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Preface

The chief objective of this book is an extensive and updated description of appli-
cations of Mdssbauer effect in lattice dynamics. As an important component of
solid state physics, lattice dynamics is the study of atomic vibrations around their
equilibrium positions in a solid and it therefore leads to a better understanding of
various properties of the solid. Research in lattice dynamics began in the early
20th century. For perfect crystals, lattice dynamics has been developed very suc-
cessfully. Recently, the focus has been on dynamics of various imperfect lattice
systems.

After the discovery of Mossbauer effect, theorists quickly pointed out the possi-
bility of observing the frequency distribution of atomic vibrations in a solid, g(®),
using such an effect. Unfortunately, it did not become reality for many years be-
cause of technical difficulties. The amount of Doppler shift can, at best, only
reach the order of peV. It is difficult to increase it to cover the phonon energy
range (meV) in a stable and reliable manner. Furthermore, the phonon peak is
usually broadened and its intensity is at least two orders of magnitude smaller
than that for the recoilless y-ray resonance process, making it nearly impossible
to measure g(w) with sufficiently good statistics.

Although applications of Méssbauer effect in magnetic materials and chemistry
are very extensive, those in lattice dynamics are less straightforward because of
the following reasons. To study lattice dynamics, one must adopt a model (often
the Debye model) for the phonon frequency distribution and must rely on Méss-
bauer measurements of recoilless fraction f and second order Doppler shift dsop.
These allow us to derive parameters such as mean-square displacement {u?» and
mean-square velocity {(v?» of atomic vibrations, Debye temperature 0y, force con-
stants, and the effective vibrating mass Mg. There are many challenges in apply-
ing Mossbauer effect in lattice dynamics, which may have been the main reason
why there existed very few books on this subject.

In the last 20 years, new progress in the field has been made, especially due
to the rapid development of synchrotron radiation. In particular, the long-
anticipated direct measurement of «-Fe phonon frequency distribution g(w) was
achieved for the first time using synchrotron Mgssbauer source in 1995, which
had motivated us to provide a comprehensive and in-depth description of all as-
pects of Méssbauer effect and lattice dynamics in this book.

Xl
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Preface

There are a total of nine chapters and several appendices. The first three chap-
ters introduce the basics of Méssbauer spectroscopy pertinent to lattice dynamics.
Unlike most of the books on Mdssbauer effect, we used the theory of coherent
states to provide a simple yet rigorous derivation of the recoilless fraction f in
Chapter 1. The second chapter deals with an essential part of Méssbauer spectros-
copy, i.e., hyperfine interactions and the consequent polarization of y-rays. Chap-
ter 3 covers the instrumentation and data analysis, with one section especially de-
voted to describing in detail a method for estimating the optimal thickness of an
absorber. The fourth chapter provides the background necessary for interpreting
Mossbauer spectra, with a brief mention of the first-principles lattice dynamics
because it would help us to understand the experimental results. Chapter 5 fo-
cuses on the properties of the two quantities f and dsop, their dependence on
temperature and pressure, anisotropic behavior of f, as well as the relationship
between f and dsop. In Chapter 6, scattering of Méssbauer radiation is discussed,
with an emphasis on the understanding of coherence phenomena and the appli-
cations of Rayleigh scattering of Méssbauer radiation (RSMR) in lattice dynamics.
The recent development synchrotron Méossbauer spectroscopy as a scattering
method is described in Chapter 7, which contains a great deal of important and
updated information, such as the excellent properties of synchrotron radiation
(SR), how it makes time-domain Mdssbauer spectroscopy possible, how it allows
precise measurement of f in addition to hyperfine interactions, and how to mea-
sure the g(w) of a solid directly. In Chapter 8, the Mannheim model is applied to
lattices with very low concentrations of impurity atoms and its success is shown
in several examples of experimental work. Chapter 8 also includes how isotopic
selectivity of Mossbauer effect permits a unique way of studying the dynamics of
impurity atoms. Chapter 9 presents a collection of various experimental results
on metals, alloys, amorphous solids, molecular crystals, thin films, and nanocrys-
tals, to show the versatility and applicability Méssbauer effect in lattice dynamics
today.

This book may be used as a textbook for an advanced undergraduate course or
a graduate course and as a reference book for researchers in Méssbauer spectros-
copy, solid state physics, and related fields.

Special thanks go to our colleague and mutual friend Professor Xielong Yang of
East China Normal University for introducing the two of us to each other and for
initiating a productive collaboration. We would like to thank our respective fami-
lies for their tremendous support throughout this project. Y.L. Chen is indebted
to his wife Yuan Qin, Professor of Neurology, for her immense support and en-
couragement. D.P. Yang is deeply grateful to his wife Sharon Yang, an English
professor at Worcester State College, for her endless love, stimulating discus-
sions, and continued encouragement.

It has been a pleasure to work with Dr. Christoph v. Friedeburg, our Commis-
sioning Editor, and with Ulrike Werner, our Project Editor, at Wiley-VCH. Our
sincere appreciation goes to both of them for their professionalism and guidance
in so many aspects of the production of this book. We also thank the reviewers for
their constructive comments and insightful suggestions.



Preface

D.P. Yang would also like to thank Dr. William Hines and Dr. Philip Mann-
heim, Professors of Physics at University of Connecticut, who were great men-
tors and remain close friends. Many thanks go to Dr. Janine Shertzer, Professor of
Physics at College of the Holy Cross, for her wisdom and insight in the prepara-
tion and submission of manuscripts, and to Diane Jepson for her careful reading
of the manuscript. The responsibility of all errors lies, of course, with the authors.
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Yi-Long Chen [ X
Wuhan Univeristy
Wuhan, China
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The Mossbauer Effect

1.1
Resonant Scattering of y-Rays

It was at the beginning of the 20th century that resonant scattering of light
became experimentally verified. For example, when a beam of yellow light (the
D-lines) from a sodium lamp goes through a flask with low-pressure sodium
vapor in it, sodium atoms in the 2S ground state will have a relatively large prob-
ability of absorbing the incident photons and making a transition to the excited
2P state (as shown in Fig. 1.1). When these atoms return to the ground state,
they emit a yellow light of the same wavelength (known as resonance fluores-
cence) in all spatial directions. In the original direction of the incident beam, the
light intensity will be substantially reduced. This phenomenon can be considered
as a process of resonant scattering of photons.

In 1929, Kuhn [1] pointed out that a similar y-ray resonant scattering phenom-
enon should also exist for the nuclei. However, research during the next twenty
plus years failed to produce satisfactory experimental results to support his pre-
dictions. The reason was quite clear. Because of the law of momentum conserva-
tion, after emitting a y-ray, the nucleus obtains a velocity in the opposite direction
(recoil). Compared to the recoil velocity of an atom when the atom emits a visible
photon, the nucleus recoils with a velocity several orders of magnitude larger,
takes enough energy away from the emitted y-ray, and prevents the observation
of resonance absorption. We will now discuss this in detail.

Suppose a free nucleus of mass M and initial velocity v is in the excited state E,,
emitting a y-ray in the x-direction when it returns to the ground state. Figure 1.2
shows the energy levels and recoil of the nucleus, where v, is the x-component of
the initial velocity and vy its recoil velocity (relative to vy). According to momen-
tum conservation and energy conservation, we have

E
Mu, :%—i— M(vy — vR)

1 1
E. +EMU,¢2 = Eg + E},—I—EM(U,C - UR)2
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sodium excited state
-~ 2p
E. photons

NNANN—
NANNSN— NNANN——
NNANN—
f pp— 28 %\/\
sodium light source sodium ground state
(D-lines)

Fig. 1.1 Schematic diagram of resonance scattering of light.

E,
nucleus

Vr " C y-ray
‘o

Vi —

E,

Fig. 1.2 Recoil of a nucleus after emitting a y-ray.

where Ej is the ground state energy of the nucleus and E, is the energy of the
emitted y-ray. From the above equations, we obtain

1
E, = (E. — Eg) — EMU% + Mu,vg = Ey — Eg + Ep, (1.2)

where E is the energy difference between the excited state and the ground state
Eo = E. — E, (1.3)

ER is the recoil energy
Mvg = —2— (1.4)

and Ep depends on the initial velocity v, and is due to the Doppler effect (known
as the Doppler energy shift)

Ep = Muvg = U—C’CE/. (1.5)

We will now consider the following two cases (v, = 0 and v, # 0) separately.

