefore, the radiation power from a relativistic

electron is about 1016 times higher than that of a nonrelativistic electron as de-

scribed in Eq. (7.1). With such a high power confined in a small cone of radiation,

we can see why the photon density could be extremely high, reaching 1019 to 1020

photons s�1 mm�2 mrad�2 (0.1% bw)�1.

7.1.3

The Frequency Distribution of Radiation

Synchrotron radiation is composed of pulses of duration < 10�10 s with a period

in the microsecond range or less. As we know, such a pulsed radiation series con-

tain a wide spectrum of frequency components. When the electron velocity ap-

proaches the speed of light, the fundamental frequency o0 (orbiting frequency)

is no longer the major frequency component, but its high-order harmonics no0.

Let the pulse duration of the electron beam be t 0. The pulse duration as observed

in the laboratory reference frame is then

t ¼ ð1� b � nÞt 0At 0g�2 ¼ R

c
g�3: ð7:8Þ

This pulse duration t determines the maximum frequency of the radiation:

omaxA
c

R
g3: ð7:9Þ

When E ¼ 3 GeV and B ¼ 0:8 T, omax can be calculated to be 4:9� 1018 rad s�1,

corresponding to a wavelength of 3.9 Å. Therefore, SR covers a wide range from
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radio frequency to very hard x-rays, as shown in a typical spectrum in Fig. 7.2. In

reality, an electron beam in the synchrotron has a certain physical size and con-

tains many electrons, which would make t significantly larger and the resultant

radiation is the superposition of the contributions from all the electrons in the

beam.

7.1.4

Polarization

At a location far from the electron orbit, the electric field vector E is always in the

direction determined by n� ðn� _vvÞ. Within the orbit plane, the vector E is collin-

ear with _vv , and the radiation observed in this plane will be completely linearly

s-polarized. Above or below the orbit plane, the radiation contains elliptically po-

larized components. In general, the observed radiation intensity can be consid-

Fig. 7.2 Typical synchrotron radiation spectrum as a function of o/o0.

Fig. 7.3 Relative intensities (I, Is, Ip), linear polarization P l, and circular

polarization Pc as functions of the angle yv in the plane perpendicular

to the orbit: (a) l ¼ 10lc and (b) l ¼ lc, where lc is the wavelength

corresponding to the maximum Pn in Fig. 7.2 and g ¼ E/m0c
2.
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ered as the sum of Is and Ip. We may define a degree of linear polarization Pl and

a degree of circular polarization Pc [6]:

Pl ¼ ðIs � IpÞ
ðIs þ IpÞ ;

Pc ¼G
2
ffiffiffiffiffiffiffiffi
IsIp

p
ðIs þ IpÞ :

ð7:10Þ

Figure 7.3 shows the quantities Pl and Pc as functions of the angle yv and the

wavelength. Within the plane of the orbit, the radiation is 100% linearly polarized

(Pl ¼ 1 and Pc ¼ 0). Deviating from this plane, both Pl and I decrease, whereas
Pc increases slightly. When very far from this plane, the radiation is largely char-

acterized by elliptical polarization (Pl ¼ 0 and Pc ¼ 1). When averaged over all an-

gles, one finds that 75% of the radiation is linearly polarized.

7.2

Synchrotron Mössbauer Sources

The bandwidth of SR beams is too large for nuclear resonant scattering experi-

ments. Even after going through a double-crystal pre-monochromator Si(1 1 1),

its bandwidth can only be reduced to the order of eV. The nuclear resonant width

is 4:66� 10�9 eV in 57Fe, so only about one part in a 108 of the incident SR is

useful. This implies a serious problem of signal-to-noise ratio. Fortunately, ultra-

high collimation of SR can be achieved, and provides monochromatic SR beams

of bandwidth of meV, sub-meV, or meV.

If a perfectly collimated and monochromatic SR beam is incident on a perfect

crystal at a Bragg angle, the probability of reflection can be very large, close to

unity. In practice, highly effective monochromators have been designed and

good signal-to-noise ratios of 103 or better have been achieved [7].

To date, SR can be tuned to the Mössbauer transition energies not only for the

most common isotope 57Fe but also for others such as 83Kr, 151Eu, 119Sn, 161Dy,

and 201Hg.

7.2.1

The meV Bandwidth Sources

The desired bandwidth of a monochromator for nuclear resonant scattering ex-

periments is within several meV. This is broad enough to cover all hyperfine tran-

sitions of each Mössbauer nucleus in a sample, while the prompt background

may be reduced to a manageable level. There are two types of monochromators,

one based on the scattering by electrons and the other on resonant scattering by

nuclei. The first type can offer a bandwidth within a few meV, and is described in

this section. The second type can provide the desired bandwidth of a few meV, and

is discussed in the next section.
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In combination with modern detectors, monochromators based on electron

scattering have been improved so that the prompt rate can be reduced to a level

that allows nuclear resonant scattering experiments to be successfully carried out.

Using such SR sources, many recent lattice dynamics experiments as well as nu-

clear forward scattering experiments have been performed with acceptable signal-

to-noise ratios. Therefore, SR with a few meV has become an important photon

source for nuclear resonant scattering work.

The experimental setup of nuclear resonant scattering is shown Fig. 7.4.

A beam of SR from an undulator is incident on a high-heat-load pre-

monochromator, which consists of two symmetric Si(1 1 1) reflectors, narrowing

the bandwidth to about 1–2 eV. The further reduction of the bandwidth to meV

can be achieved by a high-resolution monochromator (HRM) [8]. Here an ioniza-

tion chamber as the beam intensity monitor and some slits are also placed. Up to

now, HRMs have been constructed by using two particular reflections. (1) A re-

flection with a Bragg angle near 90� [9]. Under this reflection the angular accep-

tance can be maximized for a given energy bandwidth. Several allowed reflections

at 14.413 keV in Si are off the (10 6 4), (12 2 2), and (9 7 5) planes with Bragg

angles of 90�, 77.5� and 80.4�, respectively. Figure 7.5(a) shows a pair of

channel-cut Si(10 6 4) crystals arranged in a dispersive geometry. This HRM pro-

vides highly monochromatic, highly collimated, and high energy-resolution

beams but with a low transmission. (2) An asymmetric Bragg reflection [10].

This also appreciably increases the angular acceptance. Asymmetric reflection

means that the reflecting planes are not parallel to the physical surface of the

crystal. In Fig. 7.4, the HRM using an asymmetric channel-cut Si(12 2 2) crystal

nested within an asymmetric channel-cut Si(4 2 2) crystal provides a beam of a

6.7 meV bandwidth at 14.413 keV nuclear resonance for 57Fe. With such a radia-

tion source, the phonon DOS of a-Fe has been observed for the first time [7]. Fig-

ure 7.5(b) shows a modern HRM using extremely asymmetric angles on high-

order reflections, for instance the Si(9 7 5) reflection [12, 13], which can reduce

Fig. 7.4 Schematic representation of the geometry in nuclear Bragg

scattering (NBS) and nuclear forward scattering (NFS) experiments

using an SR source [11].
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the bandwidth to 0.8 meV with an efficiency of about 50%. To study lattice dy-

namics, the HRM must be tunable over a region sufficiently large for measuring

phonon energies, i.e., a few hundred meV. This is achieved by mounting the crys-

tal assembly on high-precision angular encoders (made by Kohzu Precision Co.

Ltd), which can provide a minimum rotating step size of@0.012 mrad. This corre-

sponds an energy step of 15 meV. Temperature stability and monitoring are other

important aspects; e.g., a change of 13 mK on both crystals will produce an energy

shift of about 1 meV [12].

Generally speaking, a meV bandwidth is about 106 times wider than the reso-

nance linewidth of 57Fe. A scatterer contains a large number of electrons in addi-

tion to the resonant nuclei, and those electrons will non-resonantly scatter all the

SR in the meV band. Therefore, only 10�6 of the detected photon count is due to

nuclear resonant scattering. The electron scattering process is prompt, whereas

the nuclear resonant scattering is a time-delayed process since the typical lifetime

of the nuclear isomeric state is long compared to the incident SR pulse (for 57Fe,

t0A141 ns). Using this time difference, photons from non-resonant electron

Fig. 7.5 Three versions of HRM with meV bandwidths. (a) Two pairs of

symmetric channel-cut Si(10 6 4) high-order reflections in a dispersive

geometry [9]. (b) An HRM optimized for energy resolution: two

asymmetrically cut, high-order crystal reflections in Si(9 7 5) [13].

(c) A four-reflection version, similar to (b) [14].
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scattering can be in principle discriminated. Of course this requires a detector of

good time response, with rise and fall times shorter than a nanosecond. This cri-

terion is satisfied by the recently developed fast avalanche photodiode detectors

(APD) with time resolutions of 0.1 to 1 ns, which can sustain an intense prompt

scattering (@109 photons s�1) during the flash of SR and several nanoseconds

later are able to detect a single delayed photon of nuclear scattering [15]. For a

multi-element scatterer, a very good method is to find special reflections that the

electronic Bragg reflections from different atoms may be cancelled, or even for-

bidden, such as the (2nþ 1 2nþ 1 2nþ 1) plane in a-Fe2O3.

7.2.2

The meV Bandwidth Sources

For producing a meV bandwidth source, the first stage monochromator is also

Si(1 1 1), followed by a HRM, usually making use of nuclear Bragg scattering.

This combination reduces the bandwidth to within 10�6 to 10�8 eV, approaching

the nuclear energy level’s natural width. A single crystal of a-57Fe2O3 or 57FeBO3

can be used for such a monochromator [16, 17]. A film of hundreds of artificially

structured nuclear multilayers can produce very strong Bragg scattering, while

the electron Bragg scattering is relatively weak. For example, the nuclear periods

of 25� [57Fe(22 Å)/Sc(11 Å)/56Fe(22 Å)/Sc(11 Å)] [18] and 25� [57Fe(17 Å)/

Cr(10 Å)] [19] multilayers have been designed. Structurally, the nuclear interpla-

nar distance is twice the electronic interplanar distance, making the electron

Bragg scattering much weaker than the nuclear Bragg scattering. Another type

of monochromator is the grazing incident antireflection film (GIAR film) [20],

for example, consisting of an 57Fe5B4C layer on a Ta backing. Because of the graz-

ing incident angle, the radiation’s path in the coating is relatively long, resulting

in a total reflection. This can be considered as an extreme case of interference.

Using this method, the electronic reflectivity is reduced to 0.04 and the band-

width of the source is reduced to 0:5� 10�6 eV.

In order to protect the detectors from very intense prompt radiation, a new

technique was developed, in which the ratio of prompt to delayed radiations is

reduced before detection by polarization-selective optics [21, 22]. It has been

pointed out that when x-rays undergo a 45� Bragg reflection, the p-polarized com-

ponent is almost entirely eliminated [23]. When the 14.413 keV SR from the

Si(1 1 1) monochromator is subjected to a 45� Bragg reflection from a Si(8 4 0)

polarizer, the radiation has only the s-polarized component remaining (Fig. 7.6).

The beam is then directed perpendicularly to an Fe foil of 10.5 mm thickness

(95% 57Fe enrichment). An external magnetic field B is applied in the plane of

the foil but making a 45� with the horizontal (i.e., the orbital plane of the elec-

trons where the vector E lies). As has been shown for optics, when an optically

active material is inserted between polarizer and analyzer crystals, part of the

incident s-polarized radiation is converted to a p-polarization component [24].

Here an Fe foil with an external magnetic field B acts like this material.

There will be six allowed transitions in the foil (Dm ¼ 0 and Dm ¼G1), produc-
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ing s- and p-polarization mixed components of the nuclear forward scattering

with comparable intensities. Behind the Fe foil is an analyzer which is exactly

the same as the polarizer except for a 90� rotation. In this orientation, the s-com-

ponent (instead of the p-component) and the prompt radiation caused by electron

scattering can be almost completely suppressed, while the p-component is trans-

mitted. To a very good approximation, only the resonant part of the radiation

transmitted from the polarizer can have its polarization state modified. This is

the principle of this assembly, converting s-polarization to p-polarization and pro-

ducing a 14.413 keV SR Mössbauer source of bandwidth 10�7 eV, with the elec-

tron scattering radiation suppressed to a fraction of 5:4� 10�7.

Now we discuss how to obtain a single-line source from the incident SR. Using

pure Bragg scattering for making SR monochromatic usually involves hyperfine

interactions, and as a result the spectrum of the ‘‘filtered’’ radiation contains sev-

eral spectral components. If this radiation is used for recording a time spectrum,

these components interfere with one another and produce ‘‘quantum beats.’’ If a

single-line monochromatic source is desired, an additional absorber may be

added to filter out the unwanted spectral components. But because of the dy-

namic diffraction effect, the width of the resultant single line is several times

wider than the absorber natural width. Also, this method causes significant inten-

sity loss.

To circumvent these difficulties, studies have shown that when single-crystal
57FeBO3 in an external magnetic field is heated to higher than its Neèl tempera-

ture TN to eliminate magnetic hyperfine interaction, the Bragg reflection from its

(3 3 3) plane will result in a single-line source of nearly the natural linewidth [25].

FeBO3 is antiferromagnetic and the principal axis of its EFG is perpendicular to

the hyperfine magnetic field. When the temperature approaches TN, the magnetic

hyperfine interaction becomes weaker and eventually disappears. As shown in

Fig. 7.7, the low-energy line of the quadrupole doublet gradually loses its inten-

sities due to destructive interference. When T ¼ 75:9 �C, a single-line source of

width 2:9Gn can be obtained in the Bragg angle direction.

An experimental setup using this method is shown in Fig. 7.8. A double-crystal

Si(1 1 1) monochromator reduces the radiation bandwidth to 2.8 eV. A channel-

Fig. 7.6 Experimental setup of a polarizer, an Fe foil with magnetic field

B, an analyzer, and a detector, for suppressing radiation from non-

resonant scattering.
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cut Si(8 4 0) polarizer reduces the p-polarized component from 1% to less than

10�4% and the bandwidth to meV. Single-crystal 57FeBO3, placed in an oven, has

its (3 3 3) plane in the vertical orientation and an external magnetic field of 10 mT

is also applied so that the crystal is magnetized in the vertical direction. The out-

come is an extremely narrow (10� 35 mrad2), linearly polarized (electric field vec-

Fig. 7.7 M€oossbauer diffraction spectra from a 57FeBO3 crystal at

different temperatures, using resonant g-radiation from a 57Co(Cr)

source.
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tor E in the vertical plane), completely recoilless, and highly intense Mössbauer

source. The electron-scattered component is reduced to 10�10 of the original level.

According to estimates, when the integrated current in the storage ring is 130

mA, the radiation within the above solid angle is equivalent to a 57Co source of

an enormous activity of 3:7� 1013 Bq.

Fig. 7.8 Experimental setup for obtaining monochromization and

polarization of 57Fe M€oossbauer synchrotron radiation. The h vectors

represent the polarization directions, and the k vectors represent the

propagation directions. The absorber A is an iron foil (95% 57Fe) and D

is an avalanche photodiode detector.

Fig. 7.9 M€oossbauer transmission spectra of an 57Fe foil of 1.3 mm

thickness measured with SR M€oossbauer source: (a) zero external

magnetic field, (b) Bext ? k 0 and Bext ? h 0, and (c) Bext k h 0.
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The Mössbauer source discudded above has been tested using stainless steel

and a-Fe absorbers (all with 95% 57Fe enrichment). For stainless steel foils of 1

and 10 mm thicknesses, the resonance efficiencies are e ¼ 70 and 86%, respec-

tively (e is defined in Eq. (1.24)), which means that the radiation corresponds to

a completely recoilless Mössbauer radiation, or fs ¼ 1. In order to verify its polar-

ization state, the radiation is used to measure transmission spectra of an a-Fe foil

of 1.3 mm thickness (Fig. 7.9). The spectrum in Fig. 7.9(a) is a sextet as expected

from a nonmagnetized sample. When an external magnetic field of Bext ¼ 10 mT

is applied in two different directions, the spectra in Figs. 7.9(b) and (c) show four

and two lines, respectively, corresponding to the Dm ¼G1 and Dm ¼ 0 transi-

tions. These results clearly confirm that this Mössbauer source is linearly polar-

ized. It is also easy to see that the spectra in Figs. 7.9(b) and (c) resemble those

in Fig. 2.24.

7.3

Time Domain Mössbauer Spectroscopy

The initial inception of time domain Mössbauer spectroscopy was in 1960, and it

was called ‘‘time filtering’’ at that time. Although some interesting results were

reported, research effort using this approach soon faced many difficulties. After

SR became available, the excellent pulsed and periodic properties of SR revital-

ized this area of research, and the development in the last two decades has also

warranted it a proper name: time domain Mössbauer spectroscopy (TDMS). Ex-

perimentally, the methodology uses nuclear Bragg scattering or forward scatter-

ing to observe the coherent decay at different times after the nuclear system has

been excited. Mössbauer parameters (such as fLM and dSOD) and hyperfine inter-

actions can also be studied by TDMS, through the analysis of new phenomena

such as speed-up effect of initial decay, dynamical beats, quantum beats, etc. We

describe these phenomena in this section. The theoretical aspects of TDMS were

derived from classical optics for isotopic radiation sources by Lynch et al. [26],

and for SR by Kagan et al. [27] and Hannon and Trammell [28–30].

7.3.1

Nuclear Exciton

Most results of elastic nuclear resonant experiments, where the coherent effects

are clearly revealed, can be easily understood if we assume that the Mössbauer

nuclei in a sample are excited as a whole and consequently decay freely. The

g-ray emitted by an excited nucleus may be re-absorbed or scattered by other nu-

clei that are identical to the emitting nucleus. So, it is possible for a nuclear exci-

tation to propagate elastically throughout the entire ensemble of nuclei. Each nu-

cleus is no longer isolated, but interacts with others. Without this interaction, an

excited nucleus would decay with the natural lifetime. But an interacting ensem-

ble of nuclei behaves differently. Such a collective nuclear excitation phased in
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time by Mössbauer radiation or SR pulses is known as a nuclear exciton [27, 29],

which is a spatial superposition of various excited hyperfine levels of all nuclei in

the sample. The elastic decay of this exciton is characterized by speed-up and beat

modulations of intensity, and exhibits a peculiar property, namely the emitted

g-rays exist predominantly in spatially coherent channels, i.e., mostly oriented in

the forward or the Bragg direction.

On the other hand, inelastic decay of an exciton does not differ from the decay

of an excited individual nucleus.

7.3.2

Enhancement of Coherent Channel

In the kinematical approximation, the resonant scattering amplitude of Moss-

bauer radiation by n nuclei in a sample can be expressed by a phased sum as

f N ¼
Xn
l¼1

e is�r l f N
l ðk0; k

0;oÞ ð7:11Þ

where s ¼ k 0 � k0, f N
l is just the scattering amplitude of an incident photon of

energy �ho by an atom l, and k0 and k 0 are wave vectors before and after scatter-

ing. If all nuclei in the sample are equivalent, we can factor f N
l out of the sum-

mation. To find the scattering intensity, which is proportional to j f N
l j2, we must

calculate the product of the double sum in l and l 0. It is convenient to calculate

first the terms with l ¼ l 0, whose sum equals n, then those with l0 l 0. Therefore,
one gets [31]

Iðo; sÞA
Xn
l

e is�r l
�����

�����
2

ð7:12aÞ

¼ nþ
Xn
l

e�is�r l
 ! Xn

l 00l

e is�r l 0
 !

: ð7:12bÞ

The double sum accounts for interference contributions from all pairs of nuclei l
and l 0. If there is no spatial correlation between atoms in the sample and s0 0,

the relative phases s � r l are uniformly distributed over the interval 0–2p. It can be

proved that the double sum in Eq. (7.12b) approaches zero provided that the

number n is large enough. Hence, the scattering intensity will be proportional to

n, and applies to all incoherent processes, such as internal conversion.

If we have s ¼ 0 or t (where t is a reciprocal-lattice vector), Eq. (7.12a) gives n2,

typical for spatially coherent scattering. Therefore the coherent radiative channel

(NFS or NBS) is immensely enhanced relative to incoherent channels. An esti-

mate shows that for the 14.4 keV resonance in 57Fe the enhancement can be as
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high as 1000 [32]. The coherent constructive interference during the decay of a

nuclear exciton determinates the physical origin of a strong enhancement in the

radiative channel. This interesting effect has been considered by many re-

searchers [27, 29–31, 33–36].

Note that in most nuclear scattering experiments, multiple scattering processes

cannot be neglected, but must be treated by the dynamical theory. In such a case,

the enhancement is often accompanied by a broadening of the frequency distri-

bution of the scattered radiation.

7.3.3

Speed-Up of Initial Decay

We begin with some early results from nuclear forward scattering in conventional

Mössbauer spectroscopy. Figure 7.10 shows a block diagram of a circuit for mea-

suring the Mössbauer effect as a function of time (i.e., a time spectrum) using a
57Co isotope source. It is a typical delay coincidence circuit. First, suppose the ab-

sorber A is temporarily removed from the apparatus. The 123 keV g1 signal sets

the zero time at the formation of the Mössbauer energy levels, and this signal is

used as the ‘‘start’’ pulse for the time-amplitude converter (TAC). After the decay

process, the 14.4 keV gM is used as the ‘‘stop’’ pulse. The TAC output, a pulse

whose amplitude is proportional to the delay between the g1 and gM signals, is to

Fig. 7.10 Block diagram of the prompt delay coincidence detection circuit.
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be stored in the multichannel analyzer (MCA). One single-channel analyzer

(SCA), connected to each of the two detectors, is used for energy discrimination.

The signal from the coincidence output is utilized as a gate pulse for the MCA.

With no absorber, the standard circuit measures the lifetime, so the output

should follow a simple exponential law:

IðtÞ ¼ I0e
�t=t0 : ð7:13Þ

Now the absorber A containing 57Fe is inserted and driven to oscillate. When

its velocity is high, the radiation is slightly absorbed but the exponential time de-

pendence in Eq. (7.13) is hardly affected. When the velocity of the absorber is

such that it allows a resonance absorption, we observe immediately after t ¼ 0 a

higher decay rate than predicted by Eq. (7.13). This phenomenon is known as the

speed-up of initial decay. At a later time, the decay rate is partially restored, result-

ing in the ringing pattern in an overall time spectrum, similar to the theoretical

curves in Fig. 7.11.

Before describing this effect, we will start with a simpler situation, under which

the emitted g-spectrum presents an exact Lorentzian distribution. Considering

the Mössbauer nucleus as a damped oscillator, we describe its radiation by an

electromagnetic wave with an angular frequency o0, a speed c ¼ o=k propagating
in the z-direction, and an exponentially decaying amplitude. The electric field of

this wave is expressed as

Eðz; tÞ ¼ E0 exp iðo0t� kzÞ � G

2
t

� �
: ð7:14Þ

Neglecting the kz term for the moment and Fourier transforming this function

into the frequency domain, we obtain

EðoÞ ¼ 1

2p

ðy
�y

E0 exp io0t� G

2
t

� �
e�iot dt ¼ 1

2pi

E0

ðo� o0Þ � iG=2
: ð7:15Þ

The frequency dependence of the relative intensity is

IðoÞz E2
0

4p2

1

ðo� o0Þ2 þ G2=4
ð7:16Þ

which is the familiar Lorentzian distribution with a maximum intensity at o ¼ o0

and a FWHM of G.

If we detect photons in the time interval from 0 to tm only, the upper limit in

the above integral would be tm, and the relative intensity would be [36]

Iðo; tmÞz 1þ e�Gtm � 2e�Gtm=2 cos½ðo� o0Þtm�
ðo� o0Þ2 þ G2=4

: ð7:17Þ
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When tm f 1=G, the above simplifies to

Iðo; tmÞz 2� 2 cos½ðo� o0Þtm�
ðo� o0Þ2

¼ 4
sin½ðo� o0Þtm=2�

ðo� o0Þ
� �2

: ð7:18Þ

This frequency distribution has a half-width of approximately 1=tm. Therefore, if
tm is much smaller than 1=G, the spectral width of the emitted line will increase

from the natural width G to a much larger value of 1=tm. The above also shows

that an exponential decay corresponds to the Lorentzian frequency distribution.

On the other hand, if the frequency distribution is no longer Lorentzian but like

that in Eq. (7.18), the decay is also expected to deviate from the exponential decay

with the natural lifetime t0.

In order to describe the speed-up effect, Lynch et al. [26] have applied classical

optics theory to the transmission of radiation through a dispersive medium of an

assembly of resonant atoms. First, the incident radiation is decomposed into fre-

quency components, each of which gets absorbed and phase-shifted differently

during propagation. Then, the time evolution of the outgoing radiation is ob-

tained by Fourier transformation. They arrived at the following result for the rel-

ative intensity of the transmitted radiation:

I 0ðo; tÞ ¼ e�t
Xy
n¼0

i
4

ta

o� o0

G

� �n tat

4

� �n=2
Jnð

ffiffiffiffiffiffi
tat

p Þ
�����

�����
2

ð7:19Þ

where ta is the effective absorber thickness, t1 tm=t0, t0 ¼ 141 ns is the average

lifetime of the excited state in 57Fe, and Jn represents the Bessel function of the

nth order. Not only does this formula correctly describe the experimental results

of time dependence of resonantly transmitted g-rays, it also marks the beginning

of time domain Mössbauer spectroscopy. When o ¼ o0, this reduces to

I 0ðo0; tÞ ¼ e�t½ J0ð
ffiffiffiffiffiffi
tat

p Þ�2: ð7:20Þ

Figure 7.11 shows some of the graphs based on Eq. (7.20) which describes the

main features of the experimental results. To observe significant effects of the

speed-up of initial decay, the effective thickness ta should be larger than 1. If we

limit our attention to the region near tmA0 in Eq. (7.20), the high-order terms in

the Taylor expansion of J0 may be neglected and Eq. (7.20) becomes

I 0ðo0; tÞAe�t½1� ð ffiffiffiffiffiffi
tat

p
=2Þ2�2Aexp �t 1þ ta

2

� �� �
: ð7:21Þ

In this case, it is again approximately an exponential decay, except for the addi-

tional term ta=2, which causes a faster decay process. When ta ¼ 2, the decaying
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process would appear to be twice as fast. Since ta ¼ amna f s0d, the speed-up ef-

fect clearly depends on the physical thickness of the absorber, the abundance of

the resonance isotope ðamÞ, and the recoilless fraction. For example, if the num-

ber of resonance isotopes is decreased, the decay tends to have less ringing; if the

medium does not contain the resonance isotope at all, the time spectrum curve

becomes a straight line (Fig. 7.11). This interesting phenomenon was first exper-

imentally observed by Lynch et al. in 1960.

The amount of broadening in the frequency distribution in Eq. (7.17) is dic-

tated by how much shorter the measurement time tm is compared with the aver-

age lifetime t0. The frequency distribution broadening can be quantitatively mea-

sured by transmission Mössbauer spectra [36], as shown in Fig. 7.12(a). In the

experiment, both the source and absorber were stainless steel. Each spectrum

was collected from the formation of the 14.4 keV state to a time tm. As can be

seen, the spectral line clearly becomes broader as tm decreases. When tm ¼ 150

ns (tm having the same value as t0, or t ¼ 1:00), the half-width of the spectral

line is about 0.5 mm s�1, which is still about twice the width of a typical absorp-

tion line. The curves in Fig. 7.12(b) are calculated based on Eq. (7.18), and they

agree with the experimental data quite well. Incidentally, the speed-up in decay

and the broadening of spectral line are related by the time–energy uncertainty

principle, i.e., DtDE@ �h.

Fig. 7.11 Time dependence of radiation after transmission through a

resonant filter, calculated according to Eq. (7.20), assuming that the

radiation is 75 or 100% recoilless. The straight line represents an

exponential decay for comparison. All curves are normalized to 1 at

t ¼ 0.
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7.3.4

Nuclear Forward Scattering of SR

Synchrotron radiation consists a series of sharp pulses, with a duration of about

10�10 s for each pulse and a separation of about 10�6 s between pulses. The dura-

tion time is very small compared to the lifetime of the Mössbauer level in 57Fe

(@10�7 s). Therefore, such a coherent SR flash causes a simultaneous excitation

of nuclear ensemble in the sample. There also exists a time correlation. Due to

the long lifetime of the excited states, the prompt radiation scattered by electrons

(as a background) and the delayed radiation of nuclear resonant scattering are

separated in time.

Nuclear forward scattering (NFS) experiments may be considering the time do-

main analog of conventional Mössbauer experiments. In the latter case, the re-

corded signal presents an incoherent sum of the spectral components of the

transmitted radiation. By contract, in NFS the time response is a coherent sum

of spectral components of the scattered radiation. In NFS there is only one coher-

ent decay channel, and the nuclear exciton involves only one wave propagating in

Fig. 7.12 (a) M€oossbauer spectra of a stainless steel absorber observed

at various delay times t (relative to the lifetime t0) after the formation

of the 14.4 keV excited state. (b) Theoretical curves calculated using

ta ¼ 2 and the corresponding t values.
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the sample, and hence no suppression of absorption is possible. The dynamical

theory of scattering under these conditions is a familiar one in optics and leads

to the concept of refractive index. The nuclear ‘‘refractive index’’ is usually repre-

sented by a 2� 2 matrix. Its imaginary components are related to the absorption

cross-section and its real components describe dispersion of the g-radiation. If the

incident beam is purely s-polarized, the refractive index can be written as a com-

plex scalar [37]

nðoÞ ¼ 1þ mr
4k0

G

�hðo0 � oÞ þ iG=2
ð7:22Þ

where mr is defined in (1.16). Comparing this with Eq. (6.19), we find that the re-

fractive index is connected to the forward scattering amplitude f N by

nðoÞ ¼ 1þ 2p

k20
nf N; ð7:23Þ

where n is the number density of resonance nuclei per unit volume. When two or

more hyperfine lines are excited, the refractive index must be written as

nðoÞ ¼ 1þ mr
4k0

Xn
j¼1

G

�hðo0 � ojÞ þ iG=2
: ð7:24Þ

In principle, the scattering problem should be solved by a quantum mechanical

method. For the sake of a semiquantitative discussion, we adopt a classical pic-

ture and introduce the electric field amplitude A0ðoÞ. The amplitude of the wave

transmitted by a medium with a thickness d is then

AðoÞ ¼ A0ðoÞ exp½�inðoÞk0d�; ð7:25Þ

and the transmission is

T 0ðoÞ ¼ exp½�inðoÞk0d�: ð7:26Þ

Assuming that the system under investigation is linear and time-invariant, for

a given frequency response of the system, we can calculate the time response by a

Fourier transform. Because we are only interested in the nuclear resonant part,

only the second term in Eq. (7.22) is needed for inserting nðoÞ into Eq. (7.26),

and we have

T 0ðoÞ ¼ exp � ita=2

2�hðo� o0Þ=Gþ i

� �
: ð7:27Þ
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Therefore, the time response function RðtÞ of the sample is obtained by the re-

verse Fourier transform:

RðtÞ ¼ c

2p

ðy
�y

T 0ðoÞe�iot do ð7:28Þ

where c is a frequency-independent constant. After the integration is carried out

[27], we obtain

RðtÞ ¼ c dðtÞ � e�io0te�t=2 ta
2t0

� �
J1ð

ffiffiffiffiffiffi
tat

p Þffiffiffiffiffiffi
tat

p yðtÞ
� �

ð7:29Þ

where

yðtÞ ¼ 1 t > 0

0 t < 0

	
and t ¼ t

t0
:

The time-domain intensity for NFS is given by

Ifsðtb 0Þ ¼ jRðtb 0Þj2 ¼ jcj2e�t ta
2t0

� �2 J1ð ffiffiffiffiffiffi
tat

p Þffiffiffiffiffiffi
tat

p
� �2

: ð7:30Þ

Fig. 7.13 Time response of 57Fe/Sc/56Fe/Sc nuclear multilayer at the

nuclear Bragg angle. The solid line is a dynamical diffraction theory fit

and the dashed line indicates the initial decay with a lifetime of 4 ns.
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The quantity jcj2 includes the incident intensity I0 of SR and an attenuating fac-

tor due to photoelectric absorption.