(a) If v, =0, then Ep = 0. In this case, the excited nucleus is at rest. The
energy spectrum of the emitted y-rays from such nuclei is shown by the dashed
line in Fig. 1.3. The spectrum is a sharp peak centered at E, — Eg, and its width at
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A\

emission
spectrum

)

Foak v, Fo+ Eg
. - 77 1 ~T 7
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'
absorption } |
I
spectrum L.

Fig. 1.3 Emission and absorption y-ray spectra when recoil is present.

the half height is nearly the same as the natural width (I') of the excited energy
level.

The nuclei in the ground state (Eg) may resonantly absorb the incident y-rays
and transit to the excited state (E.). The energy distribution of these absorbed
y-rays is identical to the emission spectrum, except for a shift of Eg to the right
of Eo, as shown in Fig. 1.3. The energy difference between the emitted and the
absorbed y-rays is 2Eg. Therefore, the fundamental condition necessary for the
photon’s resonant scattering is

'y
>1 1.6
2~ (1.6)

that is, the recoil energy must be less than half of the natural width of the excited
state. Comparing the data for the >’ Fe nucleus and the sodium atom in Table 1.1,
we can easily see that for the Na atom, condition (1.6) is completely satisfied,
because the emission spectrum and the absorption spectrum are almost overlap-
ping, resulting in very large probability for resonant absorption. For the > Fe nu-
cleus, however, its I', /2Eg value is far from satisfying condition (1.6). Although
the natural widths I'y, of a nucleus and an atom are comparable, the former gives
a much more energetic photon than the latter, usually by three orders of magni-

Table 1.1 Comparison between photon emissions from the 3’ Fe nucleus
and the Na atom while each decays from its first excited state to the
ground state.

E,(eV) T, (eV) Eg (eV) Tn/2ER

57Fe nucleus 14.4 x 103 4.65 x 107° 1.95 x 103 1.2 x 1076
Na atom (D-lines) 2.1 439 x 1078 1.0 x 10710 2.2 x 10?

3
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tude. This makes their Er values differ by more than six orders of magnitude,
and this is the reason why resonant absorption of y-rays is usually not observed.

(b) For v, # 0, the situation is more common. Because of the random thermal
motions of free atoms, their velocities v, may have large variations, described by
the Maxwell distribution

M \2 Mo
p(vy) doy = (m) exp (fmvx ) doy

where kg is Boltzmann’s constant and T is the absolute temperature. This distri-
bution will greatly broaden the emission spectrum (or the absorption spectrum),
as indicated by the solid line in Fig. 1.3. This broadening is due to the Doppler
effect, and hence is known as Doppler broadening. Since the width of the above
velocity distribution is 2(2kgT In 2/M )1/ ?_the width of the emission spectral line
is then

AED = MUR (ZUZkBT]VIan> =4 ERkBTln 2. (17)

For *’Fe at T = 300 K, AEp = 2.4 x 1072 eV > 2Eg. This means that the emission
spectrum partially overlaps the absorption spectrum (the shaded region in Fig.
1.3), and it may be possible to observe some effect of resonant absorption.

1.2
The Mossbauer Effect

1.2.1
Compensation for Recoil Energy

As discussed above, if the nucleus is free to move, the lost energy due to recoil
must be compensated before substantial resonance absorption of y-rays can be ob-
served. Several ingenious experiments were devised to achieve this compensation,
two of which are briefly explained here.

The first experiment made use of mechanical motion of the source [2]. The ra-
dioactive source was mounted on the tip of a high-speed rotor. Due to the Dop-
pler effect, the y-rays acquired an additional energy AE,

AE="E, (1.8)

c 7

It was possible to adjust the speed v of the rotor to completely compensate the
recoil energy loss, i.e., (v/c)E, = 2Ex (for Fe, v =81 m s~!). This experiment
had two problems. First, only during a very short portion of the rotation period
could the emitted y-rays be used in the experiment, and thus the source was
largely under-utilized. Second, the experiment was limited by the maximum ob-
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tainable speed of the mechanical rotor and especially by the poor stability of the
rotor speed.

The second experiment used the fact described in Eq. (1.7) that the Doppler
broadening is increased by raising the temperature. As a result, it would cause
increases in the overlapping region in Fig. 1.3, and therefore increases in the
probability of resonance absorption.

By the above means, the phenomenon of y-ray resonant absorption had been
observed before 1954, but a major shortcoming was that these resonance absorp-
tion experiments all involved recoil, which would never be practically significant
due to low y-ray counts and poor energy resolution. A historic discovery by Méss-
bauer of resonant absorption without recoil completely eliminated the need for the
above effort to compensate the energy loss. We will now describe this discovery.

1.2.2
The Discovery of the Méssbauer Effect

In 1958, Rudolf L. Mossbauer [3] was investigating the resonant absorption of the
129 keV y-ray in !Ir nucleus and discovered that if the source nuclei °!Os and
absorber nuclei °!Ir were rigidly bound in crystal lattices, the recoil could be ef-
fectively eliminated and the resonant absorption was readily observed.

In a crystal lattice, an atom is held in its equilibrium position by strong
chemical bonds corresponding to an energy of typically 10 eV. For the 129 keV
transition in free 'Ir nucleus (Fig. 1.4), the recoil energy is 4.7 x 1072 eV,
much smaller than the chemical bond energy. Therefore, from the classical view-
point, when the y-ray is emitted by a nucleus bound in a lattice, the nucleus will
not recoil alone, but the entire crystal lattice recoils together (a total of about 10'8
atoms). In this case, the mass M in the denominator of Eq. (1.4) should be the
mass of the whole crystal, not the individual nucleus. This reduces the recoil en-
ergy to a negligible amount (~10~%° eV). Consequently, Eq. (1.6) is satisfied, Eq.
(1.2) is simplified to E, ~ Eo, and the entire process becomes a recoilless resonant
absorption. A more exact explanation of this phenomenon is given by a quantum
mechanical description in Section 1.5.

191
Os 92

11/2

171 keV
SR

32+

1917

Fig. 1.4 Decay scheme of '°'Os.
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v (cm/s)
-4 -2 0 2 6 8
L L

Fig. 1.5 Resonance absorption curve of the 129 keV y-rays by ''Ir.

In Mossbauer’s first experiment where he observed recoilless resonance
absorption of j-rays, the radiation source was a crystal containing *'Os and the
absorber was an iridium crystal, both at a temperature of 88 K. A platinum (Pt)
comparison absorber of the same thickness was used to measure the background.
Because the process was recoilless, the Doppler velocity only needed to be small,
about several centimeters per second. The results from that first experiment are
reproduced in Fig. 1.5, where the horizontal axis represents the y-ray energy vari-
ation AE (or source velocity v). When the source is moving towards the absorber,
v > 0, and when the source is moving away from the absorber, v < 0. The vertical
axis represents the relative change in the y-ray intensity, (I;, — Ipt)/Ip;, where Iy
and Ip, are the y-ray intensities transmitted through the Ir and Pt absorbers,
respectively.

As shown in Fig. 1.5 and pointed out by Méssbauer, the width of the spectrum
is 4.6 x 107¢ eV, which is just slightly more than twice the natural width of the
129 keV energy level of !Ir. Never before had such a high resolution in energy
(AE/E ~ 3.5 x 107!1) been achieved, and Méssbauer’s research results were fun-
damentally different from what anyone had previously obtained from y-ray reso-
nant scattering, because he observed jy-ray emission and absorption events in
which the recoil was completely absent. Not too long after the discovery of recoil-
less y-ray emission and resonant absorption, this effect was named after its dis-
coverer and is now known as the Méssbauer effect.

In reality, the Mossbauer nucleus is not rigidly bound, but is usually free to
vibrate about its equilibrium position. Photons may exchange energy with the
lattice, resulting in the creation or annihilation of quanta (phonons) of lattice
vibrations. Suppose we have an Einstein solid with one vibrational frequency w,
then the lattice can only receive or release energies in integral multiples of hw
(0, +how, +2kw, . ..). So if Ex < ho, the lattice cannot absorb the recoil energy,
i.e., the zero phonon process, and the y-ray is emitted without recoil. The proba-
bility of having such a process is known as the recoilless fraction f, an extremely
important parameter in Méssbauer spectroscopy.
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Fo + kg

1
Eo = ER

Fig. 1.6 Emission and absorption spectra of y-rays when Eg < .

In a typical lattice, both Eg and hw are in the ranges 103 to 10! eV. Obviously,
the value of f depends on how Ex compares with ficw. Only when Ep « fiw will f
be reasonably large (see Fig. 1.6). As we derive it later (see Section 1.5.4), accord-
ing to Lipkin’s sum rule, when a large number of absorption events are consid-
ered, the average energy transferred to the lattice must be exactly equal to Eg.
Let a total of m y-photons with E, be absorbed among which n of them cause
zero phonon creation and the rest (m — n) photons each excites a single phonon
(neglecting double phonons), then

mER = (m — n)ho.

Based on the Einstein model, we arrive at an approximate expression for the
recoilless fraction

_r__E
f=l =13 (1.9)

It can be seen from this expression that, in order to observe the Méssbauer effect,
the recoilless fraction f should be sufficiently large, and we would like to have the
following condition between Egr and hcw:

Er « hw. (1.10)
A more precise expression for the recoilless fraction is

f _ e—k2<x2>

where (x2) is the mean square displacement of a nucleus along the direction of
the wave vector k of the emitted y-ray. This expression points out that in a liquid
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or a gas, the Mossbauer effect is extremely difficult to observe because of the large
(x?*» values. Also, a small k value would give a large f value, and therefore y-rays
with lower energies will favor the observation of the Méssbauer effect. At present,
the Mossbauer effect has been observed from more than 100 nuclear isotopes
(e.g., >’Fe, 19Sn, I, etc.), among which one of the highest y-ray energies is
187 keV in °0s. For a y-ray energy higher than 100 keV, the source and the ab-
sorber are usually kept at low temperatures to reduce their (x?) values.

1.3
The Méssbauer Spectrum

1.3.1
The Measurement of a Méssbauer Spectrum

To facilitate our discussions in the first two chapters, the basic principles of mea-
suring a Mossbauer spectrum will be given, before the experimental details in
Chapter 3.

The shape of a resonance curve is often used to characterize the properties of
the resonance system. For example, we can obtain the natural width I, of the ex-
cited energy state from the linewidth of the measured y-ray resonance curve and
estimate the life time of the energy state according to the uncertainty relation
[y ~ h. A Mossbauer spectrum is a recoil-free resonance curve. To measure
this, we no longer need those high-speed rotors, but it is still necessary to use
the Doppler effect for modulating the y-ray energy E, within a small energy
range, E,(1 £ v/c). A velocity transducer with the mounted source moves with re-
spect to the absorber and the emitted y-ray energy is therefore modulated, as
shown in Fig. 1.7. A Méssbauer absorption spectrum, shown on the right of Fig.
1.7, is a record of transmitted y-ray counts through the absorber as a function of
y-ray energy, whose linewidth has a minimum value of T's 4 I, (the sum of the
natural widths of the Mdssbauer nuclei in the source and the absorber).

va
__________________ - I+ I,
_________________ Q |
detector >
v source +v absorber imensit.;

Fig. 1.7 Measuring a Mossbauer spectrum.
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For the sake of simplicity, it is customary to use the source velocity (in mm s™)
to label the energy axis. To obtain the energy value, one simply multiplies the ve-
locity by a constant E,/c, and for *’Fe, E,/c = 4.8075 x 10~® eV mm ' s.

1.3.2
The Shape and Intensity of a Spectral Line

After a Moéssbauer resonant absorption, the nuclear excited state is an isomeric
state, which can only decay to the ground state through y-ray emission or internal
conversion. The cross-section of resonant absorption of y-rays (as a function of
photon energy E) is described by the Breit—-Wigner formula [1, 4]:

ool'? /4
ou(E) = % (1.11)
(E— Ep)* +T2/4
where
142l 1
o i (1.12)

Tl 21ta

is the maximum resonance cross-section, Ey and / are the energy and wavelength
of the y-ray, I. and I, are, respectively, the nuclear spins of the excited and the
ground states, and « is the internal conversion coefficient.

Because its excited state has a certain width I, the emitted y-rays from the
source are not completely monochromatic, but follow the Lorentzian distribution
around E,

T 1
PEAE=—"—_—_ (F 1.13
(BdE= 3 s (1.13)
where
}.f(E) dE =1. (1.14)

Therefore, in a situation where both the source and the absorber are very thin, the
observed resonance absorption curve can be calculated by a convolution integral

+o0 —
ex] UOra 2
o2(E) o J,w L(E ~ jolx) dx = 2 e (9
(- B+ (=2

and it is clear that the line shape is also Lorentzian, similar to Eq. (1.13) except
that the linewidth becomes I's + I[,. In reality, because of the finite thicknesses
of the source and absorber, the emission and absorption spectral linewidths I

9
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and T, would be larger than the natural width T', (for >’Fe, T', ~ 0.097 mm s 1),
and the observed resonance line would be broader than 2T,.

We now discuss in detail how the thickness of an absorber influences the
shape and intensity of a transmission spectrum. Let the total intensity of the
y-ray emitted by Méssbauer nuclei be Iy, of which only a part I is recoil free and
distributed according to a Lorentzian shape:

L(E, v,0) = ngoy(E fSEO)

where f; and v are the recoilless fraction and the Doppler velocity of the source.
Going through the absorber, y-ray intensity is reduced because of two absorption
processes, a non-resonance atomic absorption (mainly the photoelectric effect)
with a mass absorption coefficient of x, (u, values for different elements are tabu-
lated in Appendix H) and a Méssbauer resonance absorption with an absorption
coefficient of p,:

#:(E) = na foa(E) (1.16)

where n, is the number of Méssbauer nuclei in the absorber per unit mass and f
is the recoilless fraction of the absorber. Considering both of these absorption
processes, the y-ray intensity decreases exponentially after transmitting an ab-
sorber thickness d (mg cm™2):

L(E,v,d) = fSIOSZ(E—gEO)e’("ﬁ”T)d. (1.17)

According to this, at a given Doppler velocity of the source, the intensity of the
recoil-free y-ray detected should be an integral over the energy:

L(v,d) = rﬁ L(E,v,d)dE = filoe T (v) (1.18)
where

T(v) = JM y(E - SE()) A(E) dE, (1.19)

A(E) = exp[—u,(E)d] = exp[—a(E)t.], (1.20)

G(E) = GH(E)/JW

t, = n, food. (1.21)

T(v) is known as the transmission integral. As defined in Eq. (1.21), t, is called
the effective thickness of the absorber, and is temperature dependent in the
same manner as f.
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The rest of the y-rays are emitted with recoil, and they are distributed in a
rather broad energy range (Fig. 1.6) and absorbed solely due to the non-resonant
absorption process. Thus, the intensity after absorption is independent of the
Doppler velocity v and can be expressed as

I(d) = Io(1 — f,)e "4, (1.22)

Combining Eqs. (1.18) and (1.22), we obtain the total intensity recorded by the
detector (whose efficiency is assumed to be 100%) as

I(v,d) = L(v,d) 4+ I(d) = I(00,d)[1 — fs + fT(v)] (1.23)

where (00, d) = Iy exp(—p,d) is the spectral baseline corresponding to v = 0.
If we neglect hyperfine interactions for the time being, the fractional intensity
of the absorbed of y-rays at a Doppler velocity v can be defined as

o) =20 =0 g 70 (124

which describes the shape of the absorption spectrum. According to Appendix A
or Ref. [5], the fractional intensity ¢(v) can be obtained analytically and, at reso-
nance v = v, = 0, &(v) reaches its maximum
(s (125)
n 2 N

which is explicitly expressed in terms of & = I's/T,. In the above equation, I, is
the modified Bessel function of the first kind of order n. If I'y = T,, thus ¢ =1,
Eq. (1.25) becomes

(t1) : =
001 um(5) e 3
f 2 n=1 C+1

S

o(vr) = fi [1 e, (%)} (1.26)

which is a well-known result independent of both linewidths.
Next, we discuss the contribution of the third term in ¢(v,), which will be ab-
breviated as é¢3:

g = —2e 42 Z(g%) I, (%) (1.27)
n=1

The value of ¢(v,)/ fs in Eq. (1.25) is plotted in Fig. 1.8 as a function of t, and ¢&.
Regardless whether n is even or odd, I,(t,/2) is always positive. Therefore, the
sign of ¢; is determined by the factor (£ —1)/(&+1). When ¢ < 1, &3 > 0, and
when & > 1, ¢3 < 0. The effect of this third term ¢; is clearly demonstrated in

11
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e
wow
1

Fig. 1.8 ¢(v)/ fs as a function of t, for ¢ = 0.7,1.0, and 1.3 [5].