This result can be similarly simplified near tA0 by taking the appropriate ap-

proximations, and it becomes

INFSðtÞz ta exp �t 1þ ta
4

� �� �
: ð7:31Þ

Comparing this with Eq. (7.21), we see that for the same ta, the rate of decay

using SR is slower than that using a radiation source. Figure 7.13 shows the

time spectra from a nuclear multilayer film at the Bragg reflection [18]. The spec-

trum reveals the remarkable decay speed-up, with an initial decay equivalent to a

lifetime of only 4 ns (the dashed line).

7.3.5

Dynamical Beat (DB)

In the previous section, we were only concerned with the decay characteristics

during a short duration before the first zero of the Bessel function J0 or J1. Now
we want to observe a complete time spectrum where the Bessel function J0 or J1
passes through zero several times. This requires a longer measurement time de-

pending on the particular value of ta. Such spectra exhibit the ‘‘ringing’’ pattern

[38] as shown in Fig. 7.14. This type of intensity modulation is called dynamical

beat (DB). Both decay speed-up and ringing are results of the coherent decay of a

nuclear exciton. It can also be understood as an interference effect in coherent

nuclear forward scattering or nuclear resonant scattering at the Bragg angle. Un-

like the radiation source, the SR produces nuclear forward scattering with almost

no background counts. The quality of a time domain spectrum depends only on

the intensity of SR and the size of the time window.

In order to investigate a pure DB without disturbance by a quantum beat, ma-

terials with single-line absorption should be used. The time spectra of NFS from

(NH4)2Mg57Fe(CN)6 powder samples of different ta are shown in Fig. 7.14 where

it can be seen that (1) the DB is aperiodic and the apparent periods increase with

time and (2) the apparent periods decrease with increasing effective thickness ta.
These two characteristic features of DB are determined basically by the Bessel

function J1 with the argument
ffiffiffiffiffiffi
tat

p
. Note also that the spectra in the first 10 to

20 ns cannot be resolved because of detector overload and veto in the electronic

circuit temporarily.

7.3.6

Quantum Beat (QB)

Beats can be easily observed in sound waves and radio waves, but they appear in

optical waves, x-rays, or g-rays only under certain particular conditions. Quantum

effects may be completely ignored in long-wavelength cases, but must be consid-
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Fig. 7.14 Time evolution of NFS SR through (NH4)2Mg57Fe(CN)6
powder samples of different effective thicknesses ta. The aperiodic

modulation is the DB. The solid lines are fits using the NFS theory [38].
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ered in the latter group, which may be the reason why quantum beat (QB) was so

named. Quantum beats in optics were first observed in 1964. We now discuss the

QB in g-rays.

Suppose that SR pulses coherently excite an ensemble of 57Fe nuclei in a sam-

ple from their ground state to quadrupole split energy levels E1 and E2 (Fig. 7.15).

Two nuclear excitons with energies E1 and E2 are created by the above process. Of

cause, they are also coherent and will interfere with each other. It can be shown

[39] that the intensity of NFS is given by

IfsðtÞz jN1e
iE1t=�h þ N2e

iE2t=�hj2e�t=t0

¼ ðN2
1 þ N 2

2 Þe�t=t0 þ 2N1N2e
�t=t0 cos

E2 � E1

�h

� �
t: ð7:32Þ

In our case, N1 ¼ N2 ¼ N is proportional to the concentration of Mössbauer nu-

clei in the sample. Therefore, expression (7.32) becomes

IfsðtÞzN 2e�it=t0 cos2ðWt=2Þ ð7:33Þ

with W ¼ ðE2 � E1Þ=�h. This indicates a periodic decay, known as QBs, an interfer-

ence phenomenon in the time domain. As in the analysis of any other interfer-

ence phenomenon, we have added the two amplitudes in Eq. (7.32) before taking

the square to calculate the intensity, but the most important condition here is the

simultaneous and instantaneous excitation of the nuclei in the absorber.

With the QB included, Eqs. (7.30) and (7.33) can be combined to give the total

intensity of nuclear forward scattering

IfsðtÞz t2ae
�t=t0 J1ð

ffiffiffiffiffiffi
tat

p Þffiffiffiffiffiffi
tat

p
� �2

cos2ðWt=2Þ; ð7:34Þ

which indicates that QB is periodic. By appropriate choice of the direction of a

weak external magnetic field, only the two Dm ¼ 0 transitions in 57Fe metal foils

are excited, and time spectra from such samples [37] are shown in Fig. 7.16,

where the time windows are open before the first zero of J1. Since both Dm ¼ 0

transitions have the same partial effective thickness, the dynamical beats due to

Fig. 7.15 Transitions involved in the phenomenon of quantum beats.
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Fig. 7.16 Time evolution of NFS through 57Fe metal foils of different

effective thicknesses in a vertical magnetic field. Only the two Dm ¼ 0

transitions were excited. The solid lines are computations based on Eq.

(7.30). The dashed lines indicate the exponential decay of the envelope

as calculated using Eq. (7.31).

7.3 Time Domain Mössbauer Spectroscopy 277



these transitions coincide. The fact that intensities of NFS increase with ta is re-

flected in this figure. Increasing the time window or the effective thickness ta, the
DB and QB melt into hybrid forms of beating (Fig. 7.17).

If SR simultaneously excites more than two transitions, the interference pat-

tern between the spectral lines of resonant scattering will be very complex. The

nuclear Bragg scattering (NBS) of FeBO3 can provide such an example [16, 41,

42]. A magnetic field is applied to the FeBO3 crystal perpendicular to its scatter-

ing plane ðk0; k
0Þ so that an internal magnetic field is parallel to k0 þ k 0, result-

ing in only four Dm ¼G1 transitions (Fig. 7.18).

The phase and intensities of these transitions are þ1, �1/3, þ1/3, and �1, re-

spectively. Note that only transitions of the same polarization state interfere;

hence we get the following simple time spectrum modulated by QBs:

IðtÞz e�t=t0 sin
1

2
Wð1; 6Þt

� �
� 1

3
e�iðDWÞt sin

1

2
Wð3; 4Þt

� �����
����2 ð7:35Þ

where the first term describes the main features in the spectrum because it has a

higher beat frequency corresponding to a period of 8.1 ns at room temperature.

From this beat frequency, we calculate transition energy �hWð1; 6Þ ¼ 5:156� 10�7

eV, and therefore the magnetic hyperfine field Beff ¼ 33:35G 0:02 T. Using QBs

to deduce the hyperfine field value is a very accurate method, because we often

observe more than one or two periods. As shown in Fig. 7.19, the first eight oscil-

lations are very definite and the period can be precisely determined.

Fig. 7.17 Time evolution of NFS through a 57Fe metal foil (@9 mm) at

4 K in a vertical magnetic field of 1 T [38]. Only the two Dm ¼ 0

transitions were excited, with effective thickness taA75 each. The DB

is seen as an envelope modulation over the fast QB. The solid lines are

fits using the NFS theory.
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Usually, the frequencies of minor QBs are smaller and their intensities are also

weaker, causing only small-amplitude modulations in the main oscillation. As a

consequence, the overall spectrum seems somewhat ragged, but the hyperfine

field measurement is not compromised.

Isomer shifts can also be measured with the forward scattering approach. To

do this, a reference sample with a known isomer shift is attached to the sample

under investigation. In such an experiment, one exciton can extend over these

two samples. Two time spectra (with and without reference sample) are needed.

Fig. 7.18 Four Dm ¼G1 spectral lines in 57FeBO3 due to hyperfine

splittings with a magnetic field B and an electric field gradient, where

the e shifts of the full Hamiltonian are added. The transitions are (1)

þ1/2 $ þ3/2, (3) þ1/2 $ �1/2, (4) �1/2 $ þ1/2, and (6)

�1/2 $ �3/2.

Fig. 7.19 Time spectrum (quantum beat) measured at the Bragg angle yB of 57FeBO3(1 1 1).
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The isomer shift of the sample with respect to the reference sample is then ob-

tained from a beat pattern of time spectra [43].

7.3.7

Distinctions between Time Domain and Energy Domain Methods

Energy domain Mössbauer spectroscopy is based on the method of resonance ab-

sorption. The transmitted counts of photons are measured as functions of their

energies, i.e., an energy spectrum, which represents an incoherent sum of the

spectral components of the transmitted radiation. In other words, the transmitted

spectrum reflects the incoherent process of nuclear resonance absorption by indi-

vidual nuclei.

By contrast, TDMS belongs to the scattering method. A scattering spectrum

measured as a function of time is a coherent sum of the spectral components of

the scattered radiation from nuclei collectively excited by an SR pulse. This leads

to important interference effects in TDMS.

This is the fundamental distinction between these two methods, and conse-

quently there are many theoretical and experimental differences between time do-

main and energy domain Mössbauer spectroscopies. The different characteristic

features of time domain and energy domain spectra are demonstrated in Figs.

7.20 and 7.21 [31].

Fig. 7.20 M€oossbauer transmission spectra (left column), and

synchrotron radiation scattering spectra in the energy domain (middle

column) and in the time domain (right column) for the case of a single

resonance in 57Fe-enriched stainless steel. Upper row: a thin target of

0.2 mm; lower row: a thick target of 3 mm.
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7.3.8

Measurement of the Lamb–Mössbauer Factor

In the time domain, it is also through measuring ta that the Lamb–Mössbauer

factor fLM is determined. Using nuclear forward scattering (NFS), ta may be mea-

sured by the speed-up effect of coherent decay or the minimum positions of dy-

namical beats. We now look at each of these two methods.

1. The first example is single-crystal guanidinium nitroprusside (GNP),

(CN3H6)2[Fe(CN)5NO] [44]. With a relatively thin scatterer and the time window

open before the first zero of J1 function, the resultant NFS spectra are shown in

Fig. 7.22. The values of ta are deduced by fitting the experimental data with Eq.

(7.30) or (7.31). If the number of Mössbauer nuclei per unit area is known, fLM
can be easily calculated. The experimental results are f ðaÞLM ¼ 0:122G 0:010 and

f ðcÞLM ¼ 0:206G 0:010 for the orientations with the crystal a-axis and c-axis parallel
to the incident SR beam, respectively. The corresponding Debye temperatures are

140 and 160 K. The difference in fLM values along different crystal directions is

due to the G-K effect. This method is applicable in either single-line resonant

scattering or quadrupole doublet resonant scattering.

2. In the second example, a larger time window is open to observe as many pe-

riods of DB as possible so that ta and fLM can be deduced more accurately. Since

Fig. 7.21 M€oossbauer transmission spectra (left column), and

synchrotron radiation scattering spectra in the energy domain (middle

column) and in the time domain (right column) for the case of a

resonance doublet in 57Fe-enriched stainless steel. Upper row: a thin

target of 0.2 mm; lower row: a thick target of 3 mm.
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ta ¼ s0 fLMnad, if the scatterer is kept at the same temperature, the thickness d is

the only variable in ta. In this case the DB patterns have already been demon-

strated in Fig. 7.15. On the contrary, suppose now we keep d constant but make

the scatterer temperature the only variable, then the Lamb–Mössbauer factor fLM
and the magnetic hyperfine field (or W) will both change accordingly. The method

Fig. 7.22 NFS spectra of guanidinium nitroprusside single crystals

recorded at room temperature with single-crystal orientations and

thicknesses as indicated. The solid lines result from a least-squares fit.
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involves measurements of a series of time spectra at different temperatures and

the determination of the temperature dependence of both the magnetic hyperfine

field from the QB periods and the Lamb–Mössbauer factor fLM from the DB ‘‘pe-

riods.’’ Considering only DB and using ta z fLM, Eq. (7.34) gives the relationship

between the relative intensity IðtÞ and the Lamb–Mössbauer factor fLM as follows:

Iðt; fLMÞz e�t=t0 fLMJ
2
1 ðc

ffiffiffiffiffiffiffiffi
fLMt

p
Þ ð7:36Þ

where c is a constant. The intensity minima are just the zeroes of J1, and by locat-

ing these minima the Lamb–Mössbauer factor fLM can be determined. An excel-

lent set of experiments has been carried out using a polycrystalline a-Fe foil of

thickness (10:57G 0:13Þ mm and a 95% 57Fe enrichment [45]. A magnetic field

of 0.6 T was applied in the plane of the foil so that only the Dm ¼ 0 transitions

were allowed. Time spectra at many different temperatures were obtained using

SR of bandwidth 10 meV. The fLM-values at those temperatures are listed in Table

7.1, and selected spectra are shown in Fig. 7.23.

The first zero of J1 occurs when c
ffiffiffiffiffiffiffiffiffi
fLMt

p ¼ 3:83. When temperature T in-

creases, causing fLM to decrease, the first intensity minimum in the time spec-

Table 7.1 The Lamb–M€oossbauer factor fLM and the splitting �h(do) of an

Fe foil in the temperature range 9.7–1048 K, obtained from the 57Fe

NFS time spectra.

Temperature (K) fLM fLM
fLM (9:7 K)

�h(do) (D10C9 eV)

9.7 0.890G 0.020 1 297.42G 0.31

50 0.886G 0.020 0.996G 0.003 297.24G 0.31

100 0.868G 0.019 0.976G 0.003 296.13G 0.31

150 0.850G 0.019 0.955G 0.003 295.44G 0.31

200 0.823G 0.018 0.925G 0.003 294.31G 0.31

250 0.796G 0.018 0.895G 0.003 292.71G 0.30

298 0.771G 0.017 0.866G 0.003 290.60G 0.30

348 0.739G 0.016 0.831G 0.003 287.40G 0.30

513 0.649G 0.015 0.730G 0.003 274.44G 0.32

693 0.526G 0.014 0.591G 0.004 252.33G 0.38

773 0.492G 0.012 0.553G 0.002 236.36G 0.31

873 0.430G 0.010 0.483G 0.002 209.67G 0.29

973 0.359G 0.010 0.403G 0.003 152.95G 0.34

1008 0.336G 0.012 0.377G 0.006 119.20G 0.46

1023 0.316G 0.012 0.355G 0.006 89.02G 0.67

1031 0.298G 0.009 0.335G 0.004 60.76G 0.50

1033 0.286G 0.008 0.322G 0.003 50.97G 0.57

1042 0.295G 0.010 0.332G 0.005 19.49G 1.4

1048 0.285G 0.008 0.321G 0.003 6.97G 0.60
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trum must then be shifted towards a later time, as seen in the experimental spec-

tra. This fact can also be seen in Fig. 7.14, where the first minimum shifts to a

later time as ta decreases.
In Fig. 7.23, as the temperature increases, the QB frequency first decreases

gradually, but when T is higher than 773 K the QB frequency decreases at a

much faster rate, which reflects the temperature dependence of the magnetic hy-

perfine field B. When T approaches TC, the magnetic hyperfine field decreases

drastically and eventually disappears. For T > TC, only DB remains. Comparing

the two spectra at 693 and 1048 K, it is easy to see that the latter’s fLM-value is

only one half of that of the former, but they have almost the same DB pattern.

The reason is that the two Dm ¼ 0 transitions become one after the magnetic hy-

perfine field breaks down, and the scattering intensity is therefore doubled, which

happens to compensate the intensity loss due to the smaller fLM. The relation be-

tween the magnetic hyperfine field B and temperature T is given in Fig. 7.24,

which agrees well with previous results using other methods.

In either of the above two methods, measuring fLM is not based on the height

or area of the absorption spectral lines, therefore avoiding problems such as the

saturation effect. In addition, since the samples are relatively thick compared to

that in the transmission method, the error in the number of Mössbauer nuclei

per unit area is also smaller. These factors improve the accuracy of the determina-

tion of fLM. As listed in Table 7.1, the error in the absolute fLM-value at room tem-

perature is 2% and that in the relative fLM-value is 0.4% (the relative fLM-value

Fig. 7.23 Forward scattering time spectra of an 57Fe foil at temperatures from 9.7 to 1048 K.
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was at best given with an error of 1% in transmission Mössbauer spectroscopy

with a radiation source).

7.4

Phonon Density of States

Soon after the Mössbauer effect was discovered, attempts were made to use it to

measure the atomic vibration frequency distribution – phonon density of states

(DOS). But it was not very successful for a long time because of several experi-

mental difficulties; e.g., typical phonon energy transfers could not be reached

with the conventional Doppler technique, the radiation sources were too weak to

provide satisfactory statistical errors, etc. It was in 1995 that the phonon DOS

gðoÞ of a-Fe was first measured by incoherent inelastic nuclear resonant scatter-

ing using SR [7, 46, 47]. The experiments were performed at high-brilliance un-

dulator sources with energy resolutions in the range of 6 meV. Since then the

technique has made appreciable progress and nowadays phonon DOS are rou-

tinely recorded with sub-meV resolution.

This is a new technology and has several advantages. First, the cross-section of

resonant scattering is usually large, which guarantees high counting rates. In ad-

dition, SR has high brilliance and narrow beams, especially suitable for studying

those thin films and biological samples which may be of a small size or with a

Fig. 7.24 Temperature dependence of effective internal magnetic field

Beff in a-Fe, normalized to the room temperature value. The results

from nuclear forward scattering using SR (circles) are compared with

transmission M€oossbauer effect results (crosses and stars).
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low content of the Mössbauer isotope. Second, when the lifetime of the excited

nucleus is much longer than the SR pulse duration (@50 ps), the nuclear reso-

nant scattering process can be separated from electronic scattering by counting

only the delayed products such as atomic K-fluorescence photons after the disap-

pearance of the prompt radiation and electronic scattering [48]. This leads to ex-

cellent signal-to-noise ratios (S/NA103) [46]. The noise level is basically deter-

mined by the detector and by the associated electronics. The high S/N ratio

allows one to discriminate the multi-phonon contributions against the measured

data. Third, incoherent inelastic nuclear resonant scattering directly offers the

phonon/vibrational DOS regardless whether the material is single crystal, poly-

crystalline, or amorphous. However, such scattering is only sensitive to the vibra-

tions of Mössbauer atoms; i.e., this technique provides a partial density of

states. In addition, high precision and short experimental time are also important

advantages.

7.4.1

Inelastic Nuclear Resonant Scattering

The theoretical basis for extracting lattice dynamics from Mössbauer measure-

ments was given at the beginning of the 1960s by Singwi and Sjölander [49] and

by Visscher [50].

A nucleus excited by resonance absorption of g-rays may decay via one of the

two mechanisms: radioactive decay or internal conversion with its subsequent

fluorescence radiation. The relative probabilities of the two mechanisms are

1=ð1þ aÞ and a=ð1þ aÞ, respectively, where a is the internal conversion coeffi-

cient. For most Mössbauer isotopes, a > 1 and the dominating mechanism is in-

ternal conversion, an incoherent decay process. Thus, the total yield of the

delayed K-fluorescence photons is given by

IðEÞ ¼ I0n
0
ahk

ak

1þ a
sðEÞ ð7:37Þ

where I0 is the incident photon flux, n0
a the effective area density of the nuclei, hk

the K-fluorescence yield, and ak the partial internal conversion coefficient. Also in

Eq. (7.37), sðEÞ is the cross-section for nuclear resonant absorption of a photon

with energy E:

sðEÞ ¼ p

2
s0GSðE � E0Þ ð7:38Þ

where s0 is given by Eq. (1.12), and SðEÞ is the normalized absorption probability

per unit energy interval due to phonons. SðEÞ is also k-dependent in the general

case of an anisotropic lattice. According to Singwi and Sjölander [49], it can be

represented by

Sðk0;EÞ ¼ 1

2p
Re

ðy
0

dte�iEt�Gjtj=2Fðk0; tÞ ð7:39Þ
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with

Fðk0; tÞ ¼ he�ik0�uð0Þe ik0�uðtÞiT ð7:40Þ

where Re indicates the real part of the integral, k0 is the wave vector of the inci-

dent g-ray, E is the difference between the energy of the g-ray and the resonance

energy of the nucleus, t ¼ t=�h, t is the time, G is the natural width of the excited

nuclear state, and F is the time-dependent correlation function, which describes

the correlation between the displacements u of the same nucleus at different mo-

ments of time. Using displacement u in Eq. (5.18), it can be proved that

Fðk0; tÞ ¼ fLMðk0Þ exp ER

N

X
s

ðh � esÞ2
�hos

ðhns þ 1ie iost þ hnsie
�iostÞ

" #
ð7:41Þ

where

fLMðk0Þ ¼ exp �ER

N

X
s

ðh � esÞ2
�hos

h2ns þ 1i

" #
; ð7:42Þ

where h ¼ k0=k, and fLMðk0Þ is the angular dependent Lamb–Mössbauer factor.

When the sample is a cubic Bravais crystal, Eq. (4.130) gives ðh � esÞ2 ¼ 1=3.

When this is substituted into (7.42), it becomes identical to (1.81) and the

Lamb–Mössbauer factor fLMðk0Þ is identical to the recoilless fraction f . If the har-
monic lattice model is valid, we can treat the time-dependent correlation function

Fðk0; tÞ for small displacements u as done in Section 4.6.1, namely to expand the

exponent of (7.40) in a power series. As a consequence, the phonon absorption

probability is written as a sum of the elastic and inelastic components:

Sðk0;EÞ ¼ fLMðk0Þ S0ðk0;EÞ þ
X
n¼1

Snðk0;EÞ
" #

: ð7:43Þ

The n ¼ 0 term describes elastic nuclear absorption without phonon creation or

annihilation, and it can be written as

S0ðk0;EÞ ¼
ð
dt

2p
expð�iEt� Gjtj=2Þ ¼ G

2p

1

E2 þ G2=4
¼ LðEÞ ð7:44Þ

where LðEÞ is a Lorentzian centered at zero energy, i.e., E � E0 ¼ 0 (see Eq.

(1.13)). The first term S1 describes a single-phonon nuclear inelastic absorption.

By analogy, the n ¼ 1 term can be calculated:

S1ðk0;EÞ

¼ ER

N

X
s

ðh � esÞ2
�hos

½hns þ 1iLðE � �hosÞ þ hnsiLðE þ �hosÞ�: ð7:45Þ
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Since the width G, being orders of magnitude smaller than typical phonon ener-

gies, can be neglected in Eqs. (7.43) and (7.44), then

lim
G!0

S0ðk0;EÞ ¼ dðEÞ ð7:46Þ

lim
G!0

S1ðk;EÞ

¼ ER

N

X
s

ðh � esÞ2
�hos

½hns þ 1idðE � �hosÞ þ hnsidðE þ �hosÞ� ð7:47Þ

where dðEÞ is the Dirac d-function. As can be seen, the part after the summation

sign in formula (7.47) is identical to that in (4.137) for inelastic neutron scatter-

ing.

In our discussion the energy scale is chosen relative to the resonant nuclear

transition energy E0. Hence, SR with energy larger ðE > 0Þ or smaller ðE < 0Þ
than E0 will be inelastically absorbed by creation or annihilation of phonons.

The k0-dependence of Sðk0;EÞ can be dropped if a cubic crystal or a polycrystal-

line sample is used and, for E > 0, the second term in Eq. (7.47) is zero, so

S1ðEÞ ¼ ER

N

X
s

hns þ 1i

�hos
dðE � �hosÞ: ð7:48Þ

The higher order SnðEÞ terms are given by successive convolutions with the

single-phonon term:

SnðEÞ ¼ 1

n
Sn�1ðEÞn S1ðEÞ: ð7:49Þ

According to the definition of phonon DOS in Eq. (4.95), Eq. (7.48) becomes

S1ðEÞ ¼ ERgðEÞ
Eð1� e�bEÞ ¼

ER

2E
gðEÞ coth bE

2
þ 1

� �
ð7:50Þ

where we have used the fact that the mean value of ðh � esÞ2 over all the modes in

a cubic lattice is 1/3. The energy spectrum of inelastic nuclear absorption satisfies

the detailed balance condition, which means that for any particular energy the

ratio of phonon creation and phonon annihilation probabilities is given by a fac-

tor ebjEj. So

S1ðEÞ ¼ ebES1ð�EÞ: ð7:51Þ

Because this is independent of the material, one can use both wings of the pho-

non spectrum to get the partial phonon DOS, gðEÞ. The result is

gðEÞ ¼ E

ER
ðS1ðEÞ þ S1ð�EÞÞ tanh bE

2
with Eb 0 ð7:52Þ
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where S1ð�EÞ has a similar expression to (7.50) (see Eq. 4.139). In general, gðEÞ
is k0-dependent and takes the following form [51, 52]:

gðh;EÞ ¼ Va

X
j

ð
dq

ð2pÞ3 dðE � �hojðqÞÞjh � ejðqÞj2 ð7:53Þ

where Va is the volume of the unit cell.

7.4.2

Measurement of DOS in Solids

A typical experimental setup for incoherent inelastic nuclear resonant scattering

is shown in Fig. 7.25. The incident SR beam, reduced down to the meV band-

width, is energy-tunable within a range to cover a particular phonon spectrum.

For the resonance nucleus 57Fe, it is favorable to record the K-fluorescence

photons of 6.4 keV following internal conversion as a product of incoherent

absorption. However, if the nuclear transition energy is below the K-edge, K-

fluorescence is not possible, as in the case of 119Sn. Since the L-fluorescence pho-

tons have energies often too low to be efficiently detected, nuclear resonant fluo-

rescence has to be used then. The product of incoherent absorption does not

form a collimated beam, but rather is emitted isotropically. In order to collect suf-

ficient number of counts, the first detector is situated at a distance of about 1 mm

from the sample, covering about a quarter of a complete sphere [53]. The second

detector records the nuclear forward scattering, and is situated far away from the

sample to reduce the contribution from incoherent scattering. A sharp peak will

be recorded by the second detector, which gives the instrumental function of the

high-resolution monochromator and precisely determines the energy position of

nuclear resonance. This function is necessary for subsequent data processing.

Resonant nuclei in a sample provide a very accurate energy reference with nat-

ural width resolution of the nuclear level (@neV). The energy transfer is deter-

mined as a difference between the incident energy and the nuclear transition en-

ergy. Experimentally, this difference is between the elastic peak in the incoherent

spectrum and the peak in the forward scattering spectrum. Therefore, the ana-

Fig. 7.25 Experimental setup for measurements of inelastic nuclear scattering with SR.
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Fig. 7.26 Energy spectra of inelastic nuclear absorption of synchrotron

radiation by a-57Fe at various temperatures [53, 54]. Solid lines are

calculations according to Eqs. (7.43), (7.48), and (7.49), based on the

results of neutron scattering at room temperature and convoluted with

the instrumental function of the monochromator.
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lyzer part of the traditional inelastic scattering setup is omitted. If the incident

energy is off-resonance, excitation of nuclei may be assisted by creation ðE > 0Þ
or annihilation ðE < 0Þ of phonons in the sample. In other words, resonance ex-

citation takes place if the incident energy plus the energy exchanged with a par-

ticular vibrational mode equals the resonance energy.

As mentioned in Eq. (7.45), the phonon annihilation probability is proportional

to hnsi, the Bose occupation number, while the phonon creation probability is

proportional to hns þ 1i. This means that the incident photon may gain energy

only from an existing phonon, whereas it may lose energy to an existing phonon

or for the creation of a new phonon. Hence, the total yield of the delayed fluores-

cence photons gives a direct measure of the phonon DOS. As an example of ex-

perimental results, the temperature dependence of nuclear inelastic absorption in

a-Fe is shown in Fig. 7.26.

At high temperatures hnsiAhns þ 1i, so the spectra of inelastic absorption

are somewhat symmetric. At low temperatures many low-energy phonons are

suppressed, hnsi approaches zero, and hns þ 1i approaches unity. Therefore, the

spectra become very asymmetric. When T ¼ 400 K, the thermal energy kBT ¼ 34

meV, the occupation is relatively high for all phonon states, and the energy spec-

trum is only slightly asymmetric. At T ¼ 24 K, kBT ¼ 2 meV, the low-energy

phonon states (e.g., below 10 meV) are mostly unoccupied. However, inelastic ab-

sorption with an energy transfer is still possible, because the recoil may excite

phonons even in a ‘‘frozen’’ crystal.

It should be noted that the instrumental resolution is constant and determined

with high precision, which allows one to extract the phonon DOS with an accu-

racy within a few percent.

7.4.3

Extraction of Lamb–Mössbauer Factor, SOD Shift, and Force Constant

The phonon DOS, Lamb–Mössbauer factor fLM, second-order Doppler shift dSOD,
and force constant F are all obtainable only after tedious data analysis. First, we

discuss Lipkin’s sum rules [55], which give various moments of the measured

spectra. As has already been proved, the sum rules provide a very useful tool to

treat the inelastic nuclear absorption data, because they simplify the normaliza-

tion of the spectra by decomposing SðEÞ into the multi-phonon contributions,

and their various moments provide model-independent information on lattice dy-

namics (a similar case is in Section 4.4.3). The first three moments are

ð
ESðk0;EÞ dE ¼ ER; ð7:54Þ
ð
ðE � ERÞ2Sðk0;EÞ dE ¼ 4ERTk; ð7:55Þ
ð
ðE � ERÞ3Sðk0;EÞ dE ¼ ER

M
�h2Fk ð7:56Þ
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where Tk is the mean kinetic energy in the k0-direction, and Fk is the mean force

constant experienced by the resonant nuclei in the k0-direction. The details of Eq.

(7.54) are elaborated in Chapter 1.

The central task in data analysis is to separate precisely the elastic part from the

inelastic part in the measured spectrum. Only after this can we get SðEÞ, S1ðEÞ,
and SnðEÞ necessary to calculate lattice dynamics parameters. However, here one

faces some serious problems. Due to the saturation effect, the area of the elastic

peak is not proportional to the Lamb–Mössbauer factor fLM. Another problem

arises from the energy dependence of extinction of the incident radiation in a

thick sample. Off nuclear resonance, the incident beam is only slightly weakened

by electronic absorption. At resonance ðE ¼ 0Þ, an additional strong Mössbauer

absorption takes place. As a result, the elastically scattered intensity is reduced

in height by an essentially unknown factor. In contrast, the nuclear forward scat-

tered radiation at E ¼ 0 may be scattered by the electrons into the detector and

increase the elastic scattering intensity. After the elastic scattering is removed, a

procedure to normalize the measured energy spectrum may be used [46], which

provides an accurate determination of fLM and partial DOS.

There are several approaches to the removal of the measured elastic peak.

In Ref. [54] the inelastic scattering spectrum is separated through interpolat-

ing the experimental data in elastic peak region of about G8 meV using

SðEÞzEð1� e�bEÞ�1, which results from the relation gðjEjÞzE2, valid for small

energies.

We discuss in detail the following alternative approach [56]. The experimentally

measured intensity spectrum is not IðEÞ, but rather a convolution of the normal-

ized instrument resolution function of the monochromator RðEÞ with a modified

function SexpðEÞ:

IexpðEÞ ¼ RðEÞn aSexpðEÞ ð7:57Þ

with

SexpðEÞ ¼ fLMcdðEÞ þ fLM
X
n¼1

SnðEÞ ð7:58Þ

where a is a normalization constant, and the factor c ð0 1Þ takes into account the

extinction of the incident beam mentioned just above and serves to restore the

proper height of the central elastic peak. Using this, SðEÞ can be written as

SðEÞ ¼ SexpðEÞ þ fLMð1� cÞdðEÞ: ð7:59Þ

Processing experimental data, our aim is to determine the three parameters c, a,
and fLM. First, the constant a can be derived from Lipkin’s sum rule of the first

moment:

292 7 Synchrotron Mössbauer Spectroscopy



A ¼
ð
EIexpðEÞ dE

Aa

ð
ESexpðEÞ dE ¼ a

ð
E fLMcdðEÞ þ fLM

X
n¼1

SnðEÞ
" #

dE

¼ a

ð
fLM
X
n¼1

SnðEÞ dE ¼ aER ð7:60Þ

where, to a good approximation, RðEÞ is assumed to be a symmetric function.

The part of first moment of RðEÞ is of the order of 1% of ER, so the slight asym-

metry of RðEÞ may be ignored in (7.60). In the integral over dE, the contributions
of all terms that are even in E cancel because of the multiplication by E. It is the
same for elastic scattering; so this factor a does not influence the result. To obtain

the value of A, and hence the value of a, a numerical integration of IexpðEÞ
weighted by E must be done. Finally, the measured intensity spectrum is normal-

ized as follows:

ð
1

a
IexpðEÞ dE ¼

ð
RðEÞnSexpðEÞ dE ¼ cfLM þ ð1� fLMÞ; ð7:61Þ

which means that the numerical integration of the normalized experimental data

gives the sum of elastic and inelastic scattering parts, and c and fLM are corre-

lated.

The factor a may be found by an iterative procedure. Starting with a reasonable

trial value for a, we can calculate the phonon DOS according to Eq. (7.52). How-

ever, we confine our attention to the low-energy region of the phonon DOS,

which has a Debye behavior, i.e., it should follow the E2 law. When this procedure

was applied to the analysis of spectra from metmyoglobin [56], c ¼ 0:9840 gives

the best agreement with an E2 dependence. After c is obtained, the inelastic spec-
trum is separated from the elastic component. Now SexpðEÞ is substituted into Eq.

(7.59), to restore SðEÞ to its proper form.

Although the value of fLM may be determined together with c due to (7.61), it

would be in general found by some other independent approach. In fact, fLM can

be solved from (7.61) as

fLM ¼ 1� 1

a

ð
I 0expðEÞ dE ð7:62Þ

with I 0expðEÞ being the measured spectrum with the elastic peak removed. This

expression shows that the fLM-value is determined without requiring specific

knowledge about isotope abundance, shape or thickness of the sample, resonant

cross-section, hyperfine fields, and so on. This distinguishing feature reduces sys-

tematic error, ingeniously avoids the saturation effect, and leads to the very pre-

cise determination of fLM-values, as can be seen in Table 7.2.
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With the normalized spectrum, one can easily calculate the different moments.

From the second moment (7.55), dSOD is obtained from measurements with direc-

tions of the incident radiation along orthogonal axes [52]:

dSOD ¼ �E0
hv2i

2c2
¼ � hEi2x þ hEi2y þ hEi2z � 3ER

2E0
ð7:63Þ

where hEij ¼
Ð
E jSðEÞ dE and E0 is the nuclear transition energy. Note that the

extracted dSOD by this way is separated from isomer shift dIS. The average force

constant Fk projected on the direction of the incident radiation is given straight-

forwardly by (7.56):

Fk ¼ E2
0

2�h2c2E2
R

½hEi3ðkÞ � 3ERhEi2ðkÞ þ 2E2
R�: ð7:64Þ

The fLM- and dSOD-values of a-Fe measured by this method at various tempera-

tures are compared with those by conventional Mössbauer spectroscopy in Figs.

7.27 and 7.28, respectively.

Table 7.2 The Lamb–M€oossbauer factor fLM and dSOD of various

compounds. The values were obtained by inelastic nuclear resonant

absorption with 57Fe, 119Sn, or 151Eu as resonant nuclei [57].

Compound fLM dSOD (G) Ref.

Fe metal (bcc), foil 0.805(3) �2.47(4) 46

0.791(15) �2.50(13) 54

0.80(1) 58

0.796(2) �2.49(2) 13

Stainless steel, Fe55Cr25Ni20, foil 0.742(10) �2.41(4) Evaluated from [46]

0.76(5) 58

Fe metal, nanocrystalline powder 0.726(5) �2.62(12) Evaluated from [59]

Fe3Al, foil 0.743(3) �2.46(2) Evaluated from [60]

Fe2Tb, Laves phase, film 0.679(3) �2.39(2) 61

Fe67Tb33, amorphous film 0.595(5) �2.39(3) 61

SrFeO3, powder 0.811(10) �2.57(4) Evaluated from [57]

FeBO3, single crystal 0.81(3) 62

Fe2O3, powder 0.793(4) �2.56(4) 63

[Fe(bpp)2][BF4], polycrystalline 0.10(5) 58

a-Sn(500 Å)/InSb(001) 0.14(2) 64

b-Sn, foil 0.042(6) 65

SnO2, powder 0.628(9) �0.357(6) 66
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To get the phonon DOS, we have to extract the single-phonon contribution

S1ðEÞ convoluted with RðEÞ. Using the convolution theorem, Eq. (7.49) has a very

simple form in the Fourier space:

FfSnðEÞg ¼ ð1=nÞFfSn�1ðEÞg �FfS1ðEÞg ð7:65Þ

Fig. 7.27 Recoilless fraction or Lamb–M€oossbauer factor of iron metal

(bcc) versus temperature. The samples were polycrystalline iron foils at

ambient pressure. The employed methods comprise M€oossbauer
spectroscopy, nuclear forward scattering, and inelastic nuclear resonant

absorption.

Fig. 7.28 SOD shift versus temperature of polycrystalline iron foils (bcc) at ambient pressure.
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where F indicates the Fourier transform. This recursive relation has the closed

solution

FfSnðEÞg ¼ ð1=n!Þ½FfS1ðEÞg�n: ð7:66Þ

Thus, taking the Fourier transform of Eq. (7.59) and summing up the multi-

phonon contributions, one obtains

FfSðEÞg ¼ fLM exp½FfS1ðEÞg�: ð7:67Þ

Now, the single-phonon contribution can be solved from this expression,

S1ðEÞ ¼
ð
dte�iEt ln½FfSðEÞg=fLM�: ð7:68Þ

This method is known as the Fourier-logarithm decomposition [69]. We need

to also correct for the influence of RðEÞ, which can be done by simultaneously

multiplying the numerator and the denominator in the above expression by

aFfRðEÞg:

S1ðEÞ ¼
ð
dte�iEt lnf½aFfSðEÞnRðEÞg�=½afFfRðEÞg�g

¼
ð
dte�iEt lnf1þ ½FfI 0expðEÞg�=½afFfRðEÞg�g; ð7:69Þ

by which one can finally calculate the phonon DOS using the measured inelastic

scattering spectrum. As an example, the measured phonon DOS of a-Fe is shown

in Fig. 7.29.

Now we discuss an important issue in the determination of phonon DOS, i.e.,

the necessity of the Mössbauer effect. As can be seen from the above procedure,

what we want are only the inelastic contributions, while the central elastic peak

due to the Mössbauer effect must be removed. Since the incident radiation in

the recoilless process does not interact with phonons, is it possible to use a reso-

nant absorption other than that in a Mössbauer nucleus? Here, a Mössbauer tran-

sition, regarded and used as an energy analyzer, is an extremely precise energy

reference [48]. However, all nuclear transitions are excellent energy references,

not just the Mössbauer transitions. The ‘‘analyzer’’ referred here is not the same

as the analyzer used in Mössbauer Rayleigh scattering. Let us discuss this prob-

lem briefly.

It is important that resonant absorption or scattering is used because of the

large cross-sections to provide high counting rates. Furthermore, since the cross-

section is proportional to l2, low-energy transitions (e.g., <200 keV) are more

favorable. In order to observe delayed products of the decays, the lifetime of the

nuclear excited state must not be too short; otherwise it would be difficult to dis-
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criminate against the electronic scattering which causes serious background. It so

happens that the isotopes satisfying these conditions are mostly Mössbauer iso-

topes. In additional, the relative contribution from the multi-phonon terms is

ð�ln f Þn=n! [49]. If fLM approaches 1, the sum in Eq. (7.43) converges quickly,

and it would be sufficient to take only the first few leading terms, e.g., taking up

to the three-phonon term and neglecting all higher order terms. Therefore, hav-

ing a large fLM is very important for the precise separation of the single-phonon

term from the rest. It seems that the Mössbauer effect plays a pivotal role, and

the methodology is called ‘‘phonon-assisted Mössbauer effect.’’ Although the SR

energy is completely tunable for resonance excitations of all Mössbauer isotopes,

only a few of them have been used in experiments, such as 57Fe, 119Sn, 169Tm,
181Ta, 151Eu, 161Dy, and 83Kr. The aspect of excellent energy resolution of Möss-

bauer effect is not exploited here, because we are not measuring hyperfine inter-

actions, but phonon DOS in the meV range.

7.5

Synchrotron Methods versus Conventional Methods

Synchrotron Mössbauer spectroscopy has attracted a significant amount of atten-

tion from researchers and become a well-established methodology in the last ten

years. Here we make a comprehensive comparison between synchrotron Möss-

bauer spectroscopy and the conventional Mössbauer spectroscopy.

Fig. 7.29 Phonon density of states for a-Fe as measured in inelastic

nuclear resonant scattering with 920 meV energy resolution [13] (circles)

and as reconstructed from neutron results (solid line). The inset shows

the raw data from inelastic nuclear resonant scattering.
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Table 7.3 lists some of the typical properties (such as intensity, resolution, size,

and polarization) of the g-rays from SR and a 57Co source. As an additional fea-

ture of SR, its pulsed g-rays have excellent properties (each pulse duration < 100

ps, and variable periods between a few and hundreds of nanoseconds), which is

uniquely suitable for measuring time spectra.

Synchrotron radiation provides extremely strong and narrow photon beams,

which facilitates spectral measurement under special experimental conditions,

such as high temperature, high pressure, high magnetic field, and working with

small samples (@1 mm2) or nanostructured thin films. In biological samples,

the concentration of Mössbauer isotope is usually too low for conventional Möss-

bauer spectroscopy, but SR should be strong enough to produce detectable signals.

Results from synchrotron Mössbauer spectroscopy have usually higher accu-

racy than results from the conventional methods. Whether using nuclear forward

scattering or inelastic nuclear resonant scattering, the experimental values of re-

coilless fraction f have typically three significant figures, as shown in Tables 7.1

and 7.2. The main reason for better accuracy is the absence of the saturation ef-

fect in synchrotron Mössbauer methods. In conversion Mössbauer experiments,

one must measure the height or the area of spectral peaks, whose uncertainties

are usually higher that a few percent. This is because the ‘‘thin absorber approxi-

mation’’ is usually not satisfied, causing the saturation effect. Scattering experi-

ments require only relatively short measurement time, ranging from a few min-

utes to a few hours. The conventional Mössbauer spectroscopy may require up to

hundreds of hours. The hyperfine parameters measured from synchrotron ex-

periments have comparable accuracies to those from conventional experiments.

In quantum beat experiments, enough data accumulation is required in the cho-

sen time window in order to yield satisfactory measurements of the periods.

The most important contribution from synchrotron Mössbauer spectroscopy is

its ability of measuring phonon DOS directly. So far, this cannot be achieved by

conventional Mössbauer spectroscopy. Although phonon DOS may be deduced

from inelastic neutron scattering (see Section 4.6.1) by extracting force constants

Table 7.3 Comparison between a modern SR source and a 57Co source

with 10 mCi activity [63].

Radiation property SR 57Co source

Relevant spectral flux (ph s�1 eV�1) 2.5� 1012 2.5� 109

Brightness (ph s�1 eV�1 sr�1) 2.8� 1022 2.5� 1012

Brilliance (ph s�1 eV�1 sr�1 mm�2) 2.8� 1022 2.8� 1010

Typical beam size (mm2) 1� 1 10� 10

Energy resolution (eV) Variable 4.66� 10�9

Energy range (eV) 3.7� 10�6 A1� 10�4

Polarization 100% linear Unpolarized
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from fitting dispersion curves, inelastic nuclear resonant scattering using SR can

provide the phonon DOS directly, independent of the dispersion relations, and

hence is a model-independent method. This direct method is also much more ac-

curate (within a few percent), much better than that which neutron scattering

methods can provide. In nuclear resonant scattering, the Mössbauer nuclei serve

directly as analyzers. But in neutron scattering (Fig. 4.24), the scattered neutrons

must be diffracted by an ‘‘analyzer crystal,’’ which obviously introduces added un-

certainty. Inelastic nuclear resonant scattering using SR can also allow us to mea-

sure partial density of states (PDOS), which is remarkable because PDOS is very

difficult to obtain using other methods. For studying vibrations of Fe atoms in

various ferrous and ferric compounds, iron PDOS contains much needed infor-

mation. For studying Fe as impurities, PDOS can be used to elucidate local vibra-

tion modes. The availability of experimental PDOS is particularly significant, be-

cause PDOS can now be calculated using first-principles methods (see Fig. 4.27),

and be compared with experimental results.

However, synchrotron Mössbauer spectroscopy suffers from several short-

comings. Because time domain experiments are based on the interference phe-

nomenon, the corresponding spectra are very complex, whereas conventional

Mössbauer spectra provide certain direct visual information. If two or more hy-

perfine fields are involved, time spectra may be severely modulated. To alleviate

these difficulties, new experimental procedures are being developed [70, 71],

such as the time-integrated nuclear forward scattering method using SR, where

an absorber mounted on a Mössbauer drive is inserted between the sample and

the detector. The scattered intensity as a function of v is then measured, which in

principle is similar to an energy spectrum from conventional Mössbauer spec-

troscopy. This is an interesting concept, but it cannot be fully implemented until

all technical problems are resolved. The second major drawback of synchrotron

Mössbauer spectroscopy is obviously the high expense involved in constructing

and maintaining such large centralized synchrotron facilities and their unavail-

ability to local individual users.

In summary, synchrotron Mössbauer spectroscopy is an important supplement

of the conventional Mössbauer spectroscopy. The former will never completely re-

place the latter, but help to solve problems that the conventional methods cannot

study or unable to provide satisfactory results.

We now compare experimental results from three materials, a-Fe, Fe2O3, and

(CN3H6)2[Fe(CN)5NO], each of which has been investigated by synchrotron

Mössbauer spectroscopy and by conventional Mössbauer spectroscopy.

a-Fe has been extensively investigated by the conventional and synchrotron

Mössbauer methods, as well as by inelastic neutron scattering. For the recoilless

fraction values of a-Fe, we can compare data in Table 5.3 (using conventional

Mössbauer) with data in Table 7.1 (using SR nuclear forward scattering time

spectra), and with data in Table 7.2 (using inelastic nuclear resonant absorption).

From the above three methods, the recoilless fraction values are f ¼ 0:78; 0:77,

and 0.80, respectively, which obviously agree with one another very well. Temper-

ature dependence of the recoilless fraction or the Lamb–Mössbauer factor is
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shown in Fig. 7.27, which contains data from Mössbauer, SR nuclear forward

scattering, and SR nuclear resonant absorption. All data points follow exactly the

same trend and are quite consistent. The density of phonon states in Fig. 7.29

(using SR nuclear resonance scattering) compares very well with that in Fig.

4.19 (using neutron scattering). The polarization effects of an external magnetic

field as shown in the transmission spectra using conventional 57Co radiation

(Fig. 2.24) resemble their SR counterparts (Fig. 7.9). Furthermore, the effective

magnetic hyperfine field as plotted in Fig. 7.24 is a compilation of results from

both transmission Mössbauer and SR nuclear forward scattering.

Fe2O3 powder is another example for which comparisons can be made. Its re-

coilless fraction f from the traditional Mössbauer results is 0.66, as listed in Table

5.3, and the Lamb–Mössbauer factor fLM from inelastic nuclear resonant absorp-

tion using SR is 0.793, as in Table 7.2. Strictly, these two values are not expected

to be equal. Nevertheless, we list both of them here because they are comparable.

One more example is the remarkable anisotropic vibrational mean-square dis-

placement of guanidinium nitroprusside, (CN3H6)2[Fe(CN)5NO], whose SR nu-

clear forward scattering spectra are presented in Fig. 7.22 with the corresponding

Lamb–Mössbauer factors f ðaÞLM ¼ 0:122G 0:010 and f ðcÞLM ¼ 0:174G 0:002 for the

orientations with the single-crystal a-axis and c-axis parallel to the incident SR

beam, respectively [44]. An investigation of single-crystal guanidinium nitro-

prusside using Mössbauer line broadening yielded f ðaÞLM ¼ 0:118G 0:003,

f ðbÞLM ¼ 0:206G 0:010, and f ðcÞLM ¼ 0:198G 0:002 for the principal crystal directions

[72]. Another study using Mössbauer saturation and polarization effects pro-

vided f ðaÞLM ¼ 0:118G 0:008, f ðbÞLM ¼ 0:174G 0:008, and f ðcÞLM ¼ 0:202G 0:008 as the

Lamb–Mössbauer factors [73]. These three sets of data from experiments using

synchrotron and conventional Mössbauer methods are again consistent with one

another.
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8

Mössbauer Impurity Atoms (I)

In most cases, the Mössbauer atom appears as an impurity; even in the a-Fe lat-

tice, 57Fe is an isotopic impurity. Therefore, studying impurity atoms is an impor-

tant part of Mössbauer spectroscopy.

Among the methods for studying the dynamics of impurity atoms, the Möss-

bauer effect has many special characteristics. In addition to high energy resolu-

tion, its isotope selectivity gives the Mössbauer method a unique advantage, mak-

ing it the best means for obtaining information on impurity–host and host–host

force constants. Moreover, only the Mössbauer method allows the investigation of

‘‘isolated’’ impurity atoms at extremely low concentrations. Neutron inelastic scat-

tering and heat capacity are not sensitive methods for studying impurity atoms,

and do not provide observable effects unless the impurity concentration is larger

than 1 at.%. On the other hand, good Mössbauer spectra can be obtained from

alloys where the Mössbauer atom concentrations are as low as 10�4 to 10�2 at.%

[1, 2].

The presence of impurity atoms destroys the translational symmetry of the lat-

tice and complicates theoretical treatments. The prevalent approach to solving the

equations of motion is to use the Green’s functions and take advantage of the

symmetry around the impurity atom as much as possible to simplify the calcula-

tions. Maradudin and other authors pioneered the theoretical calculations, but in

1968 Mannheim proposed a relatively simple and practical model, which is dis-

cussed here in detail. Also, we limit our attention to substitutional impurities of

low concentrations (<0.1 at.%) in this chapter, because the interactions among

them may be neglected and the theoretical analysis is much simplified. The

studies of impurities with higher concentrations are discussed in Chapter 9.

8.1

Theory of Substitutional Impurity Atom Vibrations

8.1.1

The General Method

First we introduce the Green’s function for the perfect Bravais lattice. In such a

solid, Eq. (4.28) can be written as
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X
b; l 0

½Fabðl; l 0Þ � o2M0dabdll 0 �ubðl 0Þ ¼ 0: ð8:1Þ

For calculating the thermal average of a physical quantity such as hu2ð0Þi, it is
very convenient to use the retarded Green’s function, defined as [3–6]

Gabðll 0; t� t 0Þ ¼ � i

�h
yðt� t 0Þh½uaðl; tÞubðl 0; t 0Þ�i; ð8:2Þ

where

yðt� t 0Þ ¼ 1; when t > t 0

0; when t < t 0

	
ð8:3Þ

is the step function, and h. . .i represents thermal averaging. We may Fourier-

transform the Green’s functions from the time domain to the frequency domain:

Gabðll 0;oG ieÞ ¼ 1

2p

ðy
�y

Gabðll 0; t� t 0Þe iðoGieÞðt�t 0Þ dðt� t 0Þ

where e ! þ0, and it is often convenient to assign t 0 ¼ 0.

For a harmonic lattice, the Green’s functions in Eq. (8.2) satisfy the equations

of motion in Eq. (8.1), as shown in Appendix F.1 and Ref. [6]:

X
l 00 ; g

½M0o
2dagdll 00 � Fagðl; l 00Þ�Ggbðl 00l 0;oÞ ¼ dabdll 0 : ð8:4Þ

This may be written in the following matrix form:

L0G ¼ I ð8:5Þ

where I is the unit matrix and L0 ¼ M0o
2 �F. For a perfect lattice of N atoms,

the solution to Eq. (8.5) is

Gabðll 0;oþ ieÞ ¼ 1

NM0

X
k; j

eaðk jÞ � ebðk jÞ
o2 � o2

j ðkÞ þ ie
e ik�ðl�l 0Þ: ð8:6Þ

To understand the physical meanings of these Green’s functions, let us look at

the static Green’s function Gabðll 0;o ¼ 0Þ as an example. It is the displacement of

atom l in the a-direction when a unit force is applied on atom l 0 in the b-direction.

From Eq. (8.5), it is easy to see that the Green’s functions are reciprocals of the

force constants in F. Because of this fact, the lattice Green’s functions have the

same symmetry properties as the force constants (see Appendix F.3).
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Suppose that an atom of mass M replaces an atom of mass M0 in a perfect lat-

tice, forming a substitutional impurity (Fig. 8.1). The substitution not only causes

a change in this atom’s mass but also alters the interatomic interactions. How-

ever, these changes are localized within a region involving the impurity atom

and its nearest neighbors. For studying the dynamics of the impurity atom, we

may consider the combination of the impurity atom and its nearest neighbor as

a new ‘‘molecule.’’ The regions occupied by such molecules are known as the im-

purity space. The Hamiltonian of a harmonic lattice containing an isolated impu-

rity atom is [7–9]

H ¼ H0 þ DH ð8:7Þ

where H0 is the Hamiltonian of the perfect lattice with atomic mass M0 and force

constant tensor F

H0 ¼
X
l

p2l
2M0

þ 1

2

X
a; b
l; l 0

Fabðl; l 0ÞuaðlÞubðl 0Þ ð8:8Þ

and DH contains only the contributions from the atoms in the impurity space

DH ¼
X
l

p2l
2

1

Ml
� 1

M0

� �
þ 1

2

X
a; b
l; l 0

½F 0
abðl; l 0Þ � Fabðl; l 0Þ�uaðlÞubðl 0Þ: ð8:9Þ

We now introduce a new matrix for the perturbation term

U ¼ L0 � L ð8:10Þ

where L0 corresponds to the perfect host lattice and L to the impurity lattice. If

each impurity atom interacts with z nearest neighbors, U is a 3n� 3n matrix,

where n ¼ zþ 1. Therefore, U is completely localized within the impurity space

(U-space) and n is not a large number. The matrix elements are

Fig. 8.1 Formation of an impurity as a result of atom M

substituting M0.
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Uabðl; l 0Þ ¼ ðM0 �MlÞo2dll 0dab þ ½F 0
abðl; l 0Þ � Fabðl; l 0Þ�: ð8:11Þ

The equation of motion for the impurity atom is

X
b; l 0

½M0o
2dabdll 0 � Fabðl; l 0Þ�ubðl 0Þ ¼

X
b; l 0

Uabðl; l 0Þubðl 0Þ: ð8:12Þ

This inhomogeneous equation is satisfied by [10]

uaðlÞ ¼
X
b; g
l 0; l 00

Gabðll 0;oÞUbgðl 0; l 00Þugðl 00Þ; ð8:13Þ

in which the summation over four different indices is tedious. We will take

an alternative approach, introducing the impurity lattice Green’s function

G 0
abðll 0; oÞ and utilizing its relation with Gab (the Dyson equation) to obtain

hua 2ð0Þi and the recoilless fraction f .
For a lattice with impurity atoms, a relationship similar to Eq. (8.5) can be writ-

ten (see Eq. (F.19) in Appendix F) as

G 0 ¼ ðMo2 �F 0Þ�1I ¼ M�1=2½o2I � D��1M�1=2 ð8:14Þ

where M is a 3N � 3N diagonal matrix in which three of the elements are M and

the rest are M0. The only nondiagonal matrix is D ¼ M�1=2F 0M�1=2, but can be

diagonalized by a unitary matrix B with elements Baðl; sÞ (see Eq. (4.29)). Then

the Green’s function of the perturbed lattice can be expressed as [11, 12]

G 0
abðll 0;oÞ ¼

1

½MlMl 0 �1=2
X
s

B�
a ðl; sÞBbðl 0; sÞ
o2 � o2

s

: ð8:15Þ

Using Eqs. (8.5) and (8.10), we see that

U ¼ L0 � L ¼ G�1 � G 0�1;

thus G 0 and G are related through

G 0 ¼ G þ GUG 0 ð8:16Þ

which is known as the Dyson equation. Here, both G 0 and G are 3N � 3N ma-

trices. To study effects of impurities on a variety of physical phenomena, only ele-

ments of G 0 in the impurity space are needed. For this reason, we partition each

of the matrices as follows [13–15]:

U ¼
U 0

0 0

" #
ð8:17Þ
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G ¼
g G12

G21 G22

" #
ð8:18Þ

G 0 ¼
G1

0 G12
0

G21
0 G22

0

" #
ð8:19Þ

where g and G1
0 are both 3n� 3n matrices, formed by the U-space matrix ele-

ments of G and G 0, respectively. Equation (8.16) now becomes four matrix equa-

tions of lower dimensions, and we are interested in the first one:

G1
0 ¼ g þ gUG1

0: ð8:20Þ

Once the Green’s function matrix G1
0 is obtained, we can calculate all the dy-

namic parameters, including the impurity atom’s vibration frequency, mean-

square displacement hu2ð0Þi, the recoilless fraction f , the Debye temperature,

etc. We will still use the general form of the Dyson equation (Eq. (8.16)) with the

understanding that each matrix is evaluated only in the U-space.

For an impurity atom at the origin in a cubic host, it is only necessary to evalu-

ate the x-direction mean-square displacement hux
2ð0Þi. According to Refs. [11,

16, 17] or Eq. (F.28) in Appendix F, it can be written as

hu2
xð0Þi ¼ lim

t!0
e!0

huxð0; tÞuxð0; 0Þi

¼ lim
e!0

� �h

p

ðy
0

coth
b�ho

2

� �
Im G 0

xxð00;oþ ieÞ do
� �

¼ lim
e!0

i�h

2p

ðy
0

coth
b�ho

2

� �
½G 0

xxð00;oþ ieÞ �G 0
xxð00;o� ieÞ� do

ð8:21Þ

where h. . .i represents thermal averaging and Im represents the imaginary part

of G 0
xx . Analogous to the case of a perfect lattice, the impurity mean-square dis-

placement can be expressed as

hu2
xð0Þi ¼ �h

2M

ðy
0

1

o
coth

b�ho

2

� �
g 0ðoÞ do: ð8:22Þ

In general, g 0ðoÞ is the modified vibrational DOS for the impure lattice, or partial

DOS. The function g 0ðoÞ referring to the impurity atom is often called the impu-

rity dynamic response function:

g 0ðoÞ ¼ � 2Mo

p
Im G 0

xxð00;oþ i0Þ

¼ iMo

p
½G 0

xxð00;oþ i0Þ �G 0
xxð00;o� i0Þ�: ð8:23Þ
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Therefore, the main task in studying hu2ð0Þi is to obtain the impurity Green’s

functions through Eq. (8.20), in which M0 and M are known, the host Green’s

functions can be calculated, and the only variables are the impurity–host and

host–host force constants.

In addition to the recoilless fraction, the second-order Doppler effect can also

be evaluated. This is because the mean-square velocity is calculated using Green’s

functions as [15]

hv2a ð0Þi ¼ �h

p

ðy
0

coth
b�ho

2

� �
Im G 0

aað00;o2 � i0Þo2 do: ð8:24Þ

8.1.2

Mass Defect Approximation

We now discuss isotopic impurities in a cubic Bravais lattice, which is the sim-

plest type of substitutional impurity without any force constant changes. The gen-

eral characteristics of the impurity vibrations can be obtained by studying such a

simple model. An obvious example is 57Fe in metallic iron, for which Eq. (8.11)

becomes

Uabðl; l 0Þ ¼ hM0o
2dll 0dab ð8:25Þ

where h ¼ ðM0 �MÞ=M0 and for metallic iron h ¼ 1:78%.

In the impurity space gU is a 3� 3 matrix, whose elements are

ðgUÞab; ll 0 ¼ dll 0dabhM0o
2Gabð00;oÞ: ð8:26Þ

Using Eq. (8.20), we can easily get

G 0
aað00;oÞ ¼

Gaað00;oÞ
1� hM0o

2Gaað00;oÞ
ð8:27Þ

where the Green’s function for the perfect host lattice is [14, 18]

Gaað00;oÞ ¼ 1

NM0

X
k j

eaðkjÞ � e �
b ðkjÞ

o2 � o2
j ðkÞ

dab ¼ 1

3NM0

X
k j

1

o2 � o2
j ðkÞ

: ð8:28Þ

The frequency of the impurity vibration is determined by the following equation:

1� hM0o
2Gaað00;oÞ ¼ 0 ð8:29Þ

which corresponds to a singular point in Eq. (8.20) [14]. We now consider the de-

tails in two different situations.
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8.1.2.1 Resonance Modes

In this case, the impurity vibration frequency o is within the band from 0 to om,

where om is the highest frequency of the host lattice vibration. Generally, G 0
aa is

a complex function, and we need to find its imaginary part before calculating

hu2ð0Þi of the impurity vibration. Changing o2 to ðo2 þ ieÞ in Eq. (8.28), and

using Eqs. (F.19) and (4.96), we obtain

Gaað00;oþ ieÞ ¼ 1

3NM0

X
s

1

o2 � o2
s þ ie

¼ 1

M0
p

ðom

0

gðo 0Þ
o 02 do 0 � i

p

M0

gðoÞ
2o

ð8:30Þ

where gðoÞ is the phonon DOS of the host lattice.

Substituting Eq. (8.30) into (8.27), the recoilless fraction f can be derived from

Eq. (8.22):

�ln f ¼ k2hu2ð0Þi ¼ k2�h

2M

ðom

0

g 0ðoÞ
o

coth
b�ho

2
do ð8:31Þ

where

g 0ðoÞ ¼
M

M0
gðoÞ

1� ho2p

ðom

0

gðo 0Þ
o2 � o 02 do

0
� �2

þ phogðoÞ
2

� �2 : ð8:32Þ

Calculations by many authors [3, 9, 11, 14, 15, 19] all arrived at Eq. (8.31). Fre-

quencies of vibrations with very large amplitudes are solutions of the following

equation:

1� ho2
r p

ðom

0

gðo 0Þ
o2
r � o 02 do

0 ¼ 0: ð8:33Þ

In this case, the denominator of Eq. (8.32) shows the resonance characteristics,

i.e., the frequency of the impurity atom or resonates with one of the host modes.

Those modes with frequencies that satisfy (8.33) are known as resonance modes.

8.1.2.2 Localized Modes

When o > om, we have localized modes. In this case, the Green’s function

Gaað00;oþ ieÞ is a positive real number. It can be seen from Eq. (8.29) that a nec-

essary condition for o > om is h > 0 (impurity atoms lighter than the host ones).