Fig. 1.8. The curve with & =1 is completely consistent with those given in Ref.
[6]. In practice, cases with £ > 1 are hardly observed and ¢ < 1 is in the majority.
Therefore, the influence of the third term on &(v;) is essentially the addition of
a positive contribution. Obviously, when ¢, < 1, such an influence becomes negli-
gible regardless of the value of &.

In fact, the above argument can be understood in the following straightforward
way. In the case where I's < T, (or ¢ < 1), the absorber in some sense looks like a
“black absorber” [7] absorbing the majority of resonant y-rays. In other words,
the resonant y-rays, as a whole, have a higher probability of becoming absorbed.

Based on the above results, a transmission Mdssbauer spectrum is sketched in
Fig. 1.9 where I, represents the background counts. During the above derivation,
we assumed that the intensity was corrected by I,

As long as the “thin absorber approximation” (t, < 1) is valid, one only need to
take the first two terms in the polynomial expansion of A(E) in Eq. (1.20). Then
the fractional absorption intensity described in Eq. (1.24) can be easily written as

Ip
I (=, d) T

resonant
____ 1(v,, d)

non-resonant *

Iy
< l =
- 0 o

Fig. 1.9 Contributions to the Mossbauer spectrum in transmission geometry.
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o(v) = £l = T(W)] = £ Jm 3(5 - §E0> {1 —exp (— ta"a)} dE

- g0

<t] 2 (e-t) Zao(;af?;a/zf

T+ L)\
()
rs“’ra (DEO)Z-F(FS_;Fa)Z
[

This means when t, < 1, the spectral shape is still Lorentzian. At resonance, ex-
pression (1.25) becomes identical to (1.28), only if t, < 1 and I's = T',. The area of
the absorption spectrum has been accurately calculated [4]:

Alt) :fsran%‘ exp<—%a> {]o (z%) I (l%)} (1.29)

where ]y and J; are the zeroth- and first-order Bessel functions. Important param-
eters of a Mdssbauer spectrum are the height, width, area, and position of a spec-
tral line. Because of the constraint in Eq. (1.29), only two of the first three param-
eters are independent.

As the absorber thickness increases, the area A(t,), as well as &(vy), deviates
considerably from its linearity with ¢, and gets saturated (see Figs. 1.10 and 1.8).
Interpretation of Méssbauer spectra is often complicated by such a saturation ef-
fect due to a finite absorber thickness. A comparison between Figs. 1.10 and 1.8
shows how the area A(t,) saturates much less rapidly than &(v;). A further analy-
sis reveals that the spectral shape remains Lorentzian for up to t, ~ 10.

Notice that ¢(v) describes the shape of the spectrum and obviously depends on
both T's and T, while the area A(%,) is an integral of ¢(v) over the Doppler velocity
range (see Appendix A) and is only dependent on I',.

(1.28)

A(ta)

Fig. 1.10 A(t,) as a function of t,. In plotting this curve, the
proportionality constant (f;T,x) in Eq. (1.29) is taken to be 1.

13
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1.4
The Classical Theory

Although the Mdossbauer effect is a quantum mechanical effect, its main features
can be also derived by the classical theory. The first comprehensive classical
description was provided by Shapiro [8]. A radioactive nucleus, as a classical oscil-
lator, does not experience a recoil effect and emits an electromagnetic wave of fre-
quency wo. The distribution in frequency is entirely determined by the Doppler
effect. Thus, the corresponding vector potential at distance x, from the source is
then

A(t) = A(0) exp(—yt) exp[i(wot — kxo)] (1.30)

where y is the damping coefficient, which is half of the natural width of the ex-
cited state, y = I',/2. If thermal motion of the nucleus is neglected, the distance
xo will be constant. As a result, leaving out the last phase factor in Eq. (1.30) has
no effect on the recoilless fraction. Thus the radiation intensity as a function of
frequency is

([a/2)*
(w0 —@)” + (Tw/2)*

Iw) = Iy (1.31)

In reality, the nucleus in a solid undergoes inevitable thermal motion around
its equilibrium position. From the classical point of view, this motion modulates
the electromagnetic wave due to the Doppler effect. Let v(t) be the velocity com-
ponent of the nucleus in the direction of y-ray propagation. The phase of the wave
is modulated and becomes

o(t")

t
$(t) = J, ‘@0 (1 +T) dt' = wot +

ZL;O (1.32)

where x(t) is the instantaneous displacement of the nucleus away from its equi-
librium position in the direction of the y-ray propagation, and may be expressed
as

x(t) = xo sin Q¢ (1.33)
where we have used Q (Q « wy) to represent the frequency of the thermal mo-
tion of all Méssbauer nuclei (as is the case with the Einstein model). Incorporat-

ing the phase modulation into Eq. (1.30), the vector potential becomes

A(t) = A(0) exp(—iwot — I'yt/2) exp(ikxo sin Qt). (1.34)
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If we expand the last phase factor into a sum of Bessel functions,

+oo

exp(ikxo sin Qt) = _ Ju(kxo) exp(—inQt),

Eq. (1.34) can be written as

+o0

A(t) = A(0) Z Ju(kxo) exp(—T'yt/2) exp(—iwot — inQt).

n=-—oo

Consequently, the normalized distribution of radiation intensity is

_ ) (/2
= WZ_:LU" (ko) w—wo—nQ)Z—i- (Tn/2)* (1.35)

It is clear that this radiation includes one spectral line unshifted in frequency
(wp) as well as a series of satellite lines with frequencies wy + Q, wy + 2Q,
wp + 3Q, etc. Each spectral line has a Lorentzian shape with a width of ', and
its intensity is described by the respective coefficient, i.e., the square of the Bessel
function value (Fig. 1.11). Therefore, the recoilless fraction is f = [ Jo(kxo)]”.

For a low-energy radiation, we have kxy « 1, and

2,2 2,2
]nszln(lkx(’)zkxo
4 2

or,
f=eke (1.36)

where (x?» = x9%/2 is the mean square of the displacement of the nuclear vibra-
tion. This result is identical to the quantum mechanical result to be derived next.

}JJUKA

282 agt282

Fig. 1.11 Intensity distribution of y-ray emission from a classical oscillator.
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1.5
The Quantum Theory

Méossbauer [3] and later Visscher [9] derived the f fraction based on the theory of
neutron resonance scattering from nuclei bound in a solid [10]. Soon after, Lipkin
[11] simplified the derivation of the f fraction. Singwi and Sjélander [12] used a
method developed by van Hove [13] to arrive at this result. The reader may find
an abundance of relevant references.

In the 1960s, a theoretical method was developed using coherent states [14, 15]
(also known as pseudo-classical quantum states). The concept of coherent states
has attracted attention from researchers in many areas of physics, and recently
found a wide range of applications. The earliest and the most complete studies
of the coherent states were those of the harmonic oscillators [16, 17], and these
coherent states provide an extremely convenient way of describing certain partic-
ular states of vibration. Because harmonic oscillation is an important model for
describing the structure and motion of matter on the microscopic scale, the
method of coherent states is especially useful in research fields such as studying
interactions between radiation and matter. This method not only provides a direct
analogy to the classical theory, but also greatly simplifies the calculation. Recently,
Bateman et al. [18] calculated the recoilless fraction f for Méssbauer effect using
coherent states. Here, we will use this new approach to the derivation of recoilless
fraction f.

1.5.1
Coherent States of a Harmonic Oscillator

The Hamiltonian of a one-dimensional harmonic oscillator is
52

P15
%—2m+2mw X (1.37)

Instead of using the position and momentum operators % and p, we will intro-
duce an annihilation operator @ and a creation operator a*:

R mo [ i

- —Zh(anfmwp), (1.38)
N Y

@ =5 (x —mwp). (1.39)

Solving for % and p from the above definitions, we obtain

ho. .
%(a+ + a«), (140)

p= i\/mThw(fl+ —a). (1.41)

®
I



1.5 The Quantum Theory |17

Substituting into the Hamiltonian, it becomes quite simple
, ts 1
H =hwla"a+ E

and a*d is known as the number operator N, and its eigenstates |n) are also ei-
genstates of the Hamiltonian

H

1> = Eylnd = hw(a+a+%>|n> - hw(nJr%) n=012,... (142)
Nin) = a*a|n) = njn). (1.43)

This means that each eigenvalue of N is the number of energy quanta i in the
number state |n). Any excited state |n) can be generated by repeatedly applying
the creation operator on the ground state |0):

ny = ﬁ(aﬂ“m (1.44)

where all possible n values are included, and these states |n) form a complete
orthonormal set. We will introduce an important concept, the coherent state,
defined as the following linear combination of these states:

_ o121 o
oy =e Z e |n> (1.45)

where « may be any complex number, as is proved later. If we substitute (1.44)
into (1.45), a coherent state may also be expressed in terms of |0):

|y = D(2)[0), (1.46)

where D(a) is called the displacement operator

D(o) = exp(ad™ — a*a). (1.47)

Among all the coherent states ever developed, harmonic oscillator coherent states
were the earliest ones and are now the most widely applied. Interestingly, the co-
herent states represent those states in which the uncertainty relation takes the
minimum value (i.e., they describe situations that best resemble classical sys-
tems). The squares of standard deviations of position x and momentum p are

h
Ax? = (o|x? o) — (ofx|a)? = e’ (1.48)

hm
Ap* = (o] play — <a| plad? = o

: (1.49)
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The product of the standard deviations is the smallest possible value allowed by
the uncertainty principle

h
AxAp = —.
xAp =5

It is because of this property of satisfying the minimum uncertainty that these
quantum states are also known as pseudo-classical coherent states.
For any coherent state, we can show that

Gloy = afo), (1.50)
{alat = Cofa*. (1.51)

Since 4 is not a Hermitian operator, o is a complex eigenvalue. It is easily verified
that the |o) eigenstates are normalized, but not orthogonal. However, they con-
stitute an overcomplete set, represented by

H o> (o] d2a = 1 (1.52)

where I is the unitary operator. This is a very useful operator, because any other
operator, particularly the density operator g, may be expressed in the coherent
state basis as

5= | ol ¢ (1.53)

This is the p-representation of the density operator p. For oscillators at tempera-
ture T in thermal equilibrium [19]

1 2
p(2) =75 expl=lod "/ <) (1.54)
where
_ exp[—hw/kgT]
{n) = 1= exp[—hoo/ks T] (1.55)

and kg is Boltzmann’s constant. Therefore, using p(«) as a weight function, the
thermal average of any physical quantity can be evaluated in the coherent state
basis.
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1.5.2
Gamma Radiation from a Bound Nucleus

Suppose that an atom is not free but moving in the potential of a harmonic oscil-
lator. Although the motion of this atom may not be identical to that in a crystal,
this approximation can lead to the basic characteristics of the Méssbauer effect.

Let the initial state of the atom before irradiating a y-ray be the ground state |0)
of the harmonic oscillator. As can be seen in (1.42), this state is not an eigenstate
of the momentum operator p, and it is impossible to immediately write down
its final state through momentum conservation. However, the set of eigenstates
of the momentum operator constitute a complete orthonormal set |k’), and we
may expand |0) in this set as follows:

0> =" [K'><K'|0). (1.56)

When an energy transition occurs within a nucleus at t=0, a yray with
k = E,/ch is emitted in the x-direction. The momentum of the atom must change
from Kk’ to hi(k’ — k) in order to conserve momentum, and the final state of the
aton’s motion can be written as

If> = [k —ky<K'|0). (1.57)
k!

It is obvious that e~*# is a displacement operator of k, thus

efik32|k> — |k/ _ k> (158)
When this is substituted into (1.57), the final state is given by
|f> = e ™ |0>. (1.59)

Contrary to the case of the free atom, the final state (1.59) is not an eigenstate of
the Hamiltonian (1.37) and therefore does not have a well-defined energy. This
means that one cannot predict the energy of the y-ray in advance, but can only
provide a probability description. Let us again expand |f) in the complete set
|n) of eigenstates (1.44):

> =D Inx<nlf> =Y Inx<nle (0 (1.60)

where we have used Eq. (1.59). The probability that the atom is found in the state
|n) with energy (n + 1/2)hw is given by the square of the expansion coefficient in
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(1.60). Thus, the probability for the atom to remain in the ground state |0) after
the y-emission is none other than the recoilless fraction f of the Méssbauer
effect:

£ = 1<0le 02, (1.61)

To evaluate f, we express the operator e *** in terms of the annihilation operator

4 and the creation operator 4™ by using (1.40)

NIE
—itkx=o0a" —a*d o= —ik(=—— (1.62)
2Mw
where M is the mass of the nucleus. According to (1.47), the operator e~** hap-

pens to be a displacement operator D, and the final state |f is a coherent state

o
(n!)l/Z

e |0y = €08 D0y = |uy = e WY In. (1.63)

Applying this to (1.61) and taking account of the orthogonal property of the states
|n), we obtain

f= e’

Substituting the value for « (1.62) into this, we have

f = e W 2Mo), (1.64)
1 2 k2
As defined in (1.4), the recoil energy is Er = EMUZ = zpiM TR and we can ex-
press f in terms of Eg:
f =e /b (1.65)

which is consistent with (1.9).

On the other hand, using a special property of a harmonic oscillator that its av-
erage kinetic energy is one half of the total energy (for the ground state, total en-
ergy is 1fiw),

1 1/1 h
EMw2<x2>=§(Ehw), or <x2>:m
and substituting into (1.64), we obtain

f=e¥e (1.66)

which is exactly the same as (1.36).
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We know that the harmonic oscillator potential well has a parabolic shape. The
larger the w-value is, the narrower the potential well, and consequently the M6ss-
bauer nucleus is bound more tightly. Based on the above expressions for the re-
coilless fraction f, if w is increased such that hw > Eg, {x?) would be very small,
and the f-value could be appreciable.

Finally, it needs to be noted that the recoilless fraction f can also be expressed
in terms of the coherent states o). Since D*(2)D(«) = 1, we can also write for-
mula (1.61) as

f = 1K0le”™ D7 (2) D()[0)]* = [<ale™ ey . (1.67)

From the viewpoint of calculating the recoilless fraction f, both the number state
basis and the coherent state basis are identical; the latter, however, has an im-
mense advantage shown in the next section.

1.5.3
Méssbauer Effect in a Solid

We will now treat the actual situation in the Mdssbauer effect where the y-source
nucleus is bound in a solid. Owing to thermal motion, the Ith nucleus is dis-
placed from its equilibrium position I by a distance u(l), and therefore its instan-
taneous position is R; = I + u(l). After it emits a y-ray, the nucleus makes a tran-
sition from its initial state |i) to the final state |f). Because of this, the lattice
may have a corresponding transition from its initial phonon state [n;) to |ns).
The nuclear force causing this transition is the strong force, but its range is ex-
tremely short, well within the nucleus itself, and it would not perturb the bond-
ing and motion of the atoms in the solid. On the other hand, the bonding forces
between the atoms in the solid are relatively weak, and would have negligible ef-
fect on the transition process taking place inside the nucleus. Therefore, these
two processes can be considered independent of each other and the overall tran-
sition matrix element is the product of the matrix element of the phonon state
transition and that of the nuclear transition [18, 19]:

<nf\ exp(—ik - R))|n;i )< f|a(k)|i).

The nuclear transition <f|a(k)|i) is solely determined by the nuclear proper-
ties, regardless of its lattice position. Here, we are only interested in the matrix
element describing a phonon state transition from |n;) to |ns) due to the emis-
sion of a y-photon and a transfer of momentum #k from the nucleus to the lat-
tice. The probability of the phonon transition is proportional to

p(ng,n;) = [<nys| exp(—ik - Rl)|ni>|2. (1.68)

After summing p(ns,n;) over all possible final states including those in the pre-
sence and the absence of recoil, we find the normalization condition:
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> [<ng| exp(—ik - Ry)|nip)?
f

= Z {n| exp(ik - Ry)|ng>{ny¢| exp(—ik - Ry)|m;> = 1. (1.69)
f

The relative probability of y-emission without recoil is the recoilless fraction f
written as

f =" |<ns| exp(—ik - R)|ni)|*6(Ey — E;). (1.70)
f

At temperature T, the initial phonon states may follow a particular distribution
Pn.(T), and Eq. (1.70) is then multiplied by p,, (T) and summed over all initial
states n;. For the sake of simplicity, we assume that the equilibrium position of
the radioactive nucleus to be at the origin, thus R; = u(l), and

F=3"" pu(T)Kng| exp(—ik - u(l))|ni)|*6(Ef — Ei)
P T

= [my| exp(—ik - u(l))|n; Hr|* (1.71)

where {---)>r represents the thermal average.