In fact, h should be larger than a critical value hcr. When o ¼ oL, G 0
aa has a sin-

gular point because the denominator in Eq. (8.27) becomes zero. The correspond-
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ing normal modes ðoLÞ are known as local modes. In such a mode, vibration am-

plitude decreases exponentially as a function of distance from the impurity atom,

hence the name. Obviously, the frequencies of local modes must satisfy Eq. (8.29):

1� hM0o
2
LGaað00;oÞ ¼ 0: ð8:34Þ

According to (8.28), for a cubic lattice the above equation can be written as

1 ¼ ho2
L

3N

X
k j

1

o2 � o2
j ðkÞ

ð8:35Þ

or

1 ¼ ho2
L

ðom

0

gðo 0Þ do 0

o2 � o 02 : ð8:36Þ

In order to determine the changes in hu2ð0Þi caused by the existence of local

modes, it is instructive to look at the behavior of G 0
aað00;oÞ near oL. We now re-

place the denominator of Eq. (8.27) by its Taylor expansion near o ¼ oL [20], in

which the first term automatically vanishes and the second is the lowest order

term (see Eq. (F.26) in Appendix F):

Im G 0
aað00;oþ ieÞ

¼ p
Gaað00;oÞ

d

do
½hM0o

2Gaað00;oÞ�
dðo� oLÞ

¼ � p

2hM0oL

ho4
L

3N

X
k j

1

½o2 � o2
j ðkÞ�2

� 1

2
4

3
5�1

dðo� oLÞ: ð8:37Þ

Substituting Eq. (8.37) into (8.21) gives an expression for the recoilless fraction:

�ln f ¼ k2�h

2M

1� h

hoL

coth
1

2
b�hoL

� �

ho4
L

ðom

0

gðo 0Þ
ðo2

L � o 02Þ2 do
0 � 1

: ð8:38Þ

For isotopic impurities or in cases where the force constants are approximately

the same, the vibration of the impurity atom depends strongly on the h-value, and

the amplitude increases as M decreases. When h is larger than the critical value

hcr (where hcr > 0), the above vibrations will be mostly in discrete local modes.

The lighter the impurity atom M is, the more the modes are localized, and the

frequencies are higher. In general, it is difficult to excite these high-frequency

modes by the recoil energy after the nucleus absorbs a photon. Consequently,
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the recoilless fraction increases, which is an important fact. The opposite hap-

pens as the ratio M=M0 increases. Low-frequency resonance modes gradually

dominate the vibrations, and f becomes more temperature-dependent.

If we use the Debye model to approximate the impurity vibrations, then the fol-

lowing simple relationship between y 0D of the impurity and yD of the host can be

derived [21, 22]:

y 0D ¼ yD

ffiffiffiffiffiffiffi
M0

M

r
: ð8:39Þ

This is to be expected because when the vibrations of both the impurity and the

host follow the same model, o@ 1=
ffiffiffiffiffi
M

p
. However, Eq. (8.39) would only be valid

for T ¼ 0.

8.2

The Mannheim Model

In the Mannheim model, in addition to the impurity atom mass, the impurity–

host force constant changes are also considered. However, only the nearest neigh-

bor central forces are taken into account for either the host or the impurity–host

system, and the anharmonic effects are neglected. This model was first developed

for fcc and bcc lattices using group theory [23], followed by derivations using an

alternative method [17], and later it was applied to the diamond structure [2]. The

most significant contribution of the Mannheim model is that it has derived a sim-

ple and analytical expression for hu2ð00Þi or f , and it has been in practical use

because it agrees well with experimental results [24]. Considering only the near-

est neighbor central force seems to be somewhat a crude model, but the Mann-

heim model is the only practical one available for Mössbauer spectroscopy.

We now use the fcc lattice to illustrate the essentials of this model. Suppose the

impurity atom is at the origin with 12 host nearest neighbors. The symmetry

point group of the impurity site is still Oh (or group O plus a central inversion

i), and Eq. (8.20) will involve a 39� 39 matrix. The irreducible representations

for an impurity site having symmetry Oh in the fcc lattice are

Gfcc ¼ A1g lA2g l 2Eg l 2F1g l 2F2g lA2u lEu l 4F1u l 2F2u ð8:40Þ

where each irreducible representation corresponds to one particular normal mode

in the lattice. It can be shown that only in representation F1u is the impurity atom

involved in the lattice vibration. F1u is a three-dimensional representation and ap-

pears four times. Therefore, in order to describe the vibration of the impurity

atom, four three-dimensional basis vectors are needed.

When studying small vibrations of a lattice or a molecule, it is customary to

use a displacement from the equilibrium position as the basis of an irreducible

representation. However, in order to simplify calculations, it is necessary to intro-
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duce a set of orthonormal symmetry coordinates (linear combination of displace-

ments) as the bases of 4F1u [25], such that the matrices G and U in Eq. (8.16) are

block-diagonalized. Owing to cubic symmetry, we only need to consider the

x-components of the following four symmetry coordinates (see Appendix G):

S0 ¼ uxð000Þ
2
ffiffiffi
2

p
S1 ¼ uxð110Þ þ uxð110Þ þ uxð101Þ þ uxð101Þ

þ uxð110Þ þ uxð110Þ þ uxð101Þ þ uxð101Þ
2
ffiffiffi
2

p
S2 ¼ uyð110Þ þ uyð110Þ þ uzð101Þ þ uzð101Þ

� uyð110Þ � uyð110Þ � uzð101Þ � uzð101Þ
2S3 ¼ uxð011Þ þ uxð011Þ þ uxð011Þ þ uxð011Þ

ð8:41Þ

where uaðxyzÞ represents the a-direction unit displacement of the atom located at

xyz.
The Green’s function for the host lattice is translation invariant, and only de-

pends on the relative position between atoms, as shown in Eq. (8.6). Therefore

Gabðl; l 0Þ ¼ Gabðl � l 0; 0Þ ¼ Gabðl � l 0Þ ð8:42Þ

and other symmetry properties of Green’s functions are detailed in Appendix F.3.

The following shorthand notations will be used to avoid lengthy writing of the

results:

Uabð110Þ ¼ Uabð110; 000Þ; Uabð0; 0Þ ¼ Uabð000; 000Þ; ð8:43Þ

and

g0 ¼ Gxxð000Þ; g1 ¼ Gxxð110Þ;
g2 ¼ Gxyð110Þ; g3 ¼ Gxxð011Þ;
A ¼ g0 þGxxð020Þ þGxxð200Þ þGxxð220Þ
B ¼ Gxyð220Þ þ 2Gxyð211Þ
C ¼ g3 þGxxð211Þ
D ¼ Gxxð200Þ þGxxð020Þ �Gxxð220Þ � g0

E ¼ Gxyð112Þ � g2

F ¼ g0 þ 2Gxxð020Þ þGxxð022Þ
H ¼ g1 þGxxð121Þ
K ¼ Gxyð211Þ:

ð8:44Þ
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We now calculate the matrix elements of G and U in the space spanned by the

basis vectors S0, S1, S2, and S3 defined in (8.41):

hS0jGjS0i ¼ huxð000ÞjGjuxð000Þi ¼ Gxxð000Þ ¼ g0; ð8:45aÞ

hS0jGjS1i ¼
�
uxð000ÞjGj 1

2
ffiffiffi
2

p ½uxð110Þ þ uxð110Þ

þ uxð101Þ þ uxð101Þ þ � � ��
�

¼ 1

2
ffiffiffi
2

p ½Gxxð110Þ þGxxð110Þ þGxxð101Þ þGxxð101Þ þ � � ��

¼ 8

2
ffiffiffi
2

p Gxxð110Þ ¼ 2
ffiffiffi
2

p
g1: ð8:45bÞ

In the above derivations, we have used the relation Gabðl � l 0Þ ¼ huaðl 0ÞjGjubðlÞi
and the symmetry properties of Green’s functions (Appendix F.3). Similarly, we

have

hS0jGjS2i ¼ uxð000ÞjGj 1

2
ffiffiffi
2

p ½uyð110Þ þ � � ��
� �

¼ 8

2
ffiffiffi
2

p Gxyð110Þ ¼ 2
ffiffiffi
2

p
g2; ð8:45cÞ

hS0jGjS3i ¼ uxð000ÞjGj 1
2
½uxð011Þ þ � � ��

� �

¼ 4

2
Gxxð011Þ ¼ 2g3: ð8:45dÞ

The calculations of some of the other matrix elements are very tedious and

would be unrevealing to be reproduced here. For example, hS2jGjS2i ¼ Aþ 2C,
which is actually simplified from a sum of 64 terms. Finally, the following matrix

elements are obtained:

GF1u ¼

g0 2
ffiffiffi
2

p
g1 2

ffiffiffi
2

p
g2 2g3

2
ffiffiffi
2

p
g1 Aþ 2C B 2

ffiffiffi
2

p
H

2
ffiffiffi
2

p
g2 B 2E � D 2

ffiffiffi
2

p
K

2g3 2
ffiffiffi
2

p
H 2

ffiffiffi
2

p
K F

2
66664

3
77775 ð8:46Þ

UF1u ¼

Uxxð00Þ 2
ffiffiffi
2

p
Uxxð110Þ 2

ffiffiffi
2

p
Uxyð110Þ 2Uxxð011Þ

2
ffiffiffi
2

p
Uxxð110Þ �Uxxð110Þ �Uxyð110Þ 0

2
ffiffiffi
2

p
Uxyð110Þ �Uxyð110Þ �Uxxð110Þ 0

2Uxxð011Þ 0 0 �Uxxð011Þ

2
66664

3
77775: ð8:47Þ
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Next, we inverse the matrix ðI � GUÞ to evaluate the impurity Green’s function

G 0. However, in order to simplify the derivation, we have to utilize the relations

between the Green’s functions of the host lattice. The nearest neighbor forces are

given by Eq. (F.38) in Appendix F as follows:

X
b; l

Fabð0; lÞGa 0bðll 0;oÞ ¼ �daa 0d0l 0 þM0o
2Gaa 0 ð0l 0;oÞ: ð8:48Þ

Since we are only interested in the x-direction motion of the central atom in an

fcc lattice, the relevant equations derived from Eq. (8.48) are

Fxxð0; 0Þg0 þ 8Fxxð110Þg1 þ 8Fxyð110Þg2 þ 4Fxxð011Þg3
¼ �1þM0o

2g0; ð8:49aÞ
Fxxð0; 0Þg1 þ Fxxð110ÞðAþ 2CÞ þ Fxyð110ÞBþ 2Fxxð011ÞH

¼ M0o
2g1; ð8:49bÞ

Fxxð0; 0Þg2 þ Fxxð110ÞBþ Fxyð110Þð2E � DÞ þ 2Fxxð011ÞK
¼ M0o

2g2; ð8:49cÞ
Fxxð0; 0Þg3 þ 4Fxxð110ÞH þ 4Fxyð110ÞK þ Fxxð011ÞF

¼ M0o
2g3: ð8:49dÞ

According to the central force approximation in Appendix E, some useful expres-

sions for our calculation are

8Fxxð110Þ ¼ 8Fxyð110Þ ¼ �Fxxð0; 0Þ; ð8:50Þ
Fxxð011Þ ¼ 0; (8.51)

8Uxxð110Þ ¼ 8Uxyð110Þ ¼ Uxxð0; 0Þ � hM0o
2; ð8:52Þ

Uxxð011Þ ¼ 0: ð8:53Þ

Now we are able to simplify Eqs. (8.46), (8.47), and (8.49) to expressions

that contain only the parameters M0, Fxxð0; 0Þ, h, l, and g0, where l ¼
1� F 0

xxð0; 0Þ=Fxxð0; 0Þ. After somewhat lengthy calculations, one would arrive

at the following inverse matrix:

ðI � GUÞ�1 ¼ 1

D

1þ lða1 þ a2Þ � l

2
ffiffiffi
2

p ð1þ a0Þ � l

2
ffiffiffi
2

p ð1þ a0Þ 0

�2
ffiffiffi
2

p
b1 1� lþ b0 þ c2 �c1 0

�2
ffiffiffi
2

p
b2 c2 1� lþ b0 þ c1 0

�2b3 � c3ffiffiffi
2

p � c3ffiffiffi
2

p D

2
666666664

3
777777775
ð8:54Þ
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where ai ¼ �M0o
2gi, bi ¼ �M0o

2ðh� lÞgi, and ci ¼ �lM0o
2ð1� hÞgi. D is the

determinant jI �GU j, which is given by

D ¼ ð1� lÞð1� hÞ½1� rðo2ÞSðo2Þ� ð8:55Þ

where

rðo2Þ ¼ h

1� h
þ o2

mðþ2Þ
l

1� l
; ð8:56Þ

and

Sðo2Þ ¼ �1þM0o
2Gxxð00Þ: ð8:57Þ

We notice that D ¼ 0 is exactly the condition for having a resonance mode or a

localized mode:

1� rðo2ÞSðo2Þ ¼ 0: ð8:58Þ

We now solve for G 0 using the Dyson equation. Multiplying the first row of (8.54)

by the first column of matrix (8.46) and making use of Eqs. (8.49a) and (8.50), we

obtain

G 0
xxð00;oÞ ¼

1þ Sðo2Þ 1� rðo2Þ þ h

1� h

� �
M0o

2ð1� hÞ½1� rðo2ÞSðo2Þ� : ð8:59Þ

It is easy to show that, in the case of mass defect approximation only ðl ¼ 0Þ,
Eqs. (8.59) and (8.58) reduce exactly to Eqs. (8.27) and (8.29). Now, substituting

Eq. (8.59) with the complex function Sðo2 þ ieÞ in it into Eq. (8.23), we get the

vibrational DOS function for an impurity atom from the unperturbed phonon

DOS as follows:

g 0ðoÞ ¼ M0

M

gðoÞ

½1� rðo2ÞSðo2Þ�2 þ 1

2
porðo2ÞgðoÞ

� �2

þM0

M

dðo� oLÞ
M0

M
� ½1þ rðo2Þ�2 þ o4

L ½rðo2Þ�2
ðy
0

gðo 0Þ do 0

ðo2
L � o 02Þ2

: ð8:60Þ

Here, the first term is the contribution from the resonance modes whose frequen-

cies lie in the range of the normal modes of the host lattice. The second term is

the contribution from the localized mode ðoL > omaxÞ, which exists if the mass of

an impurity atom is sufficiently light and/or the binding of an impurity atom to

the host lattice is sufficiently strong.
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Equations (8.58) through (8.60) are the results of the Mannheim model, which

has been successfully applied to the following four types of impurity–host sys-

tems: simple cubic, face-centered cubic, body-centered cubic, and the diamond

structure [2]. The response function g 0ðoÞ is calculated from the gðoÞ of the

host lattice, which is either known or not difficult to obtain for many host sys-

tems. For a cubic lattice, the Mannheim model is still the best suitable method

for calculating the values of hu2i and hv2i for the impurity atom based on the

measurements of the recoilless fraction f and the second-order Doppler shift.

The method highlighted above is not the simplest; there are several other ap-

proaches that are slightly less cumbersome. The results for the function G 0 given
by different authors [2, 12, 23] seem to be different at first glance, but one can

easily verify that they are all identical to Eq. (8.59). The Green’s function for the

host introduced by some authors [23] differs from Eq. (8.7) by a negative sign,

causing also a negative sign in G 0. The definitions of G and U here are consistent

with Refs. [2, 13].

At the present time direct observation of the vibrational DOS for an impurity

atom is possible by using inelastic nuclear resonant scattering of synchrotron ra-

diation, as discussed in Chapter 7. Figures 8.2, 8.3, and 8.4 show the measured

and the calculated vibrational DOS for impurity 57Fe in Al [26], Cu [26], and Cr

[27], whose unperturbed phonon DOS are given correspondingly. From these fig-

ures one can find a good agreement between experimental results and the theo-

retical curves of the Mannheim model. For Fe in Al, the measured vibrational

DOS shows that the vibrational modes are in resonance with host normal modes.

Fig. 8.2 (a) Vibrational DOS of 57Fe in Al–0.017 at.% Fe measured

using inelastic nuclear resonance scattering. (b) Vibrational DOS of Fe

atom in Al calculated on the basis of the Mannheim model with

F=F 0 ¼ 0:94 [23]. (c) Unperturbed phonon DOS of Al.

318 8 Mössbauer Impurity Atoms (I)



In the case of Fe in Cu, besides the resonant modes, a peak interpreted as being

the localized mode predicted by the Mannheim model was observed. The Mann-

heim model assumes harmonic forces only. Therefore, the localized modes ap-

pear as the Dirac function. Anharmonic contributions to the interatomic forces,

as well as other phonon interactions, are expected to broaden these sharp lines

into narrow frequency bands, as is observed in Fig. 8.3. As for Fe in Cr, the agree-

Fig. 8.3 (a) Vibrational DOS of 57Fe in Cu–0.1 at.% Fe measured using

inelastic nuclear resonance scattering. (b) Vibrational DOS of Fe atom

in Cu calculated on the basis of the Mannheim model with F=F 0 ¼
0:79 [23]. (c) Unperturbed phonon DOS of Cu.

Fig. 8.4 (a) Vibrational DOS of 57Fe in 57Fe0:03Cr0:97 alloy film measured

using inelastic nuclear resonance scattering [27]. (b) Vibrational DOS of

Fe atom calculated on the basis of the Mannheim model with F=F 0 ¼
1:25 [28]. (c) Unperturbed phonon DOS of Cr.
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ment between the measured and calculated DOS is poor because the latter was

taken for a bulk sample, not a film. So, one may get a better agreement by choos-

ing an appropriate ratio F 0=F.

8.3

Impurity Site Moments

In Chapter 4, we discussed how to describe lattice dynamics using frequency mo-

ments mðnÞ instead of using the response function gðoÞ. For an isolated substitu-

tional impurity, the corresponding impurity site moments are defined as

m 0ðnÞ ¼
ðy
0

ong 0ðoÞ do and m 0ð0Þ ¼ 1: ð8:61Þ

Since both integrands are site-dependent, these moments must also be site-

dependent.

Based on the concept of weighted mean frequencies in Ref. [29], we might give

another definition of the nth site moment for a compositional disordered solid in

the form

m 0ðl; nÞ ¼
Xy
s¼1

jBaðl; sÞj2on
s ð8:62Þ

where Baðl; sÞ are elements of a unitary matrix given in Section 4.1.4. For a perfect

cubic lattice the normal mode s is replaced by ðkjÞ, and from Eq. (4.38) one gets

jBaðl; sÞj2 ¼ jeaðkjÞj2
N

¼ 1

3N
: ð8:63Þ

Therefore, the moment defined by (8.62) reduces to the usual expression (4.105):

maðl; nÞ ¼
1

3N

X
k; j

on
j ðkÞ;

and in this case the indices l and a can be omitted. Therefore, the definition in

(8.62) is equivalent to (8.61).

Again according to Ref. [29] and using expression (8.62), hu2i and hv2i of the

impurity atom at l ¼ 0 in a cubic host can be expressed, for high temperatures

ðT > yD=2Þ, as

hu2i ¼ kBT

M
m 0ð�2Þ þ 1

12

�h

kBT

� �2
� 1

720

�h

kBT

� �4
m 0ðþ2Þ þ � � �

" #
;

hv2i ¼ 3kBT

M
1þ 1

12

�h

kBT

� �2
m 0ðþ2Þ � 1

720

�h

kBT

� �4
m 0ðþ4Þ þ � � �

" #
:

ð8:64Þ
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And for T ! 0 as

hu2i ¼ �h

2M
m 0ð�1Þ; hv2i ¼ 3�h

2M
m 0ðþ1Þ: ð8:65Þ

If the prime is removed from m 0 in (8.65), the expressions are also valid, but

only for the perfect lattice.

It has been pointed out [12, 29] that, for any harmonic cubic Bravais lattice

with central or noncentral neighbor forces, the moment mðþ2Þ is given by

mðþ2Þ ¼ Fxxð0; 0Þ
M0

ð8:66Þ

where

Fxxð0; 0Þ ¼ �
X
l00

Fxxð0; lÞ:

For a substitutional impurity atom, a similar relation can be written:

m 0ðþ2Þ ¼ F 0
xxð0; 0Þ
M

ð8:67Þ

where

F 0
xxð0; 0Þ ¼ �

X
l00

F 0
xxð0; lÞ:

Generally speaking, contributions to Fxxð0; 0Þ can be made by up to the sixth or

seventh nearest neighbors, but for cubic lattices such as fcc or bcc, summing up

just the nearest neighbors would be sufficient and the result is

Fxxð0; 0Þ
M0

¼ 1

2
o2

m

where om is the maximum frequency of lattice vibration [10]. Good agreements

have been obtained between this approximation and mðþ2Þ, as shown in Table

8.1. Discrepancies between ð1=2Þom
2 and mðþ2Þ are only significant for a small

number of lattices. In Eq. (8.56), ð1=2Þom
2 has been replaced with mðþ2Þ so that

the expression is more general.

Incidentally, because of the anharmonic effect, F 0, F, and F 0=F all depend on

temperature; thus both g 0ðoÞ and gðoÞ as well as the frequency moments are all

functions of temperature. For 57Fe in Cu, for example, F and mðþ2Þ vary about

2% for every 100 K temperature change [1].
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Since the relation between mðþ2Þ and the host restoring force, Eq. (8.66), does

not depend on the specific lattice model, we may introduce a dimensionless ratio

bn for relating mðþ2Þ to other frequency moments:

bn ¼
½mðþ2Þ�n=2

mðnÞ : ð8:68Þ

Measuring frequency moments of the various orders can provide the impurity–

host force constant ratios F 0=F as an important parameter. In particular, low-

temperature F 0=F ratios can only be obtained through analysis of these mo-

ments. Since the Mössbauer effect has the distinctive advantage in obtaining the

low-temperature data, mð�1Þ and mð�2Þ can be calculated from accurately mea-

sured f -values. As for mðþ1Þ, the result is usually not as good because the

second-order Doppler shift at low temperatures is not as pronounced.

We now summarize the results of m 0ðnÞ derived from several different lattice

models, especially the Mannheim model. Details can also be found in a few

good review articles [2, 12, 28].

Table 8.1 The parameters mðþ2Þ and bn of cubic lattices [12].

Lattice T [a] m(B2) 1
2o

2
m bC2 bC1 bB1 bB4

(K) (1026 rad2 sC2)

fcc Al 80 16.91 18.73 0.556 0.842 1.046 0.759

Ni RT 15.29 15.54 0.603 0.865 1.038 0.797

Cu RT 10.10 10.79 0.559 0.848 1.042 0.779

Kr 10 0.44 0.45 0.555 0.851 1.041 0.782

Pd RT 8.30 9.46 0.509 0.830 1.046 0.765

Ag RT 4.85 5.22 0.524 0.833 1.047 0.763

Xe 10 0.33 0.33 0.558 0.852 1.041 0.784

Pt 90 5.85 6.75 0.506 0.823 1.050 0.747

Au RT 3.45 4.32 0.443 0.788 1.063 0.695

Pb 100 0.92 1.01 0.491 0.801 1.061 0.702

bcc Na 90 2.84 2.88 0.454 0.791 1.057 0.747

Cr RT 21.90 18.21 0.691 0.910 1.022 0.879

Fe RT 18.02 16.99 0.599 0.870 1.034 0.818

Rb 120 0.40 0.43 0.382 0.753 1.068 0.712

Nb RT 8.28 8.51 0.534 0.851 1.037 0.816

Mo RT 14.43 13.01 0.674 0.904 1.024 0.865

Ta RT 5.24 5.22 0.617 0.880 1.030 0.845

W RT 9.83 9.10 0.658 0.894 1.028 0.842

aRT, room temperature.
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8.3.1

The Einstein Model

The simplest model for lattice vibrations is of course the Einstein model. The

lattice is treated as independent oscillators (atoms) with the same frequency

oE ¼ ðF=M0Þ1=2. If there is a substitutional impurity of mass M and the new

force constant F 0, the frequency becomes o 0
E, and

m 0
EðnÞ

mEðnÞ
¼ o 0

E

oE

� �n
¼ M0

M

� �n=2
F 0

F

� �n=2
: ð8:69Þ

8.3.2

The Einstein–Debye Model

Using the Debye model, the frequency moments can be expressed in terms of

Debye temperatures as in Eq. (4.109):

mðnÞ ¼ 3

nþ 3

kB
�h

� �n
½yDðnÞ�n and m 0ðnÞ ¼ 3

nþ 3

kB
�h

� �n
½y 0DðnÞ�n: ð8:70Þ

Substituting these into Eq. (8.69), we obtain

y 0DðnÞ ¼ yDðnÞ M0

M

� �1=2
g 0

g

� �1=2
ð8:71Þ

where the force constant ratio is written as g 0=g, and called the Einstein–Debye

force constant ratio. Equation (8.71) is the result of combining the two models,

and hence known as the Einstein–Debye model.

8.3.3

The Maradudin–Flinn Model

Using the fcc lattice as an example and taking the central force approximation,

the following expression is obtained [7]:

m 0ð�2Þ
mð�2Þ ¼ M

M0
1þ ð1� F 0=FÞ

mðþ2Þmð�2Þ þ
5

4

ð1� F 0=FÞ2
mðþ2Þmð�2Þ þ � � �

" #
: ð8:72Þ

This model is most suitable when the impurity only causes a small change in the

force constant.

8.3.4

The Visscher Model

Considering only the interactions among nearest neighbors in a simple cubic

lattice [30] and using the Visscher model [31], the following result has been
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obtained for high temperatures:

m 0ð�2Þ
mð�2Þ ¼ M

M0
1� 0:675 1� F

F 0

� �� �
ð8:73Þ

which is valid for all values of F=F 0, not just small force constant changes.

8.3.5

The Mannheim Model

1. Even moments. Detailed analyses of two extreme situations (o very high and

very low) can be found in Ref. [12]. When o is very high

m 0ðþ2Þ
mðþ2Þ ¼ M0

M

F 0

F

� �
ð8:74Þ

which is essentially the ratio of (8.67) to (8.66), consistent with the Einstein

model for n ¼ 2. When o is very low, another important relation can be derived:

m 0ð�2Þ
mð�2Þ ¼ M

M0
1� b�2 1� F

F 0

� �� �
ð8:75Þ

where

b�2 ¼
1

mðþ2Þmð�2Þ ¼
5

9

yDð�2Þ
yDðþ2Þ
� �2

:

This is valid for a wide temperature range, and is not the same as from the Ein-

stein model because b�2 0 1. In order to compare this with Eq. (8.72), we write

F=F 0 as F=F 0 ¼ ½1� ð1� F 0=FÞ��1 and expand it as a polynomial of the small

quantity ð1� F 0=FÞ:

m 0ð�2Þ
mð�2Þ ¼ M

M0
1þ b�2 1� F 0

F

� �
þ b�2 1� F 0

F

� �2
þ � � �

" #
: ð8:76Þ

This differs from Eq. (8.72) in the third term by a factor of 5/4, which is much

larger than b�2, limiting the Maradudin–Flinn model to cases with F 0AF.

Using Eq. (8.70), we may replace the moments m 0ð�2Þ, mð�2Þ, and mðþ2Þ in

Eq. (8.75) with y 0Dð�2Þ, yDð�2Þ, and yDðþ2Þ, respectively, and obtain

yDð�2Þ
y 0Dð�2Þ
� �2

¼ M

M0
1� 5

9

yDð�2Þ
yDðþ2Þ
� �2

1� F

F 0

� �" #
: ð8:77Þ

The Debye temperature yDðþ2Þ of the host lattice can be determined either by the

heat capacity method or by neutron scattering, which usually give consistent re-

324 8 Mössbauer Impurity Atoms (I)



sults (Table 8.2), while y 0Dð�2Þ and yDð�2Þ are obtained by fitting the f versus

temperature curve. Finally, we can calculate the force constant ratio F=F 0 from
Eq. (8.77). One example of the application of the Mannheim model is the studies

of 119Sn impurities in host lattices of Si, Ge, and a-Sn using Mössbauer spectros-

copy [44]. The results are listed in Table 8.3. A comparison of F=F 0 with the

Einstein–Debye force constant ratio g=g 0 shows that they do not agree. However,

Table 8.2 Frequency moments oðnÞ ¼ ½mðnÞ�1=n (�1013 rad s�1) from

dispersion relations and heat capacity data [28].

Metal (temp. (K)) Method[a] o(B4) o(B2) o(B1) o(C1) o(C2) oD(C3) Ref.

Cu (296) NS 3.38 3.18 3.05 2.69 2.37 4.30 12, 32

NS 3.37 3.18 3.04 2.69 2.37 4.36 33

NS 3.39 3.20 3.07 2.72 2.39 4.34 34

Cu (80) NS 3.45 3.29 3.11 2.75 2.42 4.47 12, 36

NS 3.41 3.21 3.10 2.76 2.43 4.52 34

HC 3.38(4) 3.21(3) – 2.72(2) 2.43(2) – 12, 37

HC – – – – – 4.49 35

HC 3.41(2) 3.24(1) – 2.76(1) 2.43(1) 4.52(1) 42

Al (80) NS 4.41 4.11 3.93 3.47 3.07 5.77 12, 39

NS 4.43 4.13 – 3.47 3.06 5.66 39

HC 4.27(4) 4.06(2) – 3.39(3) 3.09(3) – 37

HC – – – – – 5.61 35

HC 4.36(13) 4.08(1) – 3.45(1) 3.05(1) 5.63(1) 39

Al (300) NS 4.34 4.03 – 3.35 2.94 5.37 39

Pt (90) NS 2.60 2.42 2.30 1.99 1.72 3.05 12, 40

HC 2.80(2) 2.52(1) – 1.99(2) 1.72(2) – 41

HC – – – – – 3.07 35

HC 2.93(1) 2.60(5) 2.41(4) 2.01(3) 1.73(2) 3.12(3) 42

V (296) XDS 3.68 3.54 3.44 3.15 2.81 5.13 12, 43

HC 4.35(3) 4.13(3) 3.98(3) 3.49(3) 2.98(2) 5.22(4) 38

aNS, neutron scattering; HC, heat capacity; XDS, x-ray diffuse

scattering.

Table 8.3 M€oossbauer effect results of 119Sn impurities in host lattices of Si, Ge, and a-Sn [2, 44].

yDO(C2) Fxx(0, 0)

FOxx (0, 0)
g

gO
f (300 K)

(Mannheim model)

f (300 K)

(experimental)

Si 223(4) 1.92(15) 1.31(6) 0.332(14) 0.34(3)

Ge 191(4) 2.51(30) 1.48(7) 0.226(20) 0.22(3)

a-Sn 161(3) 1 1 0.125(13) 0.13(1)
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the Mannheim model force constant ratio gives an f -value in each case that

agrees very well with the experimental result.

2. Odd moments. While the even moments describe the impurity atom

motion that resembles the classical vibration, the odd moments depict the

zero-point motion of the impurity atoms. No analytical expressions of mðG1Þ
are available from the Mannheim model, but for 0:25aM=M0 a 4 and

0:2aFxxð0; 0Þ=F 0
xxð0; 0Þa 5, two semi-empirical formulas have been derived:

m 0ð�1Þ
mð�1Þ A

M

M0

� �1=2þa

1� M

M0

� ��2a

b4 1� Fxxð0; 0Þ
F 0

xxð0; 0Þ
� �1=2" #( )

; ð8:78Þ

m 0ðþ1Þ
mðþ1Þ A

M

M0

� �1=2þb
F 0

xxð0; 0Þ
Fxxð0; 0Þ
� �ð1=2Þ½1�bðM=M0Þ�

: ð8:79Þ

For Cu as the host lattice,

a ¼ 1

2

1ffiffiffiffiffiffiffi
b�1

p � 1

 !
¼ 0:043 and b ¼ 1

2
ðb1 � 1Þ ¼ 0:021:

Values of b�1, b1, and b4 can be found in Table 8.1.