In order to evaluate f in the coherent state basis, we start by expressing
the component of u(l) in the k-direction through the normal coordinates gs
(s=1,2,3,...,3N) as

1 3N
u(l) = —= Bi(1,5)gs, 1.72
= 7572 B (1.72)
with the normalization condition
3N
> Bu(ls)® =1. (1.73)
s=1
Each g, may be represented by the operators 4, and a;:

| B
4s = 20 (@, +aj), (1.74)

where w; is the sth modal angular frequency. For a crystal of 3N independent nor-
mal mode oscillators, we must use the product of 3N individual coherent states
{os}> = 11, |os) instead of the number states in (1.71), and

f=1&{a} e O {a} Hr . (1.75)
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The matrix elements may be written as follows:

Hastle ™ O}

' hoO\l2 o
= 1:[ (o) exp [zk (M) Bi(l,s) (a7 + as) | |os)- (1.76)
Since the operators @} and d; do not commute, but [a],ds] = —1, we apply
Glauber’s formula
Qi s _ o s o= (1/2)[a; ) (1.77)

to simplify (1.76). Letting k(h/2Mawy)? By(1,5) = p,, we have

e ips (Gl Hi) _ a—ipdl o—indso—(1/2)p? (1.78)

Substituting this into (1.76) and using properties of coherent states ((1.50) and
(1.51)), each factor in the product of (1.76) becomes

(o] expl—ip, (@] + )|jasy = (/20 e intai )

and the matrix element is
Hase 1D |{x}> = exp |:Zp5:| exp|: ZlZps Re(a) } (1.79)

The next step is to take a thermal average <---> over the probability of a par-
ticular distribution p(os) as described in (1.54), and we have

&opr= J<~ > p(zs) da

o A o ] e

Letting o; = & + in,

&Yy = exp HZ;&} exp [— Zps<ns>}

+0 1 1 ’ ,
X HLW exp {*@(CJr ip(nsy) ] d¢

+00
XUJW( : eXp{Yionz}d"

nney) 1/
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2 1
=exp| =D _pl{ <ned+
N

E Bi(l,s)|? hoos
—exp[_zkz| kF(st)‘ COth(Zk,ﬂ‘)]' (1.80)

The two integrals in the above calculations are Gaussian integrals: {n) is the
average phonon number at T defined in (1.55) and Eg = h*k?/(2M) corresponds
to the recoil energy of the free nucleus. Using (1.80), the recoilless fraction in
(1.75) is reduced to

Feexp [—ER 5 IBkéi:)\z Coth(zzf})] . (1.81)

This still contains a summation over different normal modes, but it may be re-
placed by a frequency integral over density of states g(w). For a cubic crystal, it is
only necessary to consider one displacement component, and the corresponding
coefficient |By(1,s)|* is equal to 1/(3N) (see Eq. (8.63)). Therefore, we have the
final result for f:

- on]-5: [ con(22) o) 1)

where g(w) is normalized to unity.

For an Einstein lattice and for T — 0, Eq. (1.81) becomes (1.65). Further evalu-
ation of f in a general case requires the knowledge of g(w). A more realistic
model is the Debye model whose density of states is

3w?
glo)=—7F (o <op), (1.83)

wp

and in this case

3ER TN (/T xdx
fzexP{szHD {1“(%) Jo (ex—l)” (184

where x = hiw/kg T and Op = hwp /kp is the Debye temperature. This is an ap-
proximate formula of the recoilless fraction f that is often used in practice.

Here again we have demonstrated the equivalency of phonon number states
|n) and the coherent states |, when they are used in calculating f. In principle,
other basis functions, if possible, may also be used, provided they satisfy the re-
quirement that the energy state of the crystal is not changed after the y-ray emis-
sion. However, one can see from Sections 1.5.2 and 1.5.3 that the derivation using
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coherent states is not only simpler (Gaussian integrals are all one needs to use),
but also more rigorous (because no approximation was made for the derivation of
(1.81)). In addition, coherent states are those quantum states that are most simi-
lar to classical situations, and their applications in the derivation of f indicates
that there is a classical correspondence in the Méssbauer effect. It is then not sur-
prising that in Section 1.4 the classical radiation theory was able to give a recoil-
less fraction f that is identical to Eq. (1.66).

1.5.4
Average Energy Transferred

In the source, a large number of excited Méssbauer nuclei (e.g., > Fe) are im-
bedded in a crystal lattice. During the y-emission, the average energy transferred
to the lattice is exactly equal to the recoil energy for a free nucleus Eg [20, 21].
This was first proved by Lipkin [11], and it is known as Lipkin’s sum rule, which
we discuss again in Chapter 7.

Suppose that the interactions between the atoms in the lattice are dependent
only on their positions, but not on their velocities. The only term in the lattice
Hamiltonian that does not commute with exp(ik - u(l)) is the kinetic energy oper-
ator p?/(2M) of the emitting nucleus. Accordingly,

52

[, exp(ik - u(l))] = {;—Mﬁxp(ik u(l))}

, W’k hk-p
= exp(ik - u(l)) < oM +M>. (1.85)

Utilizing

eiik-u(l)peiik-u(l) _ i’ + ﬁk,
we can calculate the double commutator

k2
[[#,exp(ik - u(l))],exp(—ik - u(l))] = — i —2ER. (1.86)

On the other hand, this commutator can also be written as
([, exp(ik - u(l))], exp(—ik - u(l))]
=24 — exp(ik - u(l)) A exp(—ik - u(l))

— exp(—ik - u(l)) A exp(ik - u(l)). (1.87)

If we calculate the expectation value of this commutator when the system is at its
initial state |n;) with energy E;, we get
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(mi [, exp(ik - u(l))], exp(—ik - u(l))][n:)>

=2F; - Z <nil exp(ik - u(l))|ng ><np| A exp(—ik - u(l))|n;>
f

- Z {ni| exp(—ik - u(l)|ng ><np| A exp(ik - u(l))|n;)
f

=2F — 2 Er[<ng| exp(—ik - u(l))|n)|? (1.88)
7

where a complete set of final states |ns) was inserted. Taking into account Egs.
(1.68), (1.69), (1.86), and (1.88), we arrive at Lipkin’s sum rule

> (B — E)p(ns, mi) = Ex. (1.89)
f

When i = f, Egr = 0, p(n;, n;) is none other than the recoilless fraction f, i.e., the
portion of the y-ray emission process that has no energy exchange with the lattice.
The rest of the emission process will cause recoil, whose recoil energy will have to
be sufficiently large so that the average energy transferred to the lattice is Eg.

In order to obtain a relatively large f value, the Méssbauer nucleus should be
tightly bound in a localized potential well to form a localized state, and the Debye
temperature 0p should be as high as possible. One of the best examples is the
>7Fe impurities in diamond [22]. Diamond has the highest known Debye temper-
ature 0p = 2230 K, and f(295 K) = 0.94 + 0.06 [23], which is probably the high-
est recoilless fraction at room temperature ever detected thus far.
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2
Hyperfine Interactions

For a free atom in a gas, the interactions between the nucleus and the electro-
magnetic fields produced by the surrounding electrons are called the hyperfine
interactions. In a solid, we need to also include the electromagnetic fields pro-
duced by the neighboring atoms or ions. Hyperfine interactions have several dif-
ferent types, and they are usually quite weak. A relatively prominent type was first
observed in the atomic spectra where extremely small splittings of spectral lines
are produced by the coupling between nuclear spin and the total angular momen-
tum of a valence electron [1]. Many years after the initial observation, the only
means for studying hyperfine interactions was free atom optical spectroscopy,
which had its historic importance in determining ground state nuclear spins, nu-
clear magnetic dipole moments, and nuclear quadrupole moments.