Figure 8.5 shows plots of m 0ð�1Þ=mð�1Þ and m 0ðþ1Þ=mðþ1Þ against F=F 0 for
various parameters of M=M0, all within the ranges indicated above. The black

circles in the graphs represent calculated values using Eq. (8.60) to evaluate

g 0ðoÞ from known room temperature gðoÞ for Cu, followed by using Eq. (8.61)

to evaluate mðG1Þ and m 0ðG1Þ. The solid curves in Fig. 8.5 are best fits using for-

mulas (8.78) and (8.79), whereas the dashed curves are the Einstein model results

[12].

Fig. 8.5 Theoretical predictions of (a) m 0ð�1Þ=mð�1Þ and (b)

m 0ðþ1Þ=mðþ1Þ as functions of the force constant ratio F=F 0. The solid

lines represent the results from Eqs. (8.78) and (8.79), while the dashed

lines represent the results based on the Einstein model.
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3. The McMillan ratio. It was found that an impurity’s McMillan ratio

hoi=ho�1i is also an important parameter of lattice dynamics. It is approxi-

mately a constant, and can be deduced from Mössbauer experiments. Using the

Mannheim model, the impurity McMillan ratio may be expressed in terms of fre-

quency moments. In the high-temperature limit [12]

hoi

ho�1i

 !
HT

¼ 1

m 0ð�2Þ ¼
Fxxð0; 0Þ

M

1

b�2

� 1þ Fxxð0; 0Þ
F 0

xxð0; 0Þ
� ��1

; ð8:80Þ

and in the low temperature limit

hoi

ho�1i

 !
LT

¼ m 0ðþ1Þ
m 0ð�1Þ

A
Fxxð0; 0Þ

M

F 0
xxð0; 0Þ

Fxxð0; 0Þ
� �1=2

b�1

bþ1

1� b4 1� Fxxð0; 0Þ
F 0

xxð0; 0Þ
� �1=2" #( )�1

:

ð8:81Þ

In summary, analysis of the f -values and their temperature dependence for
57Fe, 119Sn, and 197Au in fcc and bcc lattices shows that the Mannheim

model can adequately describe experimental results for most cases when

the force constant ratio and mass ratio fall into the following ranges:

0:65aFxxð0; 0Þ=F 0
xxð0; 0Þa 2:6 and 0:3aM=M0 a 3:5. In host lattices of

more massive atoms, noncentral forces become appreciable; in some cases, the

presence of the impurity atom causes host atoms to deviate from their original

equilibrium positions, and it would not be sufficient to merely consider the

nearest neighbors.

8.4

Examples of Mössbauer Studies of 57Fe, 119Sn, and 197Au Impurities

As substitutional impurity atoms in Mössbauer studies, 57Fe is the most com-

monly used isotope, followed by 119Sn. To investigate the effects of heavy impur-

ities ðM=M0 > 1Þ, 197Au is also a suitable choice. In this section, we discuss the

experimental results using these three isotopes.

8.4.1
57Fe Impurity Atoms

The Mannheim model is very successful in describing the dynamic properties of
57Fe impurities, because only a very low impurity concentration (10�4 to 10�2) is

required for obtaining a good spectrum [1], and thus the impurity atoms are iso-
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lated from each other. Mössbauer spectra of 57Fe in most of the cubic host lattices

such as Ag, Al, Au, Cr, Cu, Ir, Mo, Nb, Ni, Pd, Pt, Rh, Ta, V, and W have been

investigated. Figure 8.6 shows how the recoilless fraction f varies with tempera-

ture for 57Fe in Cu, Pd, and Pt [28, 45]. The parameters such as f , y 0DðnÞ, and
force constant ratio F=F 0 for 57Fe in various cubic hosts are listed in Tables 8.4

and 8.5.

Fig. 8.6 Recoilless fractions f of 57Fe in single-crystal Cu, Pd, and Pt as

functions of T. The solid lines are Debye functions, corrected for the

anharmonic effect eð�2Þ.
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Table 8.4 Recoilless fraction f ðTÞ, yD 0ð�2Þ, and yDð�2Þ for 57Fe impurities in cubic metals [12, 24, 25, 46, 47].[a]

Host T [b] (K) f (T ) Best value

f (T )

yDO(C2)

(K)

yD(C2)

(K)

Ag RT 0.64(4)
0.52(3)
0.58(3) – 211

Al RT 0.54(2)
0.52(5)
0.50(5) 0.50(5) 405

Au RT 0.589(14)
0.62(5)
0.583(10) 0.583(10) 164

Cr RT 0.76(2)

0.792(9) 0.790(9)

Cu RT 0.710(14)

0.727(16)

0.725(34)

0.710(10)

0.709(6)

0.703(7)

0.710(6) 0.709(5) 372(3) 317(10)

4 0.917(19)

0.910(7)

0.911(6) 0.911(5)

Ir RT 0.807(25)
0.79(3)

0.812(5) 0.812(5)

4 0.914(5) 0.914(5)

Mo RT 0.78(5)

0.76(3)

0.77(1)

0.753(8)

0.773(11) 0.763(11)

4 0.907(10)

0.885(11) 0.907(10)

Nb RT 0.63(3)

0.659(8)

0.660(10)

0.644(4) 0.648(14) 226

4 0.881(6)
0.846(10) 0.881(10)

aValues in italics may be less reliable.
bRT, room temperature.

Host T [b] (K) f (T) Best value

f (T )

yDO(C2)

(K)

yD(C2)

(K)

Ni RT 0.80(1)

0.81(5) 0.80(1) 505(10) 401

Pd RT 0.652(36)

0.652(15)

0.661(6)

0.657(24) 0.659(4) 325(3) 257

4 0.813(13)
13 0.875(15)
20 0.891(6) 0.891(10)

Pt RT 0.729(25)

0.723(36)

0.729(16)

0.723(8) 0.725(7) 369(3) 231

4 0.85(5)
12 0.897(10)
20 0.905(8) 0.905(8)

Rh RT 0.785(17)

0.783(25)

0.78(10)

0.781(5) 0.781(5) 255

4 0.875(18)

0.910(6) 0.906(6)

Ta RT 0.77(4)
0.76(3)
0.704(8) 0.704(8) 235

V RT 0.55(3)
0.76(3)
0.547(24)
0.76(1)
0.70(1) –

4 0.913(10) –

W RT 0.86(3)
0.86(5)
0.797(9) 0.797(9) 263

4 0.916 0.916(13)
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8.4.2
119Sn Impurity Atoms

Dynamic parameters such as f , F 0=F, and yDð�2Þ from several investigations of
119Sn impurities in Ag, Al, Au, Pb, Pd, Pt, Si, Ge, a-Sn, Cu, and Rh are summa-

rized in Table 8.6. In all experiments, the 119Sn concentration was higher than 1

at.%, and thus the 119Sn atoms cannot be treated as isolated impurities. However,

these studies have shown that for such high impurity concentrations, the Mann-

Table 8.5 Force constant ratio F=F 0 calculated from temperature

dependence of recoilless fraction f ðT 0Þ in 57Fe M€oossbauer effect

experiments, from neutron dispersion and heat capacity data [12].[a]

Host M0

M

Using Mössbauer and neutron

dispersion data

Using

neutron

dispersion

data

Using heat capacity data

From f (TO),
g(o) at T0,

and Eq. (8.57)

Impurity

TO
(K)[b]

Host

T0
(K)[b]

From
mO(C1)

m(C1)

TOA4 K

T0A4 K

From
mO(C2)

m(C2)

TOA296 K

T0A150 K

From
mO(C1)

m(C1)

TOA4 K

T0A150 K

Al 0.47 1.6(3) RT 80 – 1.6(6) –

Au 3.46 1.49(10) RT RT – 1.59(8) –

Cr 0.91 1.43(10) RT RT – 1.39(20) –

Cu 1.12 0.76(1) – – – – –

0.80(10) 80 80 0.81(13) 0.80(7) 0.80(4)

0.82(3) RT RT – – –

0.87(3) 471 473 – – –

0.91(3) 677 673 – – –

Ir 3.38 – – – – 2.15(16) 2.56(40)

Mo 1.69 2.25(15) RT RT 2.49(64) 2.31(20) 2.55(76)

Nb 1.63 1.63(9) RT RT 2.10(50) 1.67(10) 2.17(55)

Ni 1.03 0.80(10) RT RT – – –

Pd 1.87 1.72(2) – – – – –

1.72(2) 126 120 1.96(50) 1.78(9) 1.94(70)

1.78(5) RT RT – – –

1.71(4) 655 673 – – –

Pt 3.43 1.60(25) 78–110 90 1.97(40) 1.73(7) 2.16(53)

Rh 1.81 – – – – 1.84(10) 2.32(40)

Ta 3.18 1.84(8) RT RT 2.5(7) 1.94(15) 2.7(8)

W 3.23 2.42(18) RT RT 2.6(10) 2.53(21) 2.9(12)

aValues in italics may be less reliable.
bRT, room temperature.
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Table 8.6 Dynamic parameters F 0=F, f , y 0Dð�2Þ, and yDð�2Þ for 119Sn

impurities in several host lattices [2, 12, 24, 44, 47].

Host M

M0

FOxx(0, 0)
Fxx (0, 0)

f

Room temp. 4 K

yOD(C2)

(K)

yD(C2)

(K)

Ag 1.10 0.81(13) 0.27(1) 0.80(2) 190(8) 211

Al 4.41 0.49 0.14(2) 153(6) 405

Au 0.60 0.54 0.18(5) 0.85(2) 180(8) 164

Pb 0.57 1.64 0.016(15) 0.80(6) 88

Pd 1.12 1.08(28) 0.48(5) 262(20) 272

Pt 0.61 0.32 0.44(5) 212(9) 236

Si 4.24 0.52 0.34(3) 223(4) 526

Ge 1.64 0.40 0.22(3) 191(4) 297

a-Sn 1.00 1.00 0.13(1) 161(3) 169(7)

Cu 1.87 0.70(10) 0.30(3) 206(10) 314

Rh 1.15 – 0.44(5) 248(20) 235

Fig. 8.7 Natural logarithm of the integrated intensity as a function of

temperature for 119Sn in Pb at concentrations of (a) 1.3%, (b) 1.6%,

(c) 3.1%, and (d) 5.7%.
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heim model can still give satisfactory results. For example, implantation of 119Sn

at a concentration of 1013 atoms cm�2 and 119In at 1011 atoms cm�2 in Si and Ge

resulted in the same recoilless fraction f to within 2% [24].

Figure 8.7 shows recent experimental results of 119Sn impurities in crystalline

Pb [48]. When the atomic concentration is varied between 1.3 and 3.1%, yD re-

mains unchanged at 116 K; only when the concentration is raised to 5.7% does

the curve show a lower slope.
119Sn belongs to group IV in the periodic table and has the same valence elec-

tronic structure as Si and Ge. Therefore, 119Sn is an ideal impurity in Si and Ge

for Mössbauer studies, and has many valuable applications. Table 8.6 gives the

results of such investigations. For 119Sn in a Si or Ge host lattice, the impurity

response function g 0ðoÞ differs from the host response function gðoÞ signifi-

cantly [20], with the former having a much increased low-frequency peak. On

Fig. 8.8 (a) Vibration DOS g 0ðoÞ of 197Au impurities in Cu and gðoÞ of
pure Cu. (b) Experimental and calculated recoilless fraction f ðTÞ as a

function of temperature for 197Au in Cu.
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the other hand, very few changes were observed in the force constant ratio

F 0
xxð0; 0Þ=Fxxð0; 0Þ and the Debye temperature y 0D.

8.4.3
197Au Impurity Atoms

Since the 197Au Mössbauer transition energy (77.3 keV) is relatively high, reason-

able values of recoilless fraction f can only be observed at or below the liquid ni-

trogen temperature. There have been extensive studies of 197Au impurities in Cu

and Ag. Figure 8.8(a) shows the dynamic response functions gðoÞ and g 0ðoÞ for
Cu host and Au impurities in Cu. In g 0ðoÞ, the resonant modes broaden due to

the effect of a large mass difference ðM=M0 ¼ 3:10Þ exceeding the opposite effect

of an increased force constant ratio ðF 0=F ¼ 1:52Þ. Figure 8.8(b) shows data

points and fitted curves of f versus temperature [17, 49]. Table 8.7 lists the values

of the force constant ratio F 0
xxð0; 0Þ=Fxxð0; 0Þ obtained from fitting the f ðTÞ

curves using the Mannheim model.

8.5

Interstitial Impurity Atoms

When the foreign atoms are located at interstitial positions, the lattice vibrations

become extremely complicated. It is very difficult to obtain a theoretical impurity

DOS g 0ðoÞ in terms of the host DOS gðoÞ. But experimentally when the Möss-

bauer effect is used for studying the dynamic properties of lattices with interstitial

impurities, parameters such as y 0DðnÞ and F 0=F can be obtained by fitting the re-

coilless fraction f and second-order Doppler shift dSOD using an approximate

g 0ðoÞ based on the Debye model. To date, Mössbauer studies of interstitial impu-

Table 8.7 Values of the impurity–host force constant ratio

F 0
xxð0; 0Þ=Fxxð0; 0Þ for 197Au in host lattices of Cu and Ag [49].

Host Au atomic

concentration (%)

M

M0

FOxx (0, 0)
Fxx (0, 0)

Cu 2 3.2 1.51(4)

1.57(5)

1.63(5)

1.72(6)

Ag 5 1.83 1.54(11)

1.34(10)

1.39(10)
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rity atoms have yielded the following general conclusions: (1) the f - and yD-

values for interstitial impurities are very different from those for substitutional

impurities; (2) the s-electron density for an interstitial impurity also differs signif-

icantly from that for a substutional impurity; and (3) the electric field gradient at

the nucleus of an interstitial impurity atom is usually large and has a certain dis-

tribution, causing severe broadening of the spectral lines.

We now discuss two examples of Mössbauer effect studies of interstitial impu-

rities.

8.5.1
57Fe Impurities in Au

In this study, a source was produced by electroplating 57Co into single-crystal gold

chips of 99.995% purity followed by heating and quenching [50]. When a natural

iron foil was used as the absorber, the Mössbauer spectrum has a single line as

shown in Fig. 8.9(a). The recoilless fractions fs were measured using the ‘‘wide

black absorber’’ technique, for the quenched and annealed samples. The fs-values
and other pertinent parameters are listed in Table 8.8.

In Fig. 8.9, the single line spectrum (Fig. 8.9(a)) demonstrates that 57Fe is at a

cubic site (the host lattice of Au is fcc) and leads us to believe that the impurities

in the quenched source occupy the substitutional positions. The linewidth

G ¼ 0:235 mm s�1 is slightly larger than the typical value. Similar line broaden-

ing has been observed in several other fcc hosts where the nearest neighbor dis-

tance is increased. The emission spectrum of the annealed source shows an addi-

tional broadened doublet, whose centroid was shifted towards lower energy,

characteristic of an increase in the s-electron density at the Fe nucleus. This indi-

Fig. 8.9 Room temperature M€oossbauer spectra of 57Fe

in Au. (a) 90% of the Fe impurities are in substitutional

sites (using a natural iron foil absorber). (b) 25% of Fe

impurities are in substitutional sites and the rest in

interstitial sites (using a nitroprusside absorber).
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cates that some Fe atoms in the annealed sample now occupy the interstitial sites.

Since both fs and y 0Dð�2Þ increase after annealing, the mean-square displace-

ment hu2i must have decreased, and the restoring force on the Fe atom is

stronger than the AuaAu interaction. Because the atomic radius of Fe is smaller

than that of Au, if the Fe impurities were in substitutional sites, they would be

less strongly bonded to the lattice than the original Au atoms, and would not re-

sult in a higher recoilless fraction fs. This is similar to the results from 57Co in an

indium crystal, where the experimental value for fs at 297 K is 0.7 but the theo-

retical estimate using a substitutional model was between 0.15 and 0.2. There-

fore, the 57Co atoms are in interstitial positions. Also, it is found that the

quadrupole-split doublet does not have significant broadening, indicating that all

interstitial positions have an identical environment.

8.5.2
57Fe Impurities in Diamond

Diamond possesses many excellent physical and chemical properties, some of

which are very unique. Being a very hard material due to the strong carbon–

carbon covalent bonds, the amplitudes of the atomic vibrations in diamond are

very small and the vibration frequencies are as high as 1014 Hz. Its Debye tem-

perature, yD ¼ 2230 K, is also the highest of all known materials. These peculiar

properties have stimulated the interest of many Mössbauer spectroscopists. There

have been several reports of making a source or an absorber by replacing a carbon

atom with a Mössbauer isotope, and the largest recoilless fractions have been ob-

served [51–55].

Figure 8.10 shows a typical emission spectrum of 57Co in diamond, which is a

superposition of a singlet with 20% intensity and an asymmetric quadrupole-split

doublet with 80% intensity. The singlet is due to 57Co in the high-symmetry (HS)

substitutional sites while the doublet is due to 57Co in low-symmetry (LS) intersti-

tial sites. These interstitial sites have a large average EFG of Vzz ¼ 1:2� 1018

V cm�2 resulting in DEQ ¼ 2:57 mm s�1, and have also a certain distribution of

EFG values.

Table 8.9 lists values of fs and y 0D for 57Co in diamond. These are the largest

Table 8.8 Dynamic and M€oossbauer effect parameters for 57Fe in Au [50].

Heat treatment fs
(296 K)

yOD(C2)

(K)

FOxx(0, 0)
Fxx (0, 0)

G

(mm sC1)

dIS

(mm sC1)

(rel. to a-Fe)

DEQ
(mm sC1)

Quenched 0.583(7) 282(5) @0.9 0.235(5) �0.635(5) @0

Annealed 0.73(1) 366(10) @1.3 0.40(2) �0.34(1) 0.40(1)
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recoilless fractions and Debye temperatures ever observed in Mössbauer spectros-

copy at room temperature. The Debye temperature y 0D may also be estimated

using Eq. (8.71). Assuming F 0
xxð0; 0ÞAFxxð0; 0Þ and using yD ¼ 2230 K, we

find y 0D ¼ 1023 K, which is somewhat lower than the experimental value of

1300 K, indicating that F 0
xxð0; 0Þ is actually larger than Fxxð0; 0Þ.

There is a report of Mössbauer studies of nanophase diamond (NPD) films,

which contain diamond-like sp3 bonds concentrated into nodules of 20 to 30 nm

in diameter and have many important solid-state properties [55]. Mössbauer spec-

tra from 57Fe-implanted NPD showed similar results for the interstitial sites, and

the corresponding values of f and y 0D are also included in Table 8.9.

Investigation of other properties such as the types of interstitial sites, local elec-

tronic configuration of Fe impurities, and distribution of EFG is usually very chal-

lenging [55–57], and sometimes requires a strong external magnetic field.

Table 8.9 Dynamic parameters from M€oossbauer studies of 57Co in diamond.

fs yOD (K) Ref.

Single-crystal diamond HS 0.97(1) 1300(150)[a] 800(100)[b] 54

LS 0.71(3) 550(50)[a] 450(50)[b]

NPD films 0.69 523 55

aDerived from Mössbauer measurements between 4 and 100 K.
bDerived from Mössbauer measurements between 300 and 1100 K.

Fig. 8.10 M€oossbauer emission spectrum of 57Co in diamond, with both

the source and a Na4Fe(CN)6�10H2O absorber at room temperature.

The 57Co ions were hot-implanted into the diamond target at 830 K [54].

336 8 Mössbauer Impurity Atoms (I)



References

1 S.S. Cohen, R.H. Nussbaum, and

D.G. Howard. Determination of an

unambiguous parameter for the

impurity–lattice interaction. Phys.
Rev. B 12, 4095–4101 (1975).

2 J.W. Petersen, O.H. Nielsen, G.

Weyer, E. Antoncik, and S.

Damgaard. Lattice dynamics of

substitutional 119mSn in silicon,

germanium, and a-tin. Phys. Rev. B
21, 4292–4305 (1980). Erratum. Phys.
Rev. B 22, 3135 (1980).

3 R.J. Elliott and D.W. Taylor. Theory of

correlations and scattering of lattice

vibrations by defects using double-

time Green’s functions. Proc. Phys.
Soc. 83, 189–197 (1964).

4 D.W. Taylor. Dynamics of impurities

in crystals. In Dynamical Properties of
Solids, vol. 2, G.K. Horton and A.A.

Maradudin (Eds.), pp. 285–384

(North-Holland, Amsterdam, 1975).

5 A.L. Fetter and J.D. Walecka.

Quantum Theory of Many-Particle
Systems (McGraw-Hill, New York,

1971).

6 A.A. Maradudin, E.W. Montroll, and

G.H. Weiss. Theory of Lattice
Dynamics in the Harmonic
Approximation (Solid State Physics

Supplement 3) (Academic Press, New

York, 1963).

7 A.A. Maradudin and P.A. Flinn.

Debye–Waller factor for Mössbauer
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9

Mössbauer Impurity Atoms (II)

The previous chapter was devoted to the studies of Mössbauer impurities of di-

lute concentrations (<0.1 at.%). In this chapter, we discuss experimental results

from Mössbauer effect studies of dynamics of several systems where the Möss-

bauer isotope concentration is larger than 0.1 at.%. These systems include met-

als, alloys, as well as amorphous, molecular crystalline, and low-dimensional ma-

terials (surface, multilayer, nanocrystals, etc.). It is often the case that Fe is one of

the major constituents of the material, but 57Fe is still an ‘‘isotopic impurity.’’ The

natural abundance for most of the Mössbauer isotopes is not 100%. It is for this

reason that these systems are grouped together in this chapter.

Because we are now dealing with high-concentration impurities, the Mössba-

uer atoms cannot be treated as isolated impurities and the Mannheim model is

no longer applicable. In most cases, anharmonic effects must be included be-

cause the harmonic approximation is no longer adequate. There are generally

two approaches to understanding the Mössbauer spectra from these systems. If

the dynamic response function g 0ðoÞ of the Mössbauer atom vibrations is un-

known, the frequency moments and Eq. (5.35) are utilized to fit the spectra to ob-

tain the characteristic temperature yDð�2Þ and the parameter eð�2Þ. If the mate-

rial’s g 0ðoÞ is available, the analysis would then be very straightforward.

9.1

Metals and Alloys

9.1.1

Metals

The dynamic properties of metals of Mössbauer atoms have been thoroughly

studied by many researchers (some results are listed in Table 9.1). For other

metals, the Mössbauer scattering method may be applied (see Chapter 6).

As an example, we discuss zinc and its alloys, which were first extensively

studied using the Mössbauer effect in the 1980s [8, 12–19].

The Mössbauer radiation used are the 93.3 keV g-rays from 67Zn, whose decay

scheme is shown in Fig. 9.1. The most prominent characteristic of this source is
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the long life of the excited state (9.1 ms), resulting in an extremely narrow energy

level width (Gn ¼ 49:9� 10�12 eV) and consequently a very high energy resolu-

tion. It has been reported [12] that an energy resolution of 1:3� 10�18 has been

obtained using a single-crystal 67Ga/ZnO source and a 67Zn-enriched powder

ZnO sample. In order to record a spectrum of such high resolution, the appara-

tus must be isolated from the slightest mechanical vibrations. In the g-ray direc-

tion, a vibration velocity of about 0.16 mm s�1 would completely destroy the Möss-

bauer effect. Furthermore, due to the spin 5/2 of its ground state as shown in Fig.

9.2, hyperfine interactions would split the 67Zn energy levels such that a 67Zn

Mössbauer spectrum would appear much more complicated than the 57Fe or
119Sn spectrum.

Table 9.1 Recoilless fractions and Debye temperatures in some metals.

Metal f yD (K)

Mössbauer

effect

Neutron

diffraction

X-ray

diffraction

Specific

heat [4]

a-Fe 0.93(3) at 4.2 K [1] 400 (30) [2] 420 [3] 460

b-Sn 0.40(2) at 100 K [5, 6] 140 [5] 170

Au 0.189 at 4.2 K [7] 168 [7] 180

Zn f? ¼ 6:4� 10�3 at 4.2 K [8] y? ¼ 242ð10Þ [8] 254 [9] 250

fk ¼ 2:6� 10�4 yk ¼ 149ð20Þ 169

Ni 0.09(1) at 80 K [10] 413 [10], 406 [11] 440

Fig. 9.1 Decay scheme of 67Ga. The g-ray energy Eg, linewidth Gn, and

internal conversion factor a are listed.
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Metallic Zn has a close-packed hexagonal lattice, with a relatively large c=a ratio

of 1.861, from which a large anisotropy is expected in the mean-square displace-

ment of the atomic vibrations [15].

For a polycrystalline Zn sample, a 67Zn Mössbauer spectrum should be com-

posed of three lines of equal intensity due to quadrupole splitting. However, be-

cause of the G–K effect, the intensities of the three lines are not exactly equal, as

shown in Fig. 9.3.

In order to study the anisotropic recoilless fraction ð fk; f?Þ and atomic mean-

square displacement ðhuk 2i; hu? 2iÞ, Mössbauer emission spectra of a single-

Fig. 9.2 Hyperfine splittings of 67Zn: (a) pure quadrupole splitting and

(b) a combination of electric quadrupole and magnetic dipole

interactions.

Fig. 9.3 M€oossbauer spectrum of a polycrystalline 67Zn metal absorber

at 4.2 K, using a 67Ga/Cu source [13].
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crystal 67Ga/Zn source have been measured [8]. The absorber used was b 0-brass,
a CuaZn alloy with a Zn content of 49.2 at.% (67Zn-enriched to 91.9%). Let y be

the angle between the c-axis and the g-ray direction. Mössbauer spectra at several

given temperatures (4.2, 20.8, and 47 K) were obtained for y-values of 90�, 75�,
60�, and 55�. A typical spectrum (y ¼ 90�, T ¼ 4:2 K) is shown in Fig. 9.4.

According to Eq. (5.44), a linear relation should exist between ln f ðyÞ and

cos2 y at a given temperature. Therefore, after background correction, we may

calculate hu? 2i and huk2i, as well as f? and fk, from the total area of the three

peaks. The results are listed in Tables 9.1 and 9.2, which show that the anisotropy

in the recoilless fraction is enormous. At T ¼ 4:2 K, f?=fk ¼ 25, and at T ¼ 47 K,

Fig. 9.4 M€oossbauer emission spectrum of a 67Ga/Zn single-crystal

source at 4.2 K with its c-axis perpendicular to the 93.3 keV g -ray

direction. The absorber is b 0-brass, also at 4.2 K.

Table 9.2 Experimental and theoretical 67Zn recoilless fraction f ,

experimental center shift d, and theoretical dSOD values for metallic Zn.

Both d and dSOD are relative to the respective value at 4.2 K [18].

T (K) f? (%) fk (%)

exp. theor. exp. theor.

d

(mm sC1)

exp.

dSOD

(mm sC1)

theor.

4.2 1.07þ0:13
�0:12 1.19 0.043þ0:088

�0:030 0.032 0.0 0.0

20.8 0.80þ0:18
�0:15 1.08 0.098þ0:53

�0:08 0.022 0.37(8) 0.267

47 0.40þ0:10
�0:05 0.62 0.00018þ0:0067

�0:00017 0.0016 4.46(19) 4.38
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f?=fk becomes as large as about 2:2� 103, which means that the Mössbauer ef-

fect can hardly be observed in the direction y ¼ 0.

When the Debye model is used to fit the results of hu? 2i and huk 2i at various

temperatures (Fig. 9.5), Debye temperature values of yD? ¼ 240 K and yDk ¼
149 K are deduced [8].

9.1.2

Alloys

9.1.2.1 The b-Ti(Fe) Alloy [20]

This is an example of obtaining a solid’s dynamics information via measuring the

second-order Doppler shift dSOD. This alloy contains 9.3% Fe atoms. It has been

revealed that when Fe atoms are doped into a Ti crystal to form a substitutional

solid solution, they substantially stabilize its high-temperature bcc phase. We may

understand this effect by considering the difference between the force constants

FTi-Fe and FTi-Ti, or the difference between the bond energies ETi-Fe and ETi-Ti.

Suppose that

ETi-Fe > EFe-Fe and ETi-Fe > ETi-Ti; ð9:1Þ

i.e., the attractive forces between like atoms (TiaTi or FeaFe) are weaker than

those between unlike atoms (TiaFe). If this is the case, there would be no Ti-rich

or Fe-rich regions, but rather a tendency to form certain ordering so that each Fe

atom would coordinate with as many Ti atoms as possible. In other words, the

tendency is to have as many TiaFe pairs as possible, not TiaTi. The above hypoth-

Fig. 9.5 Mean-square atomic displacements in zinc, parallel and

perpendicular to the c-axis. Circles: from M€oossbauer experiments;

squares and crosses: from x-ray experiments. Solid lines: fits to

M€oossbauer data by the Debye model; dashed lines: results of

calculations based on the modified axially symmetric (MAS) model.
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esis can be verified by measuring dSOD as a function of temperature and calculat-

ing the force constant ratio FTi-Fe=FTi-Ti.

If we apply the Debye model for atomic vibrations by substituting the expres-

sion for hv2i in Eq. (5.4) into (5.54) and use a-Fe as the reference absorber, we

would obtain

d ¼ dIS � da-FeSOD � 9kByD
2Mc2

1

8
þ T

yD

� �4ð yD=T
0

x3

ex � 1
dx

" #
ð9:2Þ

where da-FeSOD ¼ �0:229 mm s�1 is the second-order Doppler shift of a-Fe at room

temperature and dIS is the isomer shift (relative to a-Fe) of the Fe atoms in the

b-Ti(Fe) alloy.

When Eq. (9.2) is used to fit the data of d-values measured at different temper-

atures, as shown in Fig. 9.6, the parameters yD and dIS are determined to be

yD ¼ 497ð26Þ K and dIS ¼ �0:154 mm s�1. The negative sign indicates that the

s-electron density at the Fe nuclei in the alloy is higher than that in a-Fe, which

is due to electron transfer from Ti to Fe [21].

Let us use the Einstein–Debye formula for calculating the difference in the

force constants. Substituting the known value of yDðTiÞ ¼ 420 K and the above

yD-value, along with the mass values of Ti and Fe, into Eq. (8.71), we obtain the

ratio

FTiaFe

FTiaTi
¼ MFe

MTi

yD

yDðTiÞ
� �2

¼ 1:66 > 1; ð9:3Þ

which is consistent with the above hypothesis. This confirms that the TiaFe
atoms are more tightly bonded than TiaTi, and therefore the Fe atoms in

b-Ti(Fe) alloy stabilize its high-temperature bcc lattice.

Fig. 9.6 Center shift d in 57Fe M€oossbauer spectra of a b-Ti(Fe) alloy

(Tiþ 9:3 at.% Fe), as a function of temperature T.
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9.1.2.2 CuxZn Alloy (Brass)

In this example, the densities of states (DOS) gaðoÞ and gb 0 ðoÞ for the a- and

b 0-phases are both known, and a detailed comparison between theoretical and ex-

perimental results can therefore be easily carried out.

The CuaZn system has many different phases, and since it is an important in-

dustrial material, it has always been the focus of theoretical and experimental re-

search. Amongst the experimental methods, x-ray diffraction and neutron scatter-

ing are difficult to apply because the atomic structure factors of Cu and Zn are

almost equal and their neutron scattering wavelengths are similar. Therefore,

high-resolution 67Zn Mössbauer spectroscopy is ideally suited for both the a- and

b 0-phases of this system, which are solid solutions of fcc and bcc structures, re-

spectively.

Figure 9.7 shows the 67Zn Mössbauer spectra from the a- and b 0-phases of the
CuaZn alloy [22, 23]. With Zn atoms being nonmagnetic and both phases having

cubic symmetry in their structures, we would expect each of their spectra to have

a single-line absorption with no magnetic or quadrupole splitting. However, the

experimental Mössbauer spectrum of the a-phase shows four absorption lines.