The advent of nuclear magnetic resonance (NMR) in condensed matter [2]
marked the beginning of using bound atoms to study hyperfine interactions.
NMR is a method of observing a resonance spectrum, which is very different
from an optical spectrum. Soon after the initial discovery of NMR, many other
nuclear methods for studying hyperfine interactions were discovered or devel-
oped, such as nuclear quadrupole resonance (NQR) [3], nuclear spin orientation
(NO) [4], perturbed angular correlation (PAC) [5], perturbed angular distribution
(PAD) [6], and muon spin resonance (uSR) [7]. Gradually, there emerged a new
research field — hyperfine interactions — linking together atomic physics, nuclear
physics, and solid-state physics. But the fastest development in this field was after
the discovery of the Mossbauer effect, because the energy resolution of the M6ss-
bauer effect is much better than that of the above methods, and even higher than
that of NMR by an order of magnitude.

Méossbauer spectroscopy is simply the science of using the Mossbauer effect to
observe hyperfine interactions for studying the microscopic environment sur-
rounding a nucleus. Therefore, we need to have a detailed description of hyper-
fine interactions. In the Mossbauer effect, there are mainly the following three
types of hyperfine interactions:

1. Electric monopole interaction, which causes isomer shift J, a
shift of the entire resonance spectrum.

2. Electric quadrupole interaction, which causes quadrupole
splittings of the spectral lines.

29



30

2 Hyperfine Interactions

3. Magnetic dipole interaction, which causes Zeeman splittings
of the spectral lines — magnetic hyperfine splittings.

2.1
Electric Monopole Interaction

2.1.1
A General Description

Both the isomer shift and the quadrupole splitting are due to electric hyperfine
interactions. We give a general description of the origins of these electric hyper-
fine interactions.

The nucleus may not be considered as a point charge, since it has a certain fi-
nite volume and a charge distribution within it. We choose the center of the nu-
cleus as the origin of the coordinate system, i.e., r’ = 0. Let p,(r’) be the nuclear
charge density at 1/, and V(r’) be the electric potential at r’ due to all the electric
charge outside of the nucleus. Their Coulomb interaction energy is

= [ () V() 2.1)

where the integral is over the entire volume of the nucleus. Because the nuclear
diameter is small compared with the distance of the outside electric charge pro-
ducing V(r’), we can approximate the potential by its Taylor expansion near the
origin:

3 3
V)= V04 3(5) 5+ 3 () 22)
i=1

Substituting Eq. (2.2) into Eq. (2.1),

E - ()J df+z( ,)J r')x! de’

l

9 Z <6x/ax ) Jpn(r,)xi,xj/ dfl +oe (23)

1]1

In this expansion, the first term is the interaction energy with the potential if the
nucleus is treated as a point charge. This energy is a constant, and therefore will
have no effect on what we are studying. The second term is zero, because the nu-
cleus has no electric dipole moment. The third term (denoted by Ej3) is not zero,
and its physical meaning may be understood more easily if we rewrite it in terms
of a sum of two contributions:
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(S SPNS
[3remar + 53 vy (2.4)

ij=1

where

0; = J(3xi’xj' — 6y pu(r') de’ (25)

is known as the nuclear quadrupole moment tensor, and

2’V
Vi = (ﬁ,x-’é‘x.’) (26)
"% /o

is the electric field gradient (EFG) tensor evaluated at the nucleus.

In Eq. (2.4), the first contribution is the monopole interaction energy, which is
due to the finite volume of the nucleus. The second contribution is the quadru-
pole interaction energy because of the existence of a quadrupole moment in
some of the nuclear states.

We now discuss the specific features of each of these electric hyperfine interac-
tions.

2.1.2
The Isomer Shift

To simplify the calculations, we may choose a new coordinate system x, y, z as
the EFG tensor principal axis system where the tensor Vj; is diagonal and its trace
is given by Poisson’s equation

Vxx + Vyy + sz = *47[/)9(0) (27)
where p.(0) = —¢|y(0)|* is the s electron charge density at the origin. If we use

OE to represent the first term in Eq. (2.4), and carry out the sum using (2.7), it
becomes

o8 =22y (0) 20 (28)
where
Jrzpn(r) de Jrzpn(r) de
<ty = = (2.9)
J (1) dt =

is the mean-square radius of the nuclear charge distribution.
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R e SVA

transmission (%)

Fig. 2.1 (a) Shift of nuclear energy levels due to electric monopole
interaction. (b) A typical Mossbauer spectrum in the presence of an
isomer shift.

From Eq. (2.8), we see that, because of the finite volume of the nucleus, the en-
ergy level will change by an amount of 6E with respect to a point charge nucleus.
This happens regardless whether the nucleus is at its ground state or at an ex-
cited state. However, the nuclear radius at an excited state may be different from
that at the ground state, and the corresponding energy changes JE® and JE€ are
therefore different. Furthermore, in the radiation source and in the absorber, the
same Mossbauer isotope may be in different chemical environments, resulting in
lw<(0)* # [w,(0)|%. So in a general case, 6Ef # SEf and 0ES # JES, as shown in
Fig. 2.1(a). The energy of the emitted y-ray by a source is

E, = Fo + 0ES — OE$ (2.10)
and resonant absorption can occur in an absorber only if the y-ray energy is
E, = Eo +0E° — oEE. (2.11)

Figure 2.1(b) shows a Mdssbauer spectrum, where the peak position has a shift of
0 with respect to the zero velocity, i.e., the resonance occurs at v # 0. This ¢ is
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known as the isomer shift, which can be calculated by taking the difference be-
tween Egs. (2.11) and (2.10):

27n

0=E - E= ?ZS'(Z)ffz(ll//a(O)l2 — [ps () (e = <rPdy)

- 2?”zs'(z)eAp(O)Aq%. (2.12)

Here, A(r®) = (r*), — (r®), is the difference between the mean squares of the
charge radii of the excited state and the ground state, one of the parameters of a
nucleus. Also, Ap(0) = e(|w,(0)]* — |w,(0)|?) is the difference between the s elec-
tron charge densities at the nuclei in the absorber and the source. S'(2) is called
the relativistic factor, and is introduced due to relativistic effects in heavy ele-
ments. This factor takes different values for different nuclei, e.g., S'(z) = 1.32
for 5’Fe but S'(z) = 19.4 for ¥’ Np.

To calculate J one step further, it is often assumed that a nucleus is a uniformly
charged sphere when it is either in the ground state (with radius Rg) or in the
excited state (with radius R.). Therefore, we have

ze ze

g8 — d € _
Pn =7 an Pn =7 37
§nRe

413
3ﬂRg

Using Eq. (2.9), we can evaluate both {r*. and (r*),, and Eq. (2.12) becomes

5= %zs’(z)eR2 <A—;) Ap(0) = aAp(0) (2.13)

where AR = R. — Rg, R = (Rc + Rg)/2. It can be seen that ¢ is directly propor-
tional to Ap(0) with a proportionality constant « (known as the calibration con-
stant). Any of the above quantities ({r?», AR/R, or «) is a parameter characteriz-
ing the nucleus. Equation (2.12) clearly shows that the isomer shift is essentially a
measure of the difference in the s electron charge densities at the nuclei in the
source and in the absorber. If the same source is used for a series of absorbers,
then p¢(0) is a constant (p,(0) = ¢) and the isomer shift is a linear function of
the s electron density at the nuclear site in the absorber:

5= a(p(0) — c). (2.14)

The sign of « may be positive or negative, and it happens to be negative for >’ Fe.
A positive isomer shift indicates that the electron density at the nucleus in the
absorber is less than that in the source.

It should be mentioned that J is usually very small. For example, in Fig. 2.1(Db),
0 =0.3 mm s~! which corresponds to an energy shift of ~107® eV. Only in the
Méssbauer effect can this minute amount of energy change be detected.
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2.1.3
Calibration of Isomer Shift

As sources of a particular isotope (e.g., >’ Co) imbedded into different host ma-
trices (e.g., Rh, Pd) are used to obtain Mdssbauer spectra, the same absorber will
give different J values, because the sources have different |y (0)| values. In order
to be able to compare and discuss results from experiments using sources with
different hosts, the isomer shift of an absorber is customarily given relative to
that of a reference absorber. If the isomer shift of the sample is §; and that of
the reference absorber is d,.¢, we have, according to Eq. (2.14),

o1 = a[p(0) = ps(0)],

5ref = “[pref(o) - /)S(O)].