When the Zn content is varied in the range 4.3 to 24.6%, there are appreciable

changes in the intensities of these lines but almost no changes in their positions,

indicating that the four lines are not due to quadrupole interactions. They must

be due to four different configurations in the a-phase, each having a different

Fig. 9.7 67Zn M€oossbauer spectra of a-phase (15.9 at.% Zn) and b 0-
phase (49.2 at.% Zn) CuaZn alloys at 4.2 K, using a 67Ga/Cu source.
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Fig. 9.8 67Zn isomer shift d as a function of temperature T in a-phase

and b 0-phase CuaZn brass. Solid curves: calculations of the second-

order Doppler shift using the phonon distribution gðoÞ derived from

inelastic neutron scattering data. Dotted curves: best fits to the Debye

model. Dashed curve for a-phase: using yD ¼ 302 K derived from

specific heat data. Dashed curve for b 0-phase: using yD ¼ 249 K from

data for f -factor (see Fig. 9.9).

Fig. 9.9 Recoilless fraction f and mean-square displacement hu2i as

functions of temperature T. Solid curves: calculated results based on

the phonon distributions in Fig. 9.10. Dotted curves: best fits using the

Debye model. Dashed curve for a-phase: based on yD ¼ 302 K derived

from specific heat data. Dashed curve for b 0-phase: based on yD ¼ 252 K

derived from second-order Doppler shift data.
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s-electron density at the Zn nuclei. Therefore, contrary to the belief that Zn has

the binomial distribution in the a-phase of the CuaZn system, there must be a

short-range order in the structure [24]. The existence of short-range order in the

a-phase was therefore first verified unequivocally by the Mössbauer effect. Subse-

quent neutron scattering experiments also supported this conclusion [25]. From

the viewpoint of lattice dynamics, the b 0-phase is more interesting. At tempera-

tures lower than 725 K, the b 0-phase of Cu0:5Zn0:5 has the ordered CsCl structure,

with eight Cu atoms surrounding one Zn atom, or vice versa, having a cubic sym-

metry. Since Zn and Cu atoms have similar mass values, substituting Cu with Zn

causes very little change in the force constant [18].

How dSOD and recoilless fractions of a- and b 0-phases vary with temperature are

shown in Figs. 9.8 and 9.9 [22, 23]. The positions of the four subspectral lines

exhibited the same temperature dependence within experimental uncertainty.

The following two conclusions can be drawn from the experiments:

1. Either using the DOS (as shown in Fig. 9.10) or applying the

Debye model, there is a good agreement between theory and

experiments. However, recoilless fractions derived from the

Fig. 9.10 Frequency distribution functions gCuðoÞ, gaðoÞ, and gb 0 ðoÞ for
metallic Cu, a-phase CuaZn, and b 0-phase CuaZn [23].
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DOS are somewhat higher than the experimental values.

Analyses have shown that the phonon DOS may have a

systematic deviation.

2. For the a-phase, there is an excellent agreement between

yD ¼ ð285G 2Þ K from the f measurements and

yD ¼ ð277G 13Þ K from the dSOD measurements. For the b 0-
phase, the corresponding values are yD ¼ ð249G 2Þ K and

yD ¼ ð252G 2Þ K, about 30 K lower than the yD-values for

the a-phase. The agreement between the yD-values from

recoilless fraction and second-order Doppler shift

measurements shows that the Debye model is a very good

approximation for describing the lattice dynamics of this

system.

9.2

Amorphous Solids

In a dilute gas, there is almost no interaction between the individual molecules,

and because the molecular positions in space are constantly changing, they are in

a completely disordered state. The main structure of an amorphous solid is a

long-range disordered state, but the atomic arrangement may not be completely

random and ‘‘short-range order’’ may exist, which has been revealed by a large

amount of diffraction data. Typical diffraction patterns from amorphous materials

consist of relatively wide haloes and diffuse rings, rather than the characteristic

sharp points and lines from crystalline samples. A diffuse diffraction pattern in-

dicates that the relative positions of atoms in an amorphous material are distrib-

uted in a certain range, unlike the completely random positions in a gas that

would not even give diffuse rings in its diffraction pattern. So far, there is still

lacking a single consistent description or definition for ‘‘amorphous materials.’’

In contrast with a crystalline material or a gas, the structure of an amorphous

material may be depicted as in Fig. 9.11(b). Based on the experimental results

Fig. 9.11 Schematic representations of atomic arrangements in (a) a

crystal, (b) an amorphous solid, and (c) a gas.
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available to date, the general notion is that atoms or molecules in an amorphous

material have no spatial periodicity and no translational symmetry, and thus long-

range order is destroyed. Due to the local atomic interactions, certain characteris-

tics of ordered atomic constitution and structural arrangement are still main-

tained in small regions of nanometer size, namely, short-range order.

The two most common types of short-range order are topographic short-range

order (TSRO) and chemical short-range order (CSRO). TSRO refers to the situa-

tion where the relative atomic positions have certain order in a small region,

while CSRO refers to order in the arrangement of different atoms. If the nearest

neighbor positions of an atom are occupied by a different kind of atom, as in a

transition metal–metalloid amorphous material, the transition metal atoms and

metalloid atoms form nearest neighbors of each other because of the strong het-

eroatomic interaction.

An amorphous material is sometimes referred to as in a ‘‘glassy state’’ or as a

‘‘solidified liquid.’’ But the liquid and amorphous structures have fundamental

differences. We may imagine that a high pressure is applied to a liquid so that

the atoms are compressed next to one another until the repulsive potential ap-

pears. The atoms cannot have diffusions or displacements beyond the typical in-

teratomic distance, but are only allowed to execute thermal motions about their

equilibrium positions. Such a material would be a solid similar to an amorphous

material.

The physics of amorphous materials is an important and active research area.

Compared with the studies of crystalline materials, research on amorphous mate-

rials is still under development. Numerous books are available, offering system-

atic descriptions of this area of research. Here, we focus on how the Mössbauer

effect can be used for investigating the dynamics of amorphous materials.

Figure 9.12 shows Mössbauer spectra of an amorphous ferromagnet Fe75P15C10

at two different temperatures, each composed of six broad absorption peaks. The

broadening is similar to the wide diffuse rings in the diffraction patterns, except

Mössbauer peak broadening here is a result of the distributions of magnetic hy-

perfine fields, EFGs, and s-electron densities at the Mössbauer nuclei. However, it

is not immediately obvious which of these hyperfine interactions, or a combina-

tion, is responsible for the broadening. References [27, 28] give a method of sep-

arating the magnetic dipole interaction from the electric quadrupole interaction.

The method uses an external magnetic field of a suitable radio frequency applied

to the amorphous sample, causing a collapse of the magnetic hyperfine interac-

tion [29]. This makes the average magnetic hyperfine field at the Mössbauer nu-

clei approach zero, leaving a pure quadrupole split spectrum. Therefore, based on

this Mössbauer spectrum with the collapsed magnetic interactions, one may mea-

sure the distribution of EFG in the amorphous sample. For example, the DEQ

values in amorphous alloys Fe74Si10B16 and Fe40Ni40P14B6 are distributed in

the range from 0 to 1 mm s�1 while the most probable value occurs at

(DEQÞmax ¼ 0:5 mm s�1 [27, 28]. Using this method, the Mössbauer effect is re-

garded as an effective method for revealing the short-range order in amorphous

solids.
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Regardless how the hyperfine interactions are distributed, the total area can al-

ways be easily evaluated. The harmonic approximation is obviously applicable to

the atomic vibrations in amorphous solids, so the recoilless fraction is still Eq.

(5.13), except for the lack of an exact analytical expression for hu2i. The Debye

model could be used as an approximation, which must be based, of course, on

the short-range order.

9.2.1

The Alloy YFe2 [30]

The crystalline and amorphous phases of the alloy YFe2 are denoted by c-YFe2
and a-YFe2, respectively. We now compare their lattice dynamics parameters.

For a-YFe2 at T > 58 K, the magnetic hyperfine field disappears and only a cer-

tain distribution of quadrupole splitting exists. For c-YFe2, the spectrum is a

superposition of two sextets, corresponding to two different sublattices. Figure

9.13 shows the temperature dependences of the recoilless fraction f and center

shift d. Fitting each curve according to the Debye model gives yD ¼ ð350G 10Þ K
for c-YFe2 and yD ¼ ð280G 10Þ K for a-YFe2. These results indicate that the

Debye temperature of the amorphous state is lower than that of the crystalline

state, namely yD
a=yD

c ¼ 0:80. Similar results have also been observed in other

amorphous alloys (Table 9.3).

The lower yD-values in amorphous alloys can be explained by the considerable

changes in the vibrational density of states (VDOS) in comparison with that of

the corresponding crystalline enhancement in the low-frequency region and a

Fig. 9.12 M€oossbauer spectra of an amorphous alloy Fe75P15C10 [26].
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Fig. 9.13 (a) 57Fe M€oossbauer absorption intensity and (b) center shift

as functions of temperature in amorphous a-YFe2 and crystalline c-YFe2.

Table 9.3 The yD
a=yD

c ratios of several amorphous–crystalline alloy systems.

Alloy system yD
a/yD

c ratio

YFe2 0.80

Pd80Si20 0.75

Zr9:5Fe90:5 @0.79

Fe80B20 @0.73

Fe40Ni40P14B6 0.87

Fig. 9.14 Phonon DOS gðoÞ: (a) experimental result for a-Fe at 296 K;

(b) theoretical result for amorphous Fe [32].
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softening in the high-frequency end [31], as clearly indicated by the DOS curves

of a-Fe and its amorphous state, shown in Fig. 9.14. Calculations using the fre-

quency moments [32] also provided results (Table 9.4) that show the same trend

of yD
a=yD

c < 1.

9.2.2

The Alloy Fe80B20

We choose Fe80B20 as a second example, because the FeaB amorphous alloys

have been extensively investigated by various experimental methods including

transmission Mössbauer spectroscopy. Recently, the Fe partial VDOS of Fe80B20

in both amorphous and crystalline phases were measured by the phonon-assisted

Mössbauer effect [33], as shown in Fig. 9.15. The partial VDOS for the crystalline

phase consists of two maxima at about 26 and 36 meV, typical of the bcc struc-

ture. This result for the amorphous phase is intriguing because of an excess vi-

brational density of states in the low-energy range of 4 to 21 meV, compared to

Table 9.4 Values of yDðnÞ for a-Fe and amorphous Fe.

yD(C2) (K) yD(C1) (K) yD(B1) (K) yD(B2) (K)

a-Fe 390 370 375 376

Amorphous Fe 351 345 354 361

Fig. 9.15 Fe partial vibrational densities of states in amorphous and

crystalline Fe80B20, as obtained using the phonon-assisted M€oossbauer

effect.
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the usual Debye law ðgðoÞzo2Þ. Such an excess is now termed a ‘‘boson peak’’

and has been observed not only in a large number of amorphous materials but

also in some disordered crystals [34, 35]. The origin of the boson peak is an issue

that has attracted a lot of experimental and theoretical activities. A number of

models for its explanation have been proposed [36–41], but it is still far from

being completely understood [42, 43]. The existence of a boson peak is qualita-

tively consistent with the decrease in Debye temperature, as mentioned above.

9.3

Molecular Crystals

If a crystal is formed by van der Waals forces between individual atoms or finite

molecules whose internal structure is covalently bonded, it is referred to as a typ-

ical molecular crystal. Many pure substances of nonmetals, nonionic oxides, and

most solid organometallic compounds belong to the category of molecular crys-

tals. The Mössbauer effect has often been applied in the studies of molecular

crystals, in particular, those with complex ions such as [Fe(CN)6]
4�, [Ni(CN)4]2�,

[Fe(C5H7O3)3]
3þ, and [Fe(H2O)6]

3þ.
In general, intermolecular forces are weak compared to forces in covalent

bonds. Therefore, the normal modes of vibration in a molecular crystal are usu-

ally separated into two different groups: the intermolecular modes related to vi-

brations of the molecular center of mass and the intramolecular modes of much

higher frequencies within the molecule. Although the Born–von Karman theory

can be used to calculate the intermolecular modes provided that the molecular

framework may be treated as a rigid one, a promising theoretical method to study

the structure and dynamics is the first-principles calculation based on the density-

functional theory (DFT). This method has been quite successful in several exam-

ples [44].

9.3.1

The Concept of Effective Vibrating Mass Meff [45]

In molecular crystals, the Mössbauer nucleus is usually at the center of the mole-

cule. If the molecule is an ideal rigid body, the mass value in the expressions for

f and dSOD would just be the molecular weight. In reality, the molecule is not en-

tirely rigid due to some degree of internal vibration; the mass value may be re-

placed by an effective vibrating mass Meff . Its upper limit is the molecular weight

and lower limit is the mass of the Mössbauer atom (57 u for 57Fe); the latter cor-

responds to the situation of Fe atoms as monatomic vibrating entities in a solid.

In the high-temperature limit and after the substitution of Meff for M, Eqs. (5.14)

and (5.52) become, respectively,

ln f ¼ � 3E2
g

Meff c
2kBy

2
M

T ¼ ln AðTÞ þ const; ð9:4Þ
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dSOD ¼ � 3

2

kBT

Meff c
þ const: ð9:5Þ

Because of the introduction of the effective vibrating mass Meff , the corre-

sponding Debye temperature yD will be affected and it is therefore replaced by

the so-called Mössbauer lattice temperature yM. Equation (9.5) indicates that the

effective vibrating mass Meff can be deduced from the slope of a linear relation

between d and T:

Meff ¼ � 3kB
2c

ddSOD
dT

� ��1

¼ �4:1601� 10�2 ddSOD
dT

� ��1

ð9:6Þ

where the numerical coefficient is such that it would give Meff in u if dSOD is mea-

sured in mm s�1 and T in K. Substituting Eq. (9.6) into (9.4), we obtain the fol-

lowing formulas for determining the Mössbauer lattice temperatures for 57Fe and
119Sn from experimental data:

yMð57FeÞ ¼ 4:3202� 102
ddSOD=dT

d ln A=dT

� �1=2
; ð9:7Þ

yMð119SnÞ ¼ 7:1564� 102
ddSOD=dT

d ln A=dT

� �1=2
: ð9:8Þ

As soon as Meff and yM are evaluated, the recoilless fraction f can be calculated

using Eq. (9.4). For 57Fe,

�ln f ¼ 7:75369� 103
T

Meffy
2
M

: ð9:9Þ

In such an approximation the dynamics of molecular crystals is described by

parameters f , Meff , and yM. These results have confirmed the feasibility of sepa-

rating external from internal vibrations and have allowed a measure of molecular

rigidity. Here is an example of such studies. Ferrocene, Fe(C5H5)2, and its deriva-

tives [46, 47] are compounds with an Fe atom sandwiched between two C5H5

rings. Their Mössbauer spectra are relatively simple, each having a doublet due

to quadrupole splitting. Figure 9.16(a) shows ln f for ferrocene and Fig. 9.16(b)

shows the center shift d for one of its derivatives, both as functions of tempera-

ture T. The Mössbauer parameters deduced from the data are listed in Table 9.5.

As can be seen from these graphs, both ln f and d are indeed linearly depen-

dent on T in the range from 100 to 300 K. The values of the effective vibrating

mass Meff are about twice that of 57Fe, but only 2/3 of the molecular weight (187

u), indicating that the molecule is not entirely rigid. Taking the slope data

from rows 3 and 4 in Table 9.5 and using Eq. (9.7), Mössbauer lattice tempera-

tures have been calculated to be yM ¼ 93 and 117 K for ferrocene and bis(3-

methylpentadienyl)iron, respectively. Using Eq. (9.9), the recoilless fraction at
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room temperature f ¼ 0:092 is calculated, which is consistent with the result of

f ¼ 0:08 as given in Ref. [48].

The deviation of the Meff value from 57 u reflects the covalency of the bonding

force between the Fe atom and its neighbors. Here, we present a recent experi-

Fig. 9.16 (a) Temperature dependence of the recoilless fraction f for

ferrocene and (b) temperature dependence of the center shift d for

bis(3-methylpentadienyl)iron.

Table 9.5 Lattice dynamics parameters for ferrocene and its derivative

bis(3-methylpentadienyl)iron. The dIS values are with respect to that of

a-Fe at 295 K.

Ferrocene Bis(3-methylpentadienyl)iron

dIS at 78 K (mm s�1) 0.542(9) 0.482(5)

DEQ at 78 K (mm s�1) 2.452(12) 1.255(41)

�dd/dT (�10�4 mm s�1 K�1) 3.74 4.06

�d ln A=dT (�10�3 K�1) 8.09(22) 5.49(41)

Meff (u) 111(8) 103(8)

yM (K) 93 117

f at 295 K 0.092 0.109
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mental result which defines the meaning of the effective mass more precisely. In

the temperature range of 15 to 550 K, the measured central shifts of iron(III) oc-

tahedral 16a and tetrahedral 24d sites in Dy3Fe5O12 give an effective mass of 57 u

[49]. It is evident that the 57Fe atoms are indeed totally ionically bonded to their

neighboring oxygen dianions. The effective mass is then expected to be exactly 57

u in the absence of covalency.

9.3.2

Vibrational DOS in Molecular Crystals

9.3.2.1 The Mode Composition Factor e2(l, j)

For a molecular crystal, Eq. (7.53) is reduced to

gðh;EÞ ¼
X
j

dðE � pojÞjh � eð jÞj2; ð9:10Þ

and for a particular mode with oj, it is reduced to

gðoj;hÞ ¼ jh � eð jÞj2: ð9:11Þ

This means the probability that a vibrating mode j takes place is determined by

jeð jÞj2. On the other hand, the eigenvector eðl; jÞ of the lth atom vibrating in

mode j within a molecule is related to the atomic displacement uðl; jÞ by [50]

uðl; jÞ ¼ 1ffiffiffiffiffiffi
Ml

p Eð jÞ
po2

j

 !1=2
eðl; jÞ: ð9:12Þ

Using this relation and the normalization properties of the vector eðl; jÞ, one
easily gets

e2ðr; jÞ ¼ u2ðr; jÞMrPN
l¼1

u2ðl; jÞMl

ð9:13Þ

where u2ðr; jÞ is the mean-square displacement of the Mössbauer atom of mass

Mr . As can be seen, both the numerator and the denominator in the right-hand

side of the above expression represent the kinetic energy of the Mössbauer atoms.

Therefore, the quantity e2ðl; jÞ is called the mode composition factor [51]. The vi-

brating spectrum in a molecular crystal usually consists of discrete peaks. The

factor e2ðl; jÞ offering direct information on mode character is determined by the

area fraction under each peak. We consider two simple cases. First, when the

inter- and intramolecular vibrations are completely decoupled, the mean-square

displacement in the acoustic mode is the same for all atoms, i.e., a translational

mode. Therefore, for each acoustic mode the factor is
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e2ac ¼
Mr

MS

ð9:14Þ

where MS is the total molecular mass. Second, consider a molecule that can be

grouped into two rigid molecular fragments with masses M1 and M2. Let the

Mössbauer atom be located in the first fragment. Assuming the vibrational mo-

tion involves no translation of the center of mass, the kinetic energy associated

with the motion of the first fragment must be a fraction M2=MS of the total ki-

netic energy. A sub-fraction of Mr=M2 is then associated with the motion of the

Mössbauer atom. Hence, one obtains a composition factor for the stretching

mode [51, 52]:

e2str ¼
Mr

M1

M2

MS

: ð9:15Þ

Measuring the factor e2str permits one to calculate the fragment mass M1:

M1 ¼ MrMS

Mr þMSe
2
str

: ð9:16Þ

The simplest such fragment is one that contains only the Mössbauer atom and

nothing else. In this case, the composition factor of this stretching mode reaches

its maximum value

e2max ¼
M2

MS

: ð9:17Þ

The composition factor may be estimated in simple cases as done above, but in

general it is determined experimentally.

9.3.2.2 An Example

We take the hexacyanoferrate(II) compound (NH4)2MgFe(CN)6 [52] as an exam-

ple of application of inelastic nuclear resonant scattering in molecular dynamics.

The free complex ion [Fe(CN)6]
4� has octahedral symmetry. As mentioned in

Chapter 8, the Fe atom vibrates in two threefold-degenerate F1u modes only (Fig.

9.17). The measured Fe partial VDOS is illustrated in Fig. 9.18 where the energies

and the widths of the peaks were found by a fit with Gaussian distributions (with

the exception of the region of acoustic modes). The spectral parameters are listed

in Table 9.6.

First, we consider the assignment of the three acoustic modes. According to Eq.

(9.14), the total area under the DOS curve due to the three acoustic modes is

equal to MFe=MS ¼ 0:21 (where MS ¼ 273 u). The integral over the phonon

DOS reaches this value at 12.7 meV. An acoustic peak occurs at @8 meV. The

peaks at higher energies come from intramolecular vibrations. The largest peak

at 74.3 meV has a composition factor of e2 ¼ 1:04, which is higher than the max-

imum value of e2max ¼ 0:79 according to Eq. (9.17). Due to the threefold degener-
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Fig. 9.18 Fe VDOS in hexacyanoferrate (II) at 30 K. Solid lines represent

the fits of frequency distributions for several indicated modes with

Gaussian functions.

Fig. 9.17 (a) Fe surroundings in hexacyanoferrate (II) complexes.

(b, c) The two vibrational F1u modes (each with threefold degeneracy)

of the ideal octahedron that involve motion of the central Fe.
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acy, this peak may consist of three degenerate modes with e2 ¼ 0:35 for each

stretching mode. Equation (9.16) then gives a fragment mass M1 ¼ 102 u. This

unequivocally points to the fragment as the Fe atom and two CN groups (total

109 u), as shown in Fig. 9.17(b). Therefore, this mode can be identified as the

threefold-degenerate stretching of this fragment against the rest of the molecule.

Of course, one expects the other stretching mode where the fragment is com-

posed of the Fe atom and four CN groups (Fig. 9.17(c)). But the estimated e2str
does not allow an unambiguous assignment that is consistent with the experi-

mental data. The other three peaks have low factors e2 (Table 9.6). Finally, two

peaks with higher factors e2 are assigned to the second F1u modes. These results

are basically consistent with that from normal mode analyses, even though not all

modes are pure FeaC stretching motion, but involve both FeaC stretching and

FeaCaN bending components [53].

This is the simplest example. At the present time, the phonon-assisted Mössba-

uer effect has been successfully used to study the dynamics of macromolecules

such as the protein myoglobin [54]. Furthermore, the first-principles calculation

method has begun to simulate spectral measurements from molecular crystals.

9.4

Low-Dimensional Systems

9.4.1

Thin Films

In conventional Mössbauer spectroscopy, the conversion electron method is used

for thin-film studies because of its high surface sensitivity. However, it seldom

Table 9.6 Composition of iron partial VDOS in (NH4)2MgFe(CN)6 at 30 K.

Vibrational mode n0 n1 n2 n3 n4

Frequency (meV) 0–12.5 37.9(6) 55.7(3) 58.0(6) 74.3(3)

Frequency (cm�1) 0–101 306(5) 449(2) 468(5) 600(2)

Width (FWHM) (meV) – 3.8(5) 1.1(2) 3.0(5) 1.4(2)

Mean force constant (N m�1) 15.7(5) 315(10) 681(8) 738(15) 1213(10)

Composition factor e2 0.19(3) 0.23(3) 1.04(3)

Vibration amplitude (Å) at

room temperature

0.176(1) 0.017(1) 0.013(1) 0.024(1)

Assignment Acoustic – Stretching

and bending

Degenerate

stretching
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provides reliable data of dynamics parameters, including recoilless fraction f . In-
vestigating the vibrational properties of thin films is particularly difficult because

neither neutron inelastic scattering nor x-ray inelastic scattering is feasible for

such a small amount of material in thin films. Infrared or visible light scattering

can only provide a small part of the vibrational DOS. Recently, this problem has

been successfully solved by x-ray inelastic scattering using SR.

A variety of interesting and useful phenomena occur under glancing incidence

of x-rays on a flat surface of a material. These phenomena include total external

reflection, interference fringes from layers on the substrate, and the formation of

evanescent and standing waves [55, 56]. A valuable feature of these phenomena is

the ability to enhance the output x-ray flux considerably by the interference ef-

fects. All of these phenomena have been utilized in the studies of surfaces, inter-

faces, thin films, and layered materials.

To understand the phenomena, let us first assume that x-rays, as electromag-

netic traveling plane waves, impinge on a flat material under a glancing angle y.

The incident and reflected waves will be coherent and interfere to generate a

standing wave with planes of maximum intensity parallel to the surface and

with a spatial period ðl=2Þ sin y [55]. This describes the distance between the first

antinode and successive antinodes above the surface. In the case of total reflec-

tion, the first antinode of the standing wave coincides with the surface, where

the intensity may be up to four times the incident one.

This method becomes especially effective when the thin film under study is de-

posited on a high-reflection substrate, i.e., a material with a high electron density.

Figure 9.19(a) shows an example of an FeB film on a Pd substrate where the crit-

ical angle of the airaFeB surface is yc(FeB). A synchrotron x-ray beam is allowed

to penetrate into the FeB film and is strongly reflected by the Pd layer. If the re-

flection angle y is higher than yc(FeB), the x-ray beam, already reflected from the

Pd layer, is totally reflected back into the FeB film from the FeBaair interface, and
is therefore trapped in this film which acts as a waveguide [57]. The x-ray inside

the thin film is said to resonantly excite a guide mode, and as a result the electro-

magnetic field intensity within the thin film is strongly enhanced. Such a reso-

nance always leads to a standing wave with a periodicity equal to an integer frac-

tion of the thin film thickness – one of the conditions for resonance – and also

with the antinode planes parallel to the interfaces. This type of resonance can be

experimentally detected by deep minima in a reflection curve and by a sharp max-

imum in the secondary effect yield (e.g., fluorescence photons), shown in the left

and middle columns in Fig. 9.19, respectively. The arrow in each reflectivity curve

indicates the first-order resonance. The degree of field enhancement, the widths

of the intensity peaks, and the number of peaks depend on the layer thickness.

The intensity enhancement is most pronounced if the film under investigation

is sandwiched between two highly reflecting layers (Fig. 9.19(b)).

In a recent study, this effect has been utilized in inelastic nuclear resonant scat-

tering (INRS) to measure the vibrational DOS of a thin film. The experimental

results of a 13 nm 57Fe film on a 20 nm thick Pd layer [58] are illustrated in Fig.
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9.20, where a guide mode of first order is excited and the average fluorescence

yield inside the film reaches 6 times the incident SR intensity. At this peak, a

maximum counting rate of 30 s�1 was observed which is comparable to that ob-

tained from the bulk material.

The recorded vibrational DOS of thin films of thickness 13 and 28 nm are

shown in Figs. 9.21(a) and (b). For comparison, the DOS of bulk a-Fe, obtained

from a 10 mm thick foil under the same experimental conditions, is shown Fig.

9.21(c). The most obvious feature is that the longitudinal peak at 35 meV is

broadened in comparison with the peak in bulk Fe. Much of this type of broaden-

ing may have been caused by the short phonon lifetimes in the thin film.

Assuming that each phonon is broadened in energy as a damped harmonic

oscillator, each intensity at energy E 0 of the experimental DOS curve is convo-

luted with the characteristic spectrum of a damped harmonic oscillator function

DðE 0;EÞ [58, 59]:

gðE 0Þ ¼
ðy
0

DðE 0;EÞgðEÞ dE ð9:18Þ

where

Fig. 9.19 Thin-film interference effects to enhance fluorescence signals:

(a) inside a thin film of FeB on a total reflecting Pd substrate and (b)

inside a Pd/C/Pd sandwich structure that acts as an x-ray waveguide.

The graphs also show the specular reflectivity of the structure (left

column) and the normalized field intensity as a function of depth

(middle column).
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DðE 0;EÞ ¼ 1

pQE 0
1

ðE 0=E � E=E 0Þ2 þ 1=Q 2
ð9:19Þ

and gðEÞ is the phonon DOS of the bulk a-Fe. In the convolution, the quality fac-

tor Q is the sole parameter used to fit the data. The Q-values for the 13 and 28 nm

Fe films were determined to be 13G 1 and 25G 2, respectively.

Using the glancing incidence technique, other thin films such as FeC2Ni on Pd

[60] as well as FeBO3 and Fe islands on a W(110) surface [58] have been studied.

Because of the development of strong synchrotron x-ray sources, one may now

directly record the VDOS in thin films without using the above technique, but rel-

atively long measurement times are required. The Fe partial VDOS of Tb/Fe

multilayers obtained with the direct method [61] is plotted in Fig. 9.22, where

the VDOS of a bulk Fe and a 175 Å thick a-Tb33Fe67 amorphous alloy film are

Fig. 9.20 (a) Angular dependence of reflectivity of 13 nm Fe on Pd. A

guided mode is excited at an angle of 4.2 mrad. The inset shows the

depth dependence of intensity inside the layer. (b) Angular dependence

of the yield of delayed fluorescence from the Fe film. The inset shows

the phonon spectrum recorded at an incident angle of 4.2 mrad.
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also given for comparison. Distinct differences in the VDOS have been observed

by varying the thickness of Fe or Tb. For the thicker Fe layers (samples C, D, and

F), the VDOS exhibit phonon peaks at 36 meV (longitudinal phonons) as well as

at 23 and 28 meV (transverse phonons), all typical of bulk bcc a-Fe. For the thin-

ner Fe layers (samples A, B, and E), the VDOS have a broad and featureless peak

and they resemble that observed in the amorphous alloy films Tb1�xFex [62].

Fig. 9.21 (a) DOS of 13 nm Fe film and (b) DOS of 28 nm Fe film, in

which the solid lines are calculated by Eq. (9.16). (c) DOS of bulk bcc

a-Fe. The solid lines are calculated with force constant from inelastic

neutron scattering and the dotted line in (c) corresponds to the solid

line in (a).

9.4 Low-Dimensional Systems 365



9.4.2

Nanocrystals

Nanocrystalline materials, often defined as materials composed of crystallites

smaller than 100 nm, have attracted much interest in recent years. Their unusual

physical and chemical properties are related to the finite-size effect, quantum-size

effect, and large surface-to-volume ratio. A detailed study of the dynamics of

nanocrystals is one of the best ways to understand their properties. Very recently,

inelastic neutron scattering [63–66] and INRS of g-rays [67, 68], as well as theo-

retical calculations [69–71], have provided evidence of two distinct differences

in the phonon DOS of materials in nanocrystalline and bulk phases. One

such feature is an enhancement of phonon DOS at low energies. The second is

Fig. 9.22 Fe partial VDOS of the Tb/Fe samples (thickness values in Å

in parentheses). The VDOS of a bulk Fe sample (top) and a 175 Å thick

a-Tb33Fe67 amorphous film (bottom) are also shown for comparison.
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the broadening of phonon DOS in the relatively high-energy region. These fea-

tures are not well understood and they continue to motivate more extensive inves-

tigations.

Figure 9.23(a) depicts the measured phonon DOS in nanocrystalline Fe by

INRS of g-rays [67]. For comparison, the phonon DOS of bulk bcc Fe obtained

under the same conditions is overlaid in this figure, where the dashed curve was

calculated in the same way as for the solid line in Fig. 9.21(c). The low-energy

part of the phonon DOS curve is plotted in Fig. 9.23(b), where it is clear that the

nanocrystalline DOS lies above that from bulk bcc Fe by a factor of about 2. The

DOS below 15 meV can obviously be fitted to the Debye law gðoÞ ¼ aE2, where

constant a dependents on the crystallite size. Such a quadratic dependence on en-

ergy has been confirmed also by other experiments [64, 68]. However, the func-

tional dependence of the low-energy modes is controversially reported in the liter-

ature. The power-law exponent was found to be 1 [65, 69, 70], @1.5 [71], and 2

[64, 67, 68]. At the present time, only some of theoretical calculations are fully

consistent with the experimental data.

A broadening of peaks in DOS of nanocrystalline Fe is particularly evident for

the longitudinal mode at 36 meV, and additional intensities above the high-

frequency cutoff extends to about 50 meV. Due to the negligible background

counts, INRS is a suitable method for studying the features at the high-energy re-

gion and especially the additional intensities. The broadening of DOS again can

be described by a damped harmonic oscillator model with Q ¼ 5, which pro-

duced the solid line for the nanocrystalline Fe in Fig. 9.23(a).

Fig. 9.23 (a) Phonon DOS of bcc Fe in bulk and nanocrystalline

phases; dotted and solid curves are calculated as described in the text.

(b) Enlargement of the low-energy part of phonon DOS curves in (a).
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370 9 Mössbauer Impurity Atoms (II)



states in Tb/Fe multilayers. J Magn.
Magn. Mater. 240, 562–564 (2002).

62 W. Keune and W. Sturhahn. Inelastic

nuclear resonant absorption of

synchrotron radiation in thin firms

and multilayers. Hyperfine Interactions
123/124, 847–861 (1999).

63 B. Fultz, J.L. Robertson, T.A.

Stephens, L.J. Nagel, and S. Spooner.

Phonon density of states of

nanocrystalline Fe prepared by high-

energy ball milling. J. Appl. Phys. 79,
8318–8322 (1996).

64 H. Frase, B. Fultz, and J.L.

Robertson. Phonons in nano-

crystalline Ni3Fe. Phys. Rev. B 57,

898–905 (1998).

65 U. Stuhr, H. Wipf, K.H. Andersen,

and H. Hahn. Low-frequency modes

in nanocrystalline Pd. Phys. Rev. Lett.
81, 1449–1452 (1998).

66 E. Bonetti, L. Pasquini, E.

Sampaolesi, A. Deriu, and G.

Cicognani. Vibrational density of

states of nanocrystalline iron and

nickel. J. Appl. Phys. 88, 4571–4575
(2000).

67 B. Fultz, C.C. Ahn, E.E. Alp, W.

Sturhahn, and T.S. Toellner. Phonon

in nanocrystalline 57Fe. Phys. Rev.
Lett. 79, 937–940 (1997).

68 L. Pasquini, A. Barla, A.I. Chumakov,
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Appendices

Appendix A

Fractional Intensity e(v) and Area A(ta)

Let Gs and Ga be the linewidths of the source and the absorber, respectively. They

are often unequal, i.e., x ¼ Gs=Ga 0 1. Therefore, the fractional absorption inten-

sity of g-rays is the convolution between the Lorentzian emission spectrum and

the Lorentzian absorption spectrum:

eðSÞ ¼ IðyÞ � IðvÞ
IðyÞ � Ib

¼ 1

2p

ðy
�y

fsGs

ðE � E0 þ SÞ2 þ G2
s =4

� 1� exp � taG2
a=4

ðE � E 0
0Þ2 þ G2

a=4

" #8<
:

9=
; dE ðA:1Þ

where S ¼ ðv=cÞE0, v is the Doppler velocity of the source, and E0 and E 0
0 are

energy peak positions of the emission and absorption lines, respectively.

Introducing two dimensionless variables

x ¼ 2ðE � E 0
0Þ

Ga
; y ¼ 2ðSþ E 0

0 � E0Þ
Ga

; ðA:2Þ

we can rewrite integral (A.1) as

eðyÞ ¼ fsx

p

ðy
�y

1� exp½�ta=ð1þ x2Þ�
x2 þ ðx þ yÞ2 dx

¼ fs � fsx

p

ðy
�y

exp½�ta=ð1þ x2Þ�
x2 þ ðx þ yÞ2 dx: ðA:3Þ

Substitution of

x ¼ tan
j

2
ðA:4Þ
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into (A.3) then gives

eðyÞ
fs

¼ 1� x

p

e�ta=2

x2 þ y2 þ 1

�
ð p
�p

exp½�ðta=2Þ cos j� dj
1þ x2 þ y2 � 1

x2 þ y2 þ 1
cos jþ 2y

x2 þ y2 þ 1
sin j

: ðA:5Þ

Let us introduce two more variables, r and y, so that

x2 þ y2 � 1

x2 þ y2 þ 1
¼ r cos y

2y

x2 þ y2 þ 1
¼ r sin y

0 < y <
p

2

� �
; ðA:6Þ

and

r2 ¼ 1� 4x2

ðx2 þ y2 þ 1Þ2 ;

y ¼ cos�1 x2 þ y2 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ y2 þ 1Þ2 � 4x2

q
2
64

3
75:

Therefore, the expression in (A.5) is simplified to

eðyÞ
fs

¼ 1� e�ta=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
2p

ð p
�p

exp½�ðta=2Þ cos j�
1þ r cosðj� yÞ dj: ðA:7Þ

In this integral, the denominator is a periodic function of j with period 2p and

can be expanded into a Fourier series

1

1þ r cosðj� yÞ ¼
Xy

n¼�y

anðr; yÞe inj ðA:8Þ

where

anðr; yÞ ¼ e�inyffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� 1

r

 !jnj
: ðA:9Þ

Using this Fourier series, (A.7) becomes

eðyÞ
fs

¼ 1� e�ta=2

2p

Xy
n¼�y

e�iny

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� 1

r

 !jnjð p
�p

e�ðta=2Þ cos jþinj dj: ðA:10Þ
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The integral happens to match the definition of the modified Bessel function In,
and the expression is then written as

eðyÞ
fs

¼ 1� e�ta=2
Xy

n¼�y

e�iny

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� 1

r

 !jnj
In � ta

2

� �2
4

3
5: ðA:11Þ

Using the properties of these Bessel functions, InðxÞ ¼ I�nðxÞ and Inð�xÞ ¼
ð�1ÞnInðxÞ, and sorting out terms containing þn and �n, we finally get

eðyÞ
fs

¼ 1� e�ta=2

8<
:I0

ta
2

� �
þ
Xy
n¼1

2
4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� 1

r
e iy

 !n

þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� 1

r
e�iy

 !n35In ta
2

� �9=
;: ðA:12Þ

This expression was obtained by Capaccioli et al. (Nucl. Instrum. Methods B 101,

280 (1995)).

Now we continue to treat the above expression by using

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
� 1

r
¼ e�b ðb > 0Þ ðA:13Þ

where the condition b > 0 is to guarantee that the sum in (A.12) converges. Thus,

the formula in (A.13) can be compactly written as

eðyÞ
fs

¼ 1� e�ta=2I0
ta
2

� �
� 2e�ta=2

Xy
n¼1

ðe�nb cos nyÞIn ta
2

� �
: ðA:14Þ

If x ¼ 1, this formula reduces to the result obtained by Ruby and Hicks

(Rev. Sci. Instrum. 33, 27–30 (1962)). When resonance absorption takes place,

vr ¼ cðE0 � E 0
0Þ=E0, y ¼ 0, and y ¼ 0, we obtain the following analytical formula

for the line shape:

eðyÞ
fs

¼ 1� e�ta=2I0
ta
2

� �
� 2e�ta=2

Xy
n¼1

x� 1

xþ 1

� �n
In

ta
2

� �
; ðA:15Þ

which is explicitly expressed in terms of Gs and Ga through their ratio x. In the

special case of Gs ¼ Ga, i.e., x ¼ 1, the above formula further simplifies to

eðvrÞ ¼ fs 1� e�ta=2I0
ta
2

� �" #
; ðA:16Þ

which is a well-known result.
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Now we turn to the consideration of the area under an absorption line, which is

given by the integral

AðtaÞ ¼
ðy
�y

eðSÞ dS: ðA:17Þ

The following is based on the derivation by Williams and Brooks (Nucl. Instrum.
Methods 128, 363 (1975)). Substituting (A.3) into (A.17) yields

AðtaÞ ¼
ðy
�y

fsx

p

ðy
�y

1� exp½�ta=ð1þ x2Þ�
x2 þ ðx þ yÞ2 dx

( )
dS

¼ fs
Ga

2

ðy
�y

1� exp � ta
1þ x2

� �( )
dx: ðA:18Þ

Using the simple integral relation

1� e�ata ¼ a

ð ta
0

e�at dt ðA:19Þ

and the relation in (A.4), we may rewrite (A.18) as

AðtaÞ ¼ fs
Ga

4

ð ta
0

dt

ð p
�p

dj exp � t

2
ð1þ cos jÞ

� �

¼ fs
Ga

2

ð ta
0

dt exp � t

2

� �ð p
0

dj exp � t

2
cos j

� �
: ðA:20Þ

Using the definition of the zeroth-order modified Bessel function of imaginary

argument,

J0ðizÞ ¼ I0ðzÞ ¼ 1

p

ð p
0

expð�z cos fÞ df ðA:21Þ

where z is real, Eq. (A.20) will be reduced to

AðtaÞ ¼ fs
Ga

2
p

ð ta
0

dt exp � t

2

� �
I0

t

2

� �
: ðA:22Þ

It can be shown that

ð h
0

dx expð�xÞI0ðxÞ ¼ h expð�hÞ½I0ðhÞ þ I1ðhÞ�: ðA:23Þ

Finally, AðtaÞ is written as
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AðtaÞ ¼ fsGap
ta
2

exp � ta
2

� �
I0

ta
2

� �
þ I1

ta
2

� �" #
: ðA:24Þ

The expression for the area AðtaÞ takes the above simple form. Note that AðtaÞ
depends on neither Ga nor Gs, which is a major difference between AðtaÞ and eðvÞ.

Appendix B

Eigenstate Calculations in Combined Interactions

B.1

Electric Quatrupole Perturbation

The secular determinant equation (2.62) of the combined interactions is

l4 þ pl2 þ qlþ r ¼ 0; ðB:1Þ

where p, q, and r are given in (2.63). According to Ref. [60] in Chapter 2, the roots

of this equation are four sums

G
ffiffiffiffiffi
y1

p
G

ffiffiffiffiffi
y2

p
H

ffiffiffiffiffi
y3

p ðB:2Þ

with the signs of the square roots chosen so that

ffiffiffiffiffi
y1

p ffiffiffiffiffi
y2

p ffiffiffiffiffi
y3

p ¼ � q

8
ðB:3Þ

where y1, y2, and y3 are the roots of the cubic equation

y3 þ p

2
y2 þ p2 � 4r

16
y� q

64
¼ 0: ðB:4Þ

In the case of pure magnetic interaction (i.e., R ¼ 0), p ¼ �10, q ¼ 0, and r ¼ 9

(see (2.63)); hence the roots of (B.4) are

y1 ¼ 0; y2 ¼ 4; and y3 ¼ 1; ðB:5Þ

which satisfy Eq. (B.3).

When the magnetic hyperfine interaction is dominant and electric quadrupole

interaction is present as a perturbation, i.e., a case with Rf 1, we can expand

(2.65) into a Taylor series:

yiðRÞ ¼ yið0Þ þ y 0i ð0ÞRþ y 00i ð0Þ
2!

R2 þ � � � ðB:6Þ
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The zeroth approximation term is given by (B.5) and the first derivative y 0ið0Þ can
be shown to be zero. Letting

y 00i ð0Þ
2!

¼ k2i , we obtain the following solutions to the

second-order approximation:

y1 ¼ 0þ k21R
2;

y2 ¼ 4þ k22R
2; ðB:7Þ

y3 ¼ 1þ k23R
2:

Because k22R
2 f 4 and k23R

2 f 1, which we will neglect, such solutions yi imme-

diately satisfy Eq. (B.3), provided

k1 ¼ 1

2
ð3 cos2 y� 1þ h sin2 y cos 2fÞ: ðB:8Þ

Finally, we obtain the reduced eigenvalues

l1 ¼ �3þ k1R;

l2 ¼ �1� k1R;

l3 ¼ þ1� k1R;
ðB:9Þ

l4 ¼ þ3þ k1R:

B.2

The Coefficients ai,mg
and bj,me

For the eigenstates with I ¼ 3=2, the coefficients bj;me in the jImi representation

(see Eq. (2.60)) are found relatively easily by a standard procedure, namely by

solving

X
m

½hIm 0
ejHQMjImei� dm 0

emeEelj�bj;me ¼ 0: ðB:10Þ

Using the matrix elements of (2.57), the above equation can be explicitly written

as four simultaneous linear equations:

ðR� 3 cos y� ljÞbj; 3=2 �
ffiffiffi
3

p
sin ye�ifbj; 1=2 þ hRffiffiffi

3
p bj;�1=2 ¼ 0; ðB:11aÞ

�
ffiffiffi
3

p
sin ye ifbj; 3=2 � ðRþ cos yþ ljÞbj; 1=2

� 2 sin ye�ifbj;�1=2 þ hRffiffiffi
3

p bj;�3=2 ¼ 0; ðB:11bÞ
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hRffiffiffi
3

p bj; 3=2 � 2 sin ye ifbj; 1=2 � ðR� cos yþ ljÞbj;�1=2

�
ffiffiffi
3

p
sin ye�ifbj;�3=2 ¼ 0; ðB:11cÞ

hRffiffiffi
3

p bj; 1=2 �
ffiffiffi
3

p
sin ye ifbj;�1=2 þ ðRþ 3 cos y� ljÞbj;�3=2 ¼ 0: ðB:11dÞ

From (B.11d) and (B.11a) it follows that

bj;�3=2 ¼
ffiffiffi
3

p
sin ye ifbj;�1=2 � hRffiffiffi

3
p bj; 1=2

Rþ 3 cos y� lj
; ðB:12Þ

bj; 3=2 ¼
ffiffiffi
3

p
sin ye�ifbj; 1=2 � hRffiffiffi

3
p bj;�1=2

R� 3 cos y� lj
: ðB:13Þ

Substituting (B.12) and (B.13) in (B.11c), we find

bj; 1=2

¼ 1

3

h2R2ðRþ 3 cos y� ljÞ � 3gþ 9 sin2 yðR� 3 cos y� ljÞ
2hRðR� lÞ sin ye�if � 2 sin ye ifðRþ 3 cos y� ljÞðR� 3 cos y� ljÞ bj;�1=2

ðB:14Þ

where g ¼ ðRþ 3 cos y� ljÞðR� 3 cos y� ljÞð�Rþ cos y� ljÞ. Recall the nor-

malizing equation

X3=2
me¼�3=2

jbj;me j2 ¼ 1; j ¼ 1; 2; 3; 4; . . . ðB:15Þ

Using the last four equations, we can find four normalized coefficients bj;me for

each index j.
Similarly, for the eigenstates with I ¼ 1=2, the normalized coefficients ai;mg in

(2.61) can be found for E
�
1
2 ; 1
� ¼ �Eg and E

�
1
2 ; 2
� ¼ Eg, respectively:

a1; 1=2 ¼ cos
y

2

� �
; a1;�1=2 ¼ sin

y

2

� �
e if;

a2; 1=2 ¼ �sin
y

2

� �
; a2;�1=2 ¼ cos

y

2

� �
e if:

ðB:16Þ
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Appendix C

Force Constant Matrices (CF) in fcc and bcc Lattices

First nearest neighbors:

Lattice Atom position General matrix for

force constant (CF)

Central force

matrix

fcc G
a

2
ð1 1 0Þ

a1 g1 0

g1 a1 0

0 0 b1

2
64

3
75 A

2

1 1 0

1 1 0

0 0 0

2
64

3
75

G
a

2
ð1 1 0Þ

a1 �g1 0

�g1 a1 0

0 0 b1

2
64

3
75 A

2

1 �1 0

�1 1 0

0 0 0

2
64

3
75

G
a

2
ð1 0 1Þ

a1 0 g1

0 b1 0

g1 0 a1

2
64

3
75 A

2

1 0 1

0 0 0

1 0 1

2
64

3
75

G
a

2
ð1 0 1Þ

a1 0 �g1

0 b1 0

�g1 0 a1

2
64

3
75 A

2

1 0 �1

0 0 0

�1 0 1

2
64

3
75

G
a

2
ð0 1 1Þ

b1 0 0

0 a1 g1

0 g1 a1

2
64

3
75 A

2

0 0 0

0 1 1

0 1 1

2
64

3
75

G
a

2
ð0 1 1Þ

b1 0 0

0 a1 �g1

0 �g1 a1

2
64

3
75 A

2

0 0 0

0 1 �1

0 �1 1

2
64

3
75

bcc G
a

2
ð1 1 1Þ

a1 b1 b1

b1 a1 b1

b1 b1 a1

2
64

3
75 A

3

1 1 1

1 1 1

1 1 1

2
64

3
75

G
a

2
ð1 1 1Þ

a1 �b1 �b1

�b1 a1 b1

�b1 b1 a1

2
64

3
75 A

3

1 �1 �1

�1 1 1

�1 1 1

2
64

3
75

G
a

2
ð1 1 1Þ

a1 �b1 b1

�b1 a1 �b1

b1 �b1 a1

2
64

3
75 A

3

1 �1 1

�1 1 �1

1 �1 1

2
64

3
75

G
a

2
ð1 1 1Þ

a1 b1 �b1

b1 a1 �b1

�b1 �b1 a1

2
64

3
75 A

3

1 1 �1

1 1 �1

�1 �1 1

2
64

3
75
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Second nearest neighbors:

Lattice Atom position General matrix for

force constant (CF)

Central force

matrix

fcc and bcc G
a

2
ð2 0 0Þ

a2 0 0

0 b2 0

0 0 b2

2
64

3
75 A

1 0 0

0 0 0

0 0 0

2
64

3
75

G
a

2
ð0 2 0Þ

b2 0 0

0 a2 0

0 0 b2

2
64

3
75 A

0 0 0

0 1 0

0 0 0

2
64

3
75

G
a

2
ð0 0 2Þ

b2 0 0

0 b2 0

0 0 a2

2
64

3
75 A

0 0 0

0 0 0

0 0 1

2
64

3
75

The atom positions up to the fifth neighbors can be found in Appendix E. The

F-matrix is basically determined by the particular symmetry of the lattice. For

example, the F-matrices for atoms at ða=2Þf2 2 0g and ða=2Þf1 1 0g share exactly

the same form. The F-matrices for the third nearest neighbors in fcc and the

fourth nearest neighbors in bcc lattices are described by four independent con-

stants, a, b, g, and d.
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Appendix D

Nearest Neighbors Around a Substitutional Impurity

Assuming that a substitutional impurity atom is located at the lattice coordinate

origin (0 0 0) in an fcc or a bcc lattice, its nearest neighbor atom positions are

given in the following table.

Lattice Nearest

neighbors

Atom positions (a/2)(x y z) Distance from

impurity

fcc First nearest

neighbors (12)

Gð1 1 0Þ,Gð1 1 0Þ,Gð1 0 1Þ,
Gð1 0 1Þ,Gð0 1 1Þ,Gð0 1 1Þ

ffiffiffi
2

p

2
a

Second nearest

neighbors (6)

Gð2 0 0Þ,Gð0 2 0Þ,Gð0 0 2Þ a

Third nearest

neighbors (24)

Gð2 1 1Þ,Gð1 2 1Þ,Gð1 1 2Þ,
Gð2 1 1Þ,Gð1 2 1Þ,Gð1 1 2Þ,
Gð2 1 1Þ,Gð1 2 1Þ,Gð1 1 2Þ,
Gð2 1 1Þ,Gð1 2 1Þ,Gð1 1 2Þ

ffiffiffi
6

p

2
a

Fourth nearest

neighbors (12)

Gð2 2 0Þ,Gð2 2 0Þ,Gð2 0 2Þ,
Gð2 0 2Þ,Gð0 2 2Þ,Gð0 2 2Þ

ffiffiffi
2

p
a

Fifth nearest

neighbors (24)

Gð0 1 3Þ,Gð0 3 1Þ,Gð1 0 3Þ,
Gð1 3 0Þ,Gð3 0 1Þ,Gð3 1 0Þ,
Gð0 1 3Þ,Gð0 3 1Þ,Gð1 0 3Þ,
Gð1 3 0Þ,Gð3 0 1Þ,Gð3 1 0Þ

ffiffiffiffiffi
10

p

2
a

bcc First nearest

neighbors (8)

Gð1 1 1Þ,Gð1 1 1Þ,
Gð1 1 1Þ,Gð1 1 1Þ

ffiffiffi
3

p

2
a

Second nearest

neighbors (6)

Gð2 0 0Þ,Gð0 2 0Þ,Gð0 0 2Þ a

Third nearest

neighbors (12)

Gð2 2 0Þ,Gð2 2 0Þ,Gð2 0 2Þ,
Gð2 0 2Þ,Gð0 2 2Þ,Gð0 2 2Þ

ffiffiffi
2

p
a

Fourth nearest

neighbors (24)

Gð3 1 1Þ,Gð1 3 1Þ,Gð1 1 3Þ,
Gð�33 1 1Þ,Gð1 3 1Þ,Gð1 1 3Þ,
Gð3 1 1Þ,Gð1 �33 1Þ,Gð1 1 3Þ,
Gð3 1 1Þ,Gð1 3 1Þ,Gð1 1 �33Þ

ffiffiffiffiffi
11

p

2
a

Fifth nearest

neighbors (8)

Gð2 2 2Þ,Gð2 2 2Þ,
Gð2 2 2Þ,Gð2 2 2Þ

ffiffiffi
3

p
a
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Appendix E

Force Constants for Central Forces

Let two atoms l 0 and l in a solid be separated by a distance r. One, say atom l 0, is
fixed at (0 0 0), and the other is displaced from its equilibrium position by u (Fig.

E.1).

Assume that the force F between this pair of atoms is axially symmetric. The

force constant matrix involves two constants, namely a bond-stretching constant

A and a bond-bending constant B. In terms of the radial and tangential compo-

nents, ur and ut, of the displacement of atom l, the force between l and l 0 is

F ¼ Aur þ But ¼ A

r 2
rðr � uÞ � B

r 2
r � ðr � uÞ ðE:1Þ

where r is the radius vector from the atom l 0 to atom l. The constants A and B are

related to the spherically symmetric potential VðrÞ between the two atoms

A ¼ � q2V

qr 2
; B ¼ � 1

r

qV

qr
: ðE:2Þ

In order to deduce the force constant matrix, it is necessary to write (E.1) also

in the matrix notation. The vector r consists of three components, r1, r2, and r3;
hence

r ¼
r1
r2
r3

2
64

3
75;

r u ¼ r Tu;

r � u ¼ Ru

where

R ¼
0 �r3 r2
r3 0 �r1
�r2 r1 0

2
64

3
75:

In the matrix form, (E.1) is written as

Fig. E.1 Two atoms l 0 and l are separated by a distance r. Atom l 0 is
fixed while atom l is displaced from its equilibrium position by u.
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F ¼ A

r 2
rr Tuþ B

r 2
RRTu:

According to Eq. (4.16), the force constant matrix is

Fðl; 0Þ ¼ � 1

r 2
ðArr T þ BRRTÞ ðE:3Þ

and explicitly

Fðl; 0Þ ¼ V 00 � V 0=r
r 2

r 21 r1r2 r1r3
r2r1 r 22 r2r3
r3r1 r3r2 r 23

2
64

3
75þ V 0

r

1 0 0

0 1 0

0 0 1

2
64

3
75: ðE:4Þ

As an example, we take the fcc lattice. Suppose the atom l is at position (1 1 0)

and atom l 0 at (0 0 0), then r ¼ ð ffiffiffi
2

p
=2Þa, r1 ¼ r2 ¼ a=2, and r3 ¼ 0, and we have

Fð110; 0Þ ¼ 1

2

V 00ðrÞ þ V 0ðrÞ=r V 00ðrÞ � V 0ðrÞ=r 0

V 00ðrÞ � V 0ðrÞ=r V 00ðrÞ þ V 0ðrÞ=r 0

0 0 2V 0ðrÞ=r

2
64

3
75: ðE:5Þ

A special case of B ¼ 0 is the so-called central force approximation, which leaves

the force along the bond direction. In this case

Fð110; 0Þ ¼ V 00ðrÞ
2

1 1 0

1 1 0

0 0 0

2
64

3
75: ðE:6Þ

Because of

Fxxð0; 0Þ ¼ �
X
l00

Fxxðl; 0Þ ¼ �4V 00ðrÞ; ðE:7Þ

we obtain

Fxxð0; 0Þ ¼ �8Fxxð110; 0Þ ¼ �8Fxyð110; 0Þ: ðE:8Þ

Substitution of atom l 0 by an impurity causes some changes in the force constant

F. The following relation is obviously valid:

X
l 0

DFabðl; l 0Þ ¼ 0 ðE:9Þ
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which leads to

DFabð110; 110Þ ¼ �
X

l 00110

DFabð110; l 0Þ ¼ �DFabð110; 0Þ: ðE:10Þ

Here, we assume that, among the nearest neighbors of atom l at (110), only the

F-matrix for this particular pair of atoms (l and l 0) changes. Inserting (E.10) into

(8.11) gives

Uabð110; 110Þ ¼ �Uabð110; 0Þ: ðE:11Þ

Based on (E.8), the changes in the force constants along the x-axis will be

Uxxð110; 0Þ ¼ 1

2
½V 00ðrÞpure � V 00ðrÞdef :� ¼

1

8
½F 0

xxð0; 0Þ � Fxxð0; 0Þ�: ðE:12Þ

Therefore, Eq. (8.11) can be written as

8Uxxð110; 0Þ ¼ 8Uxyð110; 0Þ ¼ Uxxð0; 0Þ � hM0o
2: ðE:13Þ

The relative change in the F-matrix is represented by the following parameter l:

l ¼ Fxxð0; 0Þ � F 0
xxð0; 0Þ

Fxxð0; 0Þ ¼ 1� F 0
xxð0; 0Þ

Fxxð0; 0Þ : ðE:14Þ

Appendix F

Lattice Green’s Function

F.1

Definition of Green’s Function

In the harmonic approximation, the Hamiltonian for an ordered crystal can be

written as

H0 ¼ 1

2

X
l; a

p2a ðlÞ
M0

þ 1

2

X
l; a; l 0; b

Fabðl l 0ÞuaðlÞubðl 0Þ: ðF:1Þ

To evaluate the mean square displacement hu2i, we use the displacement–

displacement double-time Green’s function defined by

Gabðll 0;oÞ ¼
ðy
�y

dte iothhuaðl; tÞ; ubðl 0; 0Þii ðF:2Þ
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where

hhAðtÞ;Bð0Þii ¼H
i

�h
yðGtÞh½AðtÞ;Bð0Þ�i ðF:3Þ

and

AðtÞ ¼ e ði=�hÞH0tAe�ði=�hÞH0t: ðF:4Þ

Here the upper and lower signs give, respectively, the retarded and advanced

Green’s function with yðtÞ being the Heaviside step function. A and B are arbi-

trary operators. Due to (F.3), o may be replaced in (F.2) by a complex frequency

z ¼ oþ ie with Im z > 0 ðIm z < 0Þ for the retarded (advanced) Green’s func-

tion, i.e., the retarded (advanced) Green’s function is analytic in the upper (lower)

half of the complex frequency plane. For applications in physics, the Green’s

function is always taken as the retarded one. From both these functions a new

Green’s function can be constructed which is analytic in the entire complex fre-

quency plane, except on the real axis. This new Green’s function is related to a

displacement–displacement correlation function

Gabðl l 0; zÞ ¼ 1

2p�h

ðy
�y

do 0 1� e�b�ho 0
Jabðl l 0;o 0Þ

z� o 0 ðF:5Þ

where

Jabðl l 0;oÞ ¼
ðy
�y

huaðl; tÞ; ubðl 0; 0Þie iot dt: ðF:6Þ

Now we derive a Green’s function equation of motion to determine the Green’s

function itself. Differentiating Eq. (F.3) with respect to time and taking into ac-

count the relation

i�h
dAðtÞ
dt

¼ ½AðtÞ;H0�; ðF:7Þ

we arrive at

i�h
d

dt
hhAðtÞ;Bð0Þii ¼ dðtÞh½A;B�iþ hh½A;H0�;Bii: ðF:8Þ

It is evident that the Green’s function in the time domain can be expressed in the

form of Eq. (F.3):
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Gabðl l 0; tÞ ¼H
i

�h
yðGtÞh½uaðl; tÞ; ubðl 0; 0Þ�i: ðF:9Þ

Based on (F.8) and (F.9), we obtain

ip
d

dt
Gabðl l 0; tÞ ¼ dðtÞh½uaðl; tÞ; ubðl 0; 0Þ�iþ yðtÞ duaðl; tÞ

dt
; ubðl 0; 0Þ

� �* +
; ðF:10Þ

where the first term on the right-hand side is zero because the quantity in the

square brackets becomes zero at t ¼ 0, and the second term is

yðtÞh½paðl; tÞ; ubðl 0; 0Þ�i: ðF:11Þ

Differentiating again produces an equation entirely in G, namely

�M0
d2

dt2
Gabðl l 0; tÞ ¼ dab dll 0dðtÞ þ

X
l 00 ; g

Fagðl; l 00ÞGgbðl 00l; tÞ: ðF:12Þ

Equations (F.10) and (F.12) have been deduced by using the following four

relations:

_uuaðlÞ ¼ � i

�h
½uaðlÞ;H0� ¼ paðlÞ

M0
;

_ppaðlÞ ¼ � i

�h
½paðlÞ;H0� ¼

X
l 0; b

Fabðl; l 0Þubðl 0; tÞ;

½uaðlÞ; pbðl 0Þ� ¼ i�hdll 0dab ;

½uaðlÞ; ubðl 0Þ� ¼ ½paðlÞ; pbðl 0Þ� ¼ 0.

Fourier transforming (F.12) gives the equation

X
l 00 ; g

½M0o
2dagdll 00 � Fagðl; l 00Þ�Ggbðl 00l 0;oÞ ¼ dab dll 0 ; ðF:13Þ

which can be abbreviated in the matrix notion (the Dyson equation) as

ðM0o
2 �FÞGðoÞ ¼ I; ðF:14Þ

or

GðoÞ ¼ ðM0o
2 �FÞ�1:
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The frequency-dependent Green’s function satisfying Eq. (F.13) is

Gabðll 0;oÞ ¼ 1

NM0

X
k; j

eaðk jÞe�b ðk jÞ
o2 � o2

j ðkÞ
e ik�ðl�l 0Þ: ðF:15Þ

In a compositionally disordered crystal, the atoms are generally assumed to be

placed randomly at the sites of a regular lattice. In the harmonic approximation,

the Hamiltonian of such a lattice is

H ¼
X
l; a

p2a ðlÞ
2Ml

þ 1

2

X
l; l 0; a; b

F 0
abðl l 0ÞuaðlÞubðl 0Þ: ðF:16Þ

There is an equation similar to (F.13) for the Green’s function G 0 in the dis-

ordered crystal:

X
l 00 ; g

½Mlo
2dag dll 0 � F 0

agðl; l 00Þ�G 0
gbðl 00l 0;oÞ ¼ dab dll 0 : ðF:17Þ

When the mass differs from site to site, it is more convenient to introduce the

dynamical matrix D 0 with the elements

D 0
agðl; l 00Þ ¼

F 0
agðl; l 00Þffiffiffiffiffiffiffiffiffiffiffiffiffi
MlMl 00

p : ðF:18Þ

Then, in the matrix notation, the equation (F.17) can be written as

ðMo2 �F 0ÞG 0ðoÞ ¼ ðIo2 � D 0ÞM 1=2G 0ðoÞM 1=2 ¼ I: ðF:19Þ

F.2

The Real and Imaginary Parts of G

The real part of G is symmetric and the imaginary part is antisymmetric with

respect to o:

RefGðoÞg ¼ RefGð�oÞg;
Im GðoÞg ¼ �ImfGð�oÞg:� ðF:19Þ

Using the correlation function (F.6) and the identity

1

xG ie
¼ x

x2 þ e2
� i

e

x2 þ e
¼ p

1

x
H ipdðxÞ ðE:20Þ
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(where p indicates the Cauchy principal value and e ! þ0), the discontinuity of

the Green’s function across the real axis is

Gðoþ ieÞ � Gðo� ieÞ ¼ 2i Im Gðoþ ieÞ

¼ 1

2p�h

ðy
�y

ð1� eb�ho
0 ÞSðo 0Þ

o� o 0 þ ie
� ð1� eb�ho

0 ÞSðo 0Þ
o� o 0 � ie

" #
do 0

¼ � i

�h
ð1� eb�hoÞSðoÞ; e ! þ0: ðF:21Þ

Making use of the symmetry relations, we can write

Re GðoÞ ¼ 1

2
½Gðoþ ieÞ þ Gðo� ieÞ� ¼ 1

p
p

ðy
�y

do 0

o 0 � o
Im Gðo 0Þ

¼ 1

p
p

ðy
0

Im Gðo 0Þ
o 02 � o2

do 02; ðF:22Þ

and similarly

Im GðoÞ ¼ � 2o

p
p

ðy
0

Re Gðo 0Þ
o 02 � o2

do 0; ðF:23Þ

which are known as the Kramers–Kronig relations.

Finally, we consider the behavior of Im G 0ðoÞ near a local mode oL. Replacing

o by oþ ie in (8.27) leads to

Im G 0
aað00;oþ ieÞ ¼ Im

Gaað00;oþ ieÞ
1� hM0ðoþ ieÞ2Gaað00;oþ ieÞ : ðF:24Þ

The denominator may be expanded around o ¼ oL:

1� hM0o
2Gaað00;oþ ieÞ ¼ ½1� hM0o

2
LGaað00;oL þ ieÞ�

þ d

do
½1� hM0ðoþ ieÞ2Gaað00;oþ ieÞ�ðoþ ie� oLÞ þ � � � ðF:25Þ

where the first term on the right-hand side is zero. Taking account of (F.21), we

rewrite (F.24) as

Im G 0
aað00;oþ ieÞ ¼ p

Gaað00;oÞ
d

do
½hM0o

2Gaað00;oÞ�
dðo� oLÞ: ðF:26Þ
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F.3

Symmetry Properties of the G-Matrices

The expression in (F.14) indicates that, for a perfect crystal, the G-matrices and

F-matrices have the same symmetry properties. We take the fcc lattice again as

an example. The G-matrices between the central atom and its first and second

nearest neighbors are given in the following table.

Nearest neighbors Atom positions Green’s function

matrices

First nearest neighbors G
a

2
ð1 1 0Þ

g1 g2 0

g2 g1 0

0 0 g3

2
64

3
75

G
a

2
ð1 1 0Þ

g1 �g2 0

�g2 g1 0

0 0 g3

2
64

3
75

G
a

2
ð1 0 1Þ

g1 0 g2
0 g3 0

g2 0 g1

2
64

3
75

G
a

2
ð1 0 1Þ

g1 0 �g2
0 g3 0

�g2 0 g1

2
64

3
75

G
a

2
ð0 1 1Þ

g3 0 0

0 g1 g2
0 g2 g1

2
64

3
75

G
a

2
ð0 1 1Þ

g3 0 0

0 g1 �g2
0 �g2 g1

2
64

3
75

Second nearest neighbors G
a

2
ð2 0 0Þ

g4 0 0

0 g5 0

0 0 g5

2
64

3
75

G
a

2
ð0 2 0Þ

g5 0 0

0 g4 0

0 0 g5

2
64

3
75

G
a

2
ð0 0 2Þ

g5 0 0

0 g5 0

0 0 g4

2
64

3
75
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Here the elements g0, g1, g2, and g3 are given in Eq. (8.44). The G-matrices for the

third, fourth, and fifth nearest neighbors can all be written in a similar manner.

F.4

The Mean Square Displacement hu2(0)i and the Recoilless Fraction f

Fourier transforming (F.6) yields

huaðl; tÞubðl 0; 0Þi ¼ 1

2p

ðy
�y

Jabðl l 0;oÞe�iot do

¼ 1

2p

ðy
0

Jabðl l 0;oÞe�b�hoe iot do

þ 1

2p

ðy
0

Jabðl l 0;oÞe�iot do: ðF:27Þ

Therefore, the mean square displacement of an isolated impurity atom in a cubic

host crystal can be found by letting l ¼ l 0 ¼ 0 be the impurity site. Since the

vibration of this atom is isotropic we need only consider, say, the x-component

of hu2i, so

hu2
a ð0Þi ¼ lim

t!0
huað0; tÞuað0; 0Þi ¼ 1

2p

ðy
0

Jaað00;oÞð1þ e�b�hoÞ do

¼ � �h

p

ðy
0

coth
b�ho

2

� �
Im G 0

aað00;oþ ieÞ do: ðF:28Þ

Hence, we get the recoilless fraction f for an impurity (Mössbauer) atom in a

cubic host:

f ¼ exp
k2�h

p

ðy
0

coth
b�ho

2

� �
Im G 0

aað00;oþ ieÞ do
" #

: ðF:29Þ

F.5

Relations Between Different Green’s Functions Gab(l lO,w)

For nearest neighbor forces only, we may rewrite the equation of motion (4.36) in

the following alternative form:

1

M0

X
b

Fabð0; 0Þebðk jÞ þ
X
l

e ik�l
1

M0

X
b

Fabð0; lÞebðk jÞ ¼ o2
j ðkÞeaðk jÞ ðF:30Þ
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where l denotes the position vector of a nearest neighbor around the atom at the

origin, and Fabð0; 0Þ and Fabð0; lÞ represent Fabð000; 000Þ and Fabð000; lÞ, respec-
tively. Multiplying (F.30) by e�a ðk jÞ, dividing it by N½o2 � o2

j ðkÞ�, and then sum-

ming it over the first Brillouin zone in the k-space, we have

X
b

Fabð0; 0Þ 1

NM0

X
k; j

e�a ðk jÞebðk jÞ
o2 � o2

j ðkÞ

þ
X
l

X
b

Faað0; lÞ 1

NM0

X
k; j

e�a ðk jÞebðk jÞ
o2 � o2

j ðkÞ
e ik�l

¼ � 1

N

X
k; j

1� o2

o2 � o2
j ðkÞ

 !
jeaðk jÞj2: ðF:31Þ

Using Eqs. (4.41) and (F.15), this equation can be simplified to

Faað0; 0ÞGaað000Þ þ
X
l

Faað0; lÞGaaðlÞ þ
X
l

X
b0a

Fabð0; lÞGabðlÞ

¼ �1þM0o
2Gaað000Þ: ðF:32Þ

Two more similar relations can be obtained by multiplying (F.30) by e�a ðk jÞe�ik�l 0

and e�g ðk jÞe�ik�l 0 , respectively:

Faað0; 0ÞGaaðl 0Þ þ
X
l

Faað0; lÞGaaðl � l 0Þ þ
X
l

X
b0a

Fabð0; lÞGabðl � l 0Þ

¼ M0o
2Gaaðl 0Þ ðF:33Þ

Faað0; 0ÞGagð�l 0Þ þ
X
l

Faað0; lÞGagðl � l 0Þ þ
X
l

X
b0a

Fabð0; lÞGbgðl � l 0Þ

¼ M0o
2Gagðl 0Þ ðF:34Þ

where l 0 denotes one of the nearest neighbor sites. It is easy to see that the above

three relations can be combined into one:

X
b 0; l

Fab 0 ð0; lÞGbb 0 ðl l 0;oÞ ¼ �dab d0l 0 þM0o
2Gabð0l 0;oÞ: ðF:35Þ
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Appendix G

Symmetry Coordinates

The best method of determining the normal vibrations in cases of symmetrical

crystals or molecules has proved to be the method of ‘‘symmetry coordinates.’’

Consisting of linear combinations of atomic displacements ui, these coordinates

serve as basis functions of various irreducible representations of a symmetrical

group. The symmetry coordinates are closely connected with the normal coordi-

nates; the latter can be linearly represented by the former and, in some cases,

they are even identical to each other. For instance, the symmetrical nonlinear

molecule H2O belonging to the C2v point group has two normal vibrations of ir-

reducible representation A1 and one of B2, i.e., the total representation is decom-

posed into 2A1 lB1. For B1 there is only one unambiguous normal vibration,

and hence the symmetry coordinate is identical to the normal coordinate. For

A1, on the other hand, there is an infinite number of possible symmetry coordi-

nates and the actual normal coordinates are linear combinations of two mutually

orthogonal symmetry coordinates. In the case of the linear symmetrical CO2 mol-

ecule, the symmetry coordinates are the same as the normal coordinates.

The monatomic cubic crystals, such as simple cubic (sc), body-centered cubic

(bcc), and face-centered cubic (fcc), have the highest symmetry. Suppose a substi-

tutional impurity atom (say, a Mössbauer atom) is at the origin of the coordinates,

i.e., at the (000) lattice site, and is coupled to its nearest neighbors to form an

impurity space. The irreducible representations for an impurity site having sym-

metry Oh in this host lattice are

Gsc ¼ A1g lEg lF1g lF2g l 3F1u lF2u;

Gbcc ¼ A1g lEg lF1g l 2F2g lA2u lEu l 3F1u lF2u; ðG:1Þ

Gfcc ¼ A1g lA2g l 2Eg l 2F1g l 2F2g lA2u lEu l 4F1u l 2F2u:

For a single impurity, we are only interested in the triply degenerate F1u mode in

which the impurity atom moves.

Again we take a host fcc lattice as an example to discuss in details how the

basis functions – the symmetry coordinates – for the irreducible representation

F1u are found. In the impurity space we have a total of 13 atoms and hence 39

degrees of freedom. At first sight, a basis set for 4F1u should have 12 symmetry

coordinates:

SjðxÞ;SjðyÞ; SjðzÞ ð j ¼ 0; 1; 2; 3Þ: ðG:2Þ

But one can easily show by group theory that only 4 symmetry coordinates, say

the 4 x-component symmetry coordinates SjðxÞ, are needed. We introduce

the following notation for the unit displacements of 13 atoms: uxðXYZÞ ¼ xi,
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uyðXYZÞ ¼ yi, and uzðXYZÞ ¼ zi, where the site number i and the respective

coordinate are

i ¼ 0 1 2 3 4 5 6

ðXYZÞ ¼ ð0 0 0Þ ð0 1 1Þ ð0 1 1Þ ð0 1 1Þ ð0 1 1Þ ð1 0 1Þ ð1 0 1Þ
i ¼ 7 8 9 10 11 12

ðXYZÞ ¼ ð1 0 1Þ ð1 0 1Þ ð1 1 0Þ ð1 1 0Þ ð1 1 0Þ ð1 1 0Þ

The symmetry operations R and their respective matrices GðRÞ for the irreducible
representation F1u are given as follows:

E:

1 0 0

0 1 0

0 0 1

2
64

3
75 Cx

2 :

1 0 0

0 �1 0

0 0 �1

2
64

3
75 Cy

2 :

�1 0 0

0 1 0

0 0 �1

2
64

3
75

Cz
2 :

�1 0 0

0 �1 0

0 0 1

2
64

3
75 Cxyz

3 :

0 0 1

1 0 0

0 1 0

2
64

3
75 Cxyz

3 :

0 0 �1

�1 0 0

0 1 0

2
64

3
75

Cxyz
3 :

0 0 1

�1 0 0

0 �1 0

2
64

3
75 Cxyz

3 :

0 0 �1

1 0 0

0 �1 0

2
64

3
75 C

xyz
3 :

0 1 0

0 0 1

1 0 0

2
64

3
75

C
xyz
3 :

0 �1 0

0 0 1

�1 0 0

2
64

3
75 C

xyz
3 :

0 �1 0

0 0 �1

1 0 0

2
64

3
75 C

xyz
3 :

0 1 0

0 0 �1

�1 0 0

2
64

3
75

Cz
4 :

0 �1 0

1 0 0

0 0 1

2
64

3
75 Cxy

2 :

0 1 0

1 0 0

0 0 �1

2
64

3
75 Cxy

2 :

0 �1 0

�1 0 0

0 0 �1

2
64

3
75

C
z
4 :

0 1 0

�1 0 0

0 0 1

2
64

3
75 Cyz

2 :

�1 0 0

0 0 1

0 1 0

2
64

3
75 Cx

4 :

1 0 0

0 0 �1

0 1 0

2
64

3
75

C
x
4 :

1 0 0

0 0 1

0 �1 0

2
64

3
75 Cyz

2 :

�1 0 0

0 0 �1

0 �1 0

2
64

3
75 C

y
4:

0 0 �1

0 1 0

1 0 0

2
64

3
75

Czx
2 :

0 0 �1

0 �1 0

�1 0 0

2
64

3
75 Czx

2 :

0 0 1

0 �1 0

1 0 0

2
64

3
75 Cy

4 :

0 0 1

0 1 0

�1 0 0

2
64

3
75

Now we start to derive the symmetry coordinates by the standard projection op-

erator which in our case is
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P̂P11 ¼
X

G�ðRÞ11R̂R
¼ Nfð1ÞE þ ð1ÞCx

2 þ ð�1ÞCy
2 þ ð�1ÞCz

2 þ ð�1ÞCyz
2 þ ð1ÞCx

4

þ ð1ÞCx
4 þ ð�1ÞCyz

2 þ ð�iÞ½ð1ÞE þ ð1ÞCx
2 þ ð�1ÞCy

2 þ ð�1ÞCz
2

þ ð�1ÞCyz
2 þ ð1ÞCx

4 þ ð1ÞCx
4 þ ð�1ÞCyz

2 �g ðG:3Þ

where N is the normalization factor. First, we choose x0 as a generator. The pro-

jecting operation gives

P̂P11x0 ¼ 2Nðx0 þ x0 þ x0 þ x0 þ x0 þ x0 þ x0 þ x0Þ ¼ 16Nx0;

hence we have

S0 z x0: ðG:4Þ

To proceed to find the remaining symmetry coordinates, we let x5 be another gen-
erator. The projecting operation gives

P̂P11x5 ¼ 2Nðx5 þ x6 þ x7 þ x8 þ x9 þ x10 þ x11 þ x12Þ;

and similarly

P̂P11x6 ¼ P̂P11x7 ¼ P̂P11x8 ¼ P̂P11x9 ¼ P̂P11x10 ¼ P̂P11x11 ¼ P̂P11x12 ¼ P̂P11x5:

Combining the above eight identical results, we obtain

P̂P11ðx5 þ x6 þ x7 þ x8 þ x9 þ x10 þ x11 þ x12Þ
¼ 16Nðx5 þ x6 þ x7 þ x8 þ x9 þ x10 þ x11 þ x12Þ

and therefore we find the second symmetry coordinate:

S1 z x5 þ x6 þ x7 þ x8 þ x9 þ x10 þ x11 þ x12: ðG:5Þ

The next step is taking z5 as another generator and we have

P̂P11z5 ¼ 2Nðz5 � z6 � z7 þ z8 þ y9 � y10 � y11 þ y12Þ

and also

�P̂P11z6 ¼ �P̂P11z7 ¼ P̂P11z8 ¼ P̂P11y9 ¼ �P̂P11 y10 ¼ �P̂P11 y11 ¼ P̂P11 y12 ¼ P̂P11z5:

Combining these results gives
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P̂P11ðz5 � z6 � z7 þ z8 þ y9 � y10 � y11 þ y12Þ
¼ 16Nðz5 � z6 � z7 þ z8 þ y9 � y10 � y11 þ y12Þ:

Therefore

S2 z z5 � z6 � z7 þ z8 þ y9 � y10 � y11 þ y12: ðG:6Þ

Finally, the fourth symmetry coordinate can be calculated in a similar way:

S3 z x1 þ x2 þ x3 þ x4: ðG:7Þ

From (G.4) through (G.7), the four orthonormal symmetry coordinates, trans-

forming as the first row of the representation F1u of Oh, are calculated as follows:

S0 ¼ x0;

S1 ¼ 1

2
ffiffiffi
2

p ðx5 þ x6 þ x7 þ x8 þ x9 þ x10 þ x11 þ x12Þ;

S2 ¼ 1

2
ffiffiffi
2

p ðz5 � z6 � z7 þ z8 þ y9 � y10 � y11 þ y12Þ;
ðG:8Þ

S3 ¼ 1

2
ðx1 þ x2 þ x3 þ x4Þ:

Appendix H

Mass Absorption Coefficients

The following table lists the mass absorption coefficients (cm2 g�1) for elements

from Z ¼ 1 to Z ¼ 94. [G.J. Long, T.E. Cranshaw, and G. Longworth. The ideal

Mössbauer effect absorber thickness. Mössbauer Effect Ref. Data J. 6, 42–49

(1983).]
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A
b
so
rb
er
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ra
y
en

er
g
y
(k
eV

)

5
0

6
0

8
0

1
0
0

1
5
0

E
le
m
en

t
A
to
m
ic

m
as
s
(u
)

6
.0

1
4
.4
1

5
7
Fe

2
1
.5
3

1
5
1
E
u

2
3
.8
7

1
1
9
S
n

2
5
.6
6

1
6
1
D
y

2
7
.7
7

1
2
9
I

3
5
.4
6

1
2
5
Te

3
7
.1
5

1
2
1
S
b

H
1

1
.0
08

0
.4
0
4

0
.3
8
7

0
.3
67

0
.3
63

0
.3
62

0
.3
60

0
.3
51

0
.3
4
8

0
.3
3
5

0
.3
2
6

0
.3
0
9

0
.2
9
6

0
.2
65

H
e

2
4
.0
03

0
.4
2
3

0
.2
1
3

0
.1
94

0
.1
91

0
.1
89

0
.1
87

0
.1
80

0
.1
7
8

0
.1
7
0

0
.1
6
6

0
.1
5
6

0
.1
4
9

0
.1
34

L
i

3
6
.9
41

0
.9
4
5

0
.2
2
7

0
.1
82

0
.1
74

0
.1
71

0
.1
67

0
.1
58

0
.1
5
6

0
.1
4
9

0
.1
4
4

0
.1
3
5

0
.1
2
9

0
.1
55

B
e

4
9
.0
12

2
.5
1

0
.3
2

0
.2
15

0
.1
95

0
.1
90

0
.1
85

0
.1
75

0
.1
7
0

0
.1
5
6

0
.1
5
0

0
.1
4
0

0
.1
3
3

0
.1
19

B
5

1
0
.8
1

5
.3
8

0
.5
1

0
.2
7

0
.2
5

0
.2
35

0
.2
2

0
.1
9

0
.1
8
5

0
.1
6
7

0
.1
5
9

0
.1
4
7

0
.1
3
9

0
.1
24

C
6

1
2
.0
1
1

1
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Figs. 2.20 & 2.22, Table 2.5: U. Gonser (Ed.) Mössbauer Spectroscopy II – The Exotic Side of the
Method, Springer-Verlag, New York, 81981. Fig. 2.24: I.J. Gruverman (Ed.) Mössbauer Effect
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183, 201, 313, 380, 393

– simple 393

CuInSe2 172

CuRh1:95Sn0:05Se4 189

CuaZn alloy 347

d
damped harmonic oscillator function

363

DB see dynamical beats

Debye

– model 24, 143, 145, 149, 190, 198,

202, 312, 345, 346, 348

– temperature 24, 26, 145, 149, 177,

190, 236, 249, 281, 309, 335, 342, 345,

352

Debye–Waller factor fD 151, 155, 160,

229ff., 241, 245ff.
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density functional theory (DFT) 165, 168, 355

density of states (DOS) 24, 142ff., 165

– host 333

– impurity 333

– partial 172, 286, 292, 299, 359

– partial vibrational 354, 366

– phonon 190, 253, 259, 285, 291, 293,

295, 298, 311, 366

– vibrational 317, 352, 358, 359, 362

diamond 26, 150, 335 f.

dispersion relation 124, 126, 138, 141

Doppler

– broadening 4

– effect 2, 14, 79

– energy shift 2

– second-order effect 73

– transverse Doppler effect 196ff.

– velocity 6, 64, 373

Doppler shift, second-order 148, 177, 318,

322, 333, 345, 348

DOS see density of states
161Dy 56, 83, 258

Dy3Fe5O12 358

dynamic response function 341

dynamical beats (DB) 265, 274, 281, 284

dynamical matrix 123ff., 165

Dyson equation 308, 317

e
E2-type radiation 195

effective magnetic field 53ff.

effective thickness ta 10, 72, 85, 269, 274, 278

effective vibrating mass 177, 198, 355

Einstein model 143, 323, 326

Einstein temperature 144, 177

Einstein–Debye formula 346

Einstein-Debye model 323

electric field gradient (EFG) 31, 43 ff.

electric quadrupole interaction 29, 38 ff.

electronegativity 37

electron–electron interaction 168

enhancement of coherent channel 266 f.
166Er 56
151Eu 56, 83, 258, 294

Eu2Ti2O7 193

EuBa2Cu3O7 205, 206

EuBa2Cu3O7�d 189

exchange-correlation energy 169

extrapolation method 165

f
face-centered cubic (fcc) 119, 125, 128, 150,

183, 201, 313, 380, 393

– crystal 134

Fe 149, 294
57Fe 8, 33, 39, 43, 51, 82, 180, 200, 283, 327,

334, 356

a-Fe 34, 36, 56, 57, 66, 100, 149, 191, 206,

265, 283, 294, 299, 342, 356

Fe nucleus (57Fe) 3

Fe(C5H5)2 88, 206, 356

[Fe(C5H7O3)3]
3þ 355

[Fe(CN)6]
4� 355

[Fe(H2O)6]
3þ 355

Fe[Co(CN)6] 151

Fe[Ir(CN)6] 151

Fe[Rh(CN)6] 151

Fe2þ 45, 54, 189

Fe2O3 35, 299

a-Fe2O3 88, 206, 216, 223

a-57Fe2O3 261

Fe2Tb 294

Fe3þ 45, 54

Fe3Al 294

Fe3BO6 227

Fe40Ni40P14B6 105, 351, 353

Fe67Tb33 294

Fe74Si10B16 351

Fe75P15C10 351

Fe80B20 353

FeBO3 294, 364
57FeBO3 261

FeC2Ni 364

FeCl2 189

FeCO3 50

FeF2 189

FeF3 51

FeGe powder 60

FeaRhaNi polarizer 64, 70

Fermi contact field 54

Fermi pseudopotential 157

ferrocene 88, 356

ferrous halides 37

FeS2 206

FeaSi 64

FeSO4�7H2O 88

first-principles methods 165ff., 299

force constant 117, 138, 150, 152,

291

– central forces 383ff.

– host–host 305, 310

– impurity–host 305, 310, 322

– matrix 166, 380

– ratio 326, 333, 346

– tensor 307

Fourier transform 108, 184, 296, 306

Fourier-logarithm decomposition 296

fractional absorption intensity 12
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g
GaP 152

GaSb 36

Gauss–Newton method 105, 108
155Gd 56, 83, 195

Gd2Ti2O7 195

Ge 325, 330

Ge(Li) 92

g-factor 52

G-K effect see Goldanskii–Karyagin effect

Glauber’s formula 23

Goldanskii–Karyagin effect 192ff., 281, 343

Green’s function 152, 184, 306, 308, 314,

385

– matrices 390

Grüneisen constant 185, 190

guanidinium nitroprusside 281

h
harmonic approximation 115ff., 140, 166,

180, 234, 341

harmonic lattice 120

harmonic oscillator 16

Hartree functional 169

hcp-Fe 191

heat capacity 141

helicity 62, 66

Hellmann–Feynman theorem 166

Hesse method 105

Hessian 166

hexacyanoferrate(II) 359
201Hg 258
165Ho 56

HoFe2 66

hydroquinone 188

hyperfine interactions 72

i
129I 83

impurity dynamic response function 309

impurity site moments 320ff.

impurity space 307

impurity, interstitial 333

impurity, substitutional 305, 382

indium 146

InSb 36

internal conversion coefficient 83

– partial 286

Ir 206, 329
191Ir 5, 8, 56

irreducible representation 313, 394

isomer shift 29, 31ff., 72, 105, 348

– calibration of 34 f.

isometric state 9

k
K 149
40K 82

K3Fe(CN)6 88

K4Fe(CN)6�3H2O 88, 205, 206, 225

KCl 243, 246

Keating model 139

K-fluorescence photons 214, 286, 289

Kohn–Sham equations 170

Kr 139
83Kr 258

Kramers–Kronig relations 389

krypton 92

l
Lamb–Mössbauer factor fLM 229ff., 281,

291, 295, 299

Laplace equation 40

lattice vibrations 123ff., 139, 311

lattice wave 115, 122
6Li 154
7Li 154

linear response 166ff.

Lipkin’s sum rule 7, 25, 291

local density approximation 172

localized vibrations 152ff.

Lorentzian distribution 9, 108

low-temperature anharmonicity 188

m
M1-type radiation 52

M1-type transitions 221

magnetic dipole interaction 29, 51 ff.

magnetic hyperfine field 55, 63, 73, 86,

105

magnetic hyperfine splitting 55

Mannheim model 313, 322, 324ff., 333

Maradudin–Flinn model 323

mass absorption coefficients 10, 85, 396ff.

mass defect approximation 317

McMillan ratio 200, 327

mean-square displacement 7, 151, 155,

177ff., 189, 245, 309, 335, 343, 345, 358,

391 f.

mean-square velocity 155, 177ff., 197,

310

Mo 329

mode

– acoustic 358

– composition factor 358

– gap 154

– intermolecular 355

– intramolecular 355

– localized 311, 317
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– longitudinal 138

– normal 122, 129, 131, 140, 318

– resonance modes 311, 317

– resonant 154

– stretching 361

– transverse 138

moments of frequency distribution 146ff.

Morse pair potentials 139

Mössbauer diffraction 216, 223ff.

Mössbauer effect 5, 6, 73, 151

– phonon-assisted 297, 361

Mössbauer lattice temperature 356

Mössbauer spectroscopy 6, 72, 253ff., 295

– conventional 298

– energy domain 253, 280

– spectrometer 79 ff.

– synchrotron 202, 253ff., 298

– time domain 253, 265, 280

n
Na 149, 151

Na2[Fe(CN)5NO]�2H2O 88, 206

Na4Fe(CN)6�10H2O 336

NaCl 246

NaF 143

Nb 329

Nb3Sn 189, 201

Nd2Fe14B 56, 70

Ne 139, 150

neon 92

neutron scattering 156ff.

neutron scattering, inelastic 366

(NH4)2Mg57Fe(CN)6 274

(NH4)2MgFe(CN)6 359

Ni 151, 243, 329, 342
61Ni 56

[Ni(CN)4]
2� 355

normal coordinates 22, 120

normal mode 122
237Np 33, 56, 83

nuclear Bragg scattering 220, 225, 229ff.,

259, 265, 278

nuclear exciton 265 f., 271

nuclear forward scattering 214, 220, 229ff.,

259, 271, 281, 295, 298

nuclear resonant scattering 155, 214

– inelastic 155, 295, 298, 318, 362

– inelastic incoherent 289

o
operator

– annihilation 16, 20

– creation 16, 20

– density 18

– displacement 17, 20

– Hermitian 18

optical branch 152

– longitudinal 131

optimal sample thickness 84
191Os 5

p
Pb 151, 218, 248

Pd 84, 328, 329

Pd3Sn 201

Pd80Si20 353

phonon annihilation probability 291

phonon creation probability 291

phonon–phonon interaction 182

plane-wave basis 171

polarization 62ff.

– p-polarization 64, 69, 262

– s-polarization 64, 69, 262

– vector 63, 122, 164

principal axis system 31, 40, 48, 56

pseudo-classical quantum states 16

pseudoharmonic approximation 185ff.

pseudopotential approximation 171

Pt 325, 328, 329

Pt absorbers 6

PtB2 188

PtCl2 188

q
QB see quantum beats

quadrupole splitting 72

quantum beats (QB) 265, 274ff., 284

quasiharmonic approximation 185

r
Rayleigh scattering 214, 233

reciprocal lattice 125

recoil energy 2, 161

recoilless fraction f 2, 6, 16, 21, 26, 73, 148,

161, 177, 183, 192, 202, 295, 309, 328, 333,

342, 391 f.

reduced rotation matrix 220

refractive index 272

resonance absorption 9

– coefficient 85

resonance fluoroscence 1

resonance modes 311

Rh 84, 329
99Ru 56

s
saturation effect 13, 71 f., 86

Sb 36
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121Sb 36, 37, 39, 83

scattering amplitude 230

scattering process

– slow 215, 220, 232

– fast 215, 232

second-order Doppler shift 73, 196, 291

self-consistent field 170

Si 241, 325

Si(Li) 92

simple cubic 393
149Sm 56
119Sn 8, 37, 57, 82, 181, 201, 258, 294, 327,

330, 356

a-Sn 294, 325, 330

b-Sn 294, 342

SnO2 206, 294

SNP see sodium nitroprusside

SnSb 36

SnTe 201

sodium nitroprusside (SNP) 88

– Na2Fe(CN)5NO�2H2O 34

specific heat 155

speed-up effect 265ff., 269

SrFe12O19 70

SrFeO3 294

stainless steel 294

supercell 171

symmetry coordinates 314, 393

synchrotron radiation 65, 155, 213, 253, 298

t
Ta 329
181Ta 37, 83
159Tb 56

Tb33Fe67 364

TbAl2 206

TbO7 206
125Te 83, 92

thermal diffuse scattering (TDS) 235

thin absorber approximation 12, 102

thin film 363

Thomas–Raleigh formula 234

Ti(Fe) alloy (b-) 345

time domain Mössbauer spectroscopy 265,

280

169Tm 56

transmission integral 10, 108

u
unitary transformation 147

v
V 325, 329

van der Waals forces 355

VDOS see density of states, vibrational
velocity calibration 99ff.

– absolute 100ff.

velocity transducer 8, 80, 95

Visscher model 323

w
W 206, 329, 364

waveguide 362

waves

– evanescent 362

– longitudinal 133

– standing 136, 362

– transverse 133, 138

Window method 106

x
Xe 139

xenon 92

x-ray absorption edge 92

x-ray diffraction 151

x-ray scattering 155

y
170Yb 56

YFe2 353

z
Zeeman effect 51

zero phonon process 6, 160, 235

zero point energy 140

Zn 151, 246, 342
67Zn 83, 180, 341, 347

ZnO 342

Zr9:5Fe90:5 353

Subject Index 409





Related Titles

Bordo, V. G., Rubahn, H.-G.

Optics and Spectroscopy at Surfaces and Interfaces

281 pages with 144 figures and 1 tables

2005

Softcover

ISBN: 978-3-527-40560-2

Kosevich, A. M.

The Crystal Lattice
Phonons, Solitons, Dislocations, Superlattices

356 pages with 88 figures

2005

Hardcover

ISBN: 978-3-527-40508-4

Gielen, M., Willem, R., Wrackmeyer, B. (eds.)

Unusual Structures and Physical Properties in Organo-metallic
Chemistry

approx. 384 pages

Hardcover

ISBN: 978-0-471-49635-9