Therefore, the isomer shift of the absorber relative to the reference absorber is
0 =01 = Oret = #[p(0) — prer (0)]. (2.15)

It is clear that this is independent of p,(0). In other words, even when different
sources are used (e.g., >’Co/Rh or *’Co/Pd), isomer shifts obtained in this
way should all be the same for a particular absorber, 6 = d;(Rh) — ,f(Rh) =
01(Pd) — O, (Pd) = ... For example, the J; values of sodium nitroprusside
Na,Fe(CN)sNO-2H,0 obtained from experiments using *’Co/Rh and *’Co/Pd
are —0.366 and —0.437 mm s~!, respectively. However, relative to a-Fe, isomer
shifts of sodium nitroprusside in both cases are —0.260 mm s™'. The values of
et Of several reference absorbers for >’ Fe are indicated in Fig. 2.2 [8]. When re-
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Fig. 2.2 Isomer shift scale for ’Fe (14.4 keV) reference materials
(relative to a-Fe) at T = 300 K.
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porting isomer shifts, one must clearly indicate which type of the reference ab-
sorber was used.

There are two major factors that determine the electron density at the nuclear
site. The first is due to the inner s electrons of the Méssbauer atom, and the sec-
ond is due to valence electrons in the outer shells and valence electrons of li-
gands. The first contribution is not sensitive to changes in the chemical environ-
ment, and therefore it is not uncommon to consider it as a constant. The second
contribution exerts its effect through the following two mechanisms:

1. A direct interaction, which involves a change in s electrons of
the valence shell, thus influencing p(0).

2. An indirect interaction, which involves a change in the
shielding of the s electrons through the increase or decrease
of p, d, and f valence electrons. For example, p(0) at an Fe3*
(3d°) nucleus is larger than that at an Fe?* (3d®) nucleus. For
metallic iron (3d%4s?), p(0) is even larger. Since o < 0, we
have §(Fe?") > §(Fe*"), both of which are positive with
respect to metallic iron.

In addition, indirect interactions also arise from covalent bonds affecting elec-
tronic distribution, from electronegative ligands influencing o-electrons, and
from d, backbonding which reduces the shielding effect.

Chemical bonds are formed by valence electrons in the outer shell and valence
electrons of ligands. These electrons contribute directly or indirectly to Ap(0) in
Eq. (2.12). The isomer shift J is therefore closely related to the properties of the
electronic structure and the chemical bonds.

2.1.4
Isomer Shift and Electronic Structure

Since the observation of ¢ in Fe,O3 in 1960 [9], the isomer shift has been in-
tensely and extensively investigated in many areas of chemistry and in materials
science. Using isomer shift for studying the electronic structure in solids has
been considered an extremely useful experimental method [10].

The isomer shift J can provide important information on the character of a
chemical bond, as well as on oxidation state, spin state, electronegativity of a li-
gand, coordination number, etc. So far, large amounts of experimental isomer
shift data have been accumulated, but the interpretation of these results is not
an easy task. The main difficulty is that there is still lacking a unified model for
the chemical bonds that could satisfactorily explain the isomer shift data. For
practical applications, the critical problem is to obtain an accurate value for the
calibration constant « (alternatively, AR/R or {r?») in Eq. (2.13). But it cannot be
determined without a good understanding of the chemical environment; there-
fore it is difficult to measure « and p(0) separately. Although isomer shift has
been widely utilized in research, many conclusions are still qualitative. In addi-
tion, since isomer shift is a relative quantity, measurements from a series of sam-
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Table 2.1 Measured isomer shift § in '2'Sb compounds (relative to
InSb) and calculated s electron density p(0). Here ag is the Bohr radius.

5 (mms™) 2(0) (a5°)
AISb 0.78(5) 81.31
GaSb 0.22(3) 83.43
InSb 0.00 84.37
Snsb —1.98(7) 90.12
sb ~3.10(2) 91.42

ples of similar properties are usually required, and then through a comparative
study one can extract information on the electronic structure. The following are
several specific examples.

1. Chemical bond character. In this example, five covalent compounds of Sb
were studied (Table 2.1), and the J values were obtained from their 2!Sb Méss-
bauer spectra. We will discuss how ¢ is related to the nature of the local chemical
bond [11].

The first three compounds (AlSb, GaSb, and InSb) form a “vertical sequence”
of Sb-based binary compounds in the zincblende crystal structure with lattice
constants 6.14, 6.12, and 6.48 A, respectively. Arranged in the same vertical col-
umn of the periodic table with one p electron in their outer shell, Al, Ga, and In
would have rather similar physical and chemical properties. Nevertheless their ef-
fects on the s electron densities at the Sb nuclei of above three compounds are
different. Analysis showed that ¢ is related to the number of p electrons around
Sb, and so the J value of AlSD is the largest because its bond ionicity is definitely
higher than that of GaSb or InSb. It was not certain whether or not GaSb is more
ionic than InSb, but it was speculated that the difference in ¢ is caused by the
change in the crystal volume. Because InSb has a larger lattice constant than
GaSbh, the Sb atoms in InSb would be less compressed than in GaSb, and the
looser p electron clouds around the Sb nucleus would reduce the shielding of
the s electrons.

The last three samples (InSb, SnSb, and Sb) form a “horizontal sequence”
from which ¢ was observed to vary significantly, reflecting the changes in the lat-
tice structure and in the chemical bond character from sp* hybridization to
(s*)p.

2. Ligand electronegativity. The difference between the electronegativities of the
atom and the surrounding ligands is obviously related to the isomer shift .

1. In ferrous halides, J has a linear relationship with the
electronegativity of the halogen atoms [12], as shown in Fig.
2.3. This is direct evidence for the participation of 4s
electrons in the formation of the chemical bonds. The Fe
electronic configuration is 3d%4s*, where x can be regarded
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Fig. 2.3 Isomer shift (relative to a-Fe) versus Pauling electronegativity for ferrous halides.

as a measure of the ionicity of the compound (ionicity
increases as x decreases). For nuclei of the 4d, 5d, and 5f
elements, such a linear relation also exists.

2. In intermetallic compounds of iron, the relationship between
¢ and electronegativity may be expressed in the following
empirical formula:

(ngs — M)

Fe
Mws

0= 1.08(®p — Pge) —2.51 (2.16)

where @ and ny are the electronegativity and electron
density on the Wigner—Seitz cell surface. A relationship
similar to Eq. (2.16) can be found in various amorphous Fe-
based alloys (A;_,Fe,) [13]. A linear relation between ¢ and
electronegativity also exists in some compounds of '?Sn,
1218h, and 181Ta [14].

3. Volume effect. A different lattice constant can cause a change in p(0), result-
ing in a volume effect. External pressure may be used to change the lattice con-
stant of a compound; Fig. 2.4 shows the results from one such investigation [15].
Isomer shift J is related to the unit cell volume V by

=20 (2.17)

The linear relation in Fig. 2.4 gives a slope of d(¢)/d(In V) = —1.42(3) mm s~
In another investigation, an empirical formula for the molecular iodine I, was
obtained [16], relating ¢ to the number of holes h;, in the 5p orbital:

37



38

2 Hyperfine Interactions
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Fig. 2.4 Isomer shift of iodine versus natural logarithm of unit cell volume.

d=150h, +A (mms") (2.18)

where A is a constant. Under atmospheric pressure, h, = 1, and when Eq. (2.18)
is substituted into (2.17),

d(hy)
Ty = 09 (2.19)

Here, dh, is the number of p electrons that moved into the conduction band.
When the pressure is 16 GPa, dh, = 0.38, and I, becomes a conductor with an
electronic configuration of 5s25p*%2. Still one more example worth mentioning
is the volume effect in iron borides as well as o-Fe and y-Fe, and their isomer
shifts can be described by the following relation [17]:

dpe — 2.64

0 (mm s™) = 0.02917nz + T

NEe (2.20)

where ng and ng. are the numbers of boron and iron nearest neighbors surround-
ing the Mossbauer nucleus and dg. is the distance (in A) between the adjacent Fe
atoms.

4. Evaluation of the calibration constant o. As mentioned above, it is important to
determine the calibration constant o accurately. The basic procedure includes cal-
culating the values of p(0) for several series of compounds and measuring the
corresponding ¢ values from their Mdssbauer spectra. A least-squares fitting ac-
cording to Eq. (2.14) will allow the determination of «. The difficult part is that
Ap(0) could be about four to six orders of magnitude smaller than p(0) [18, 19],
requiring precise measurement of p(0) from each of the compounds in the series.
In some cases, Ap(0) may be as large as a few percent. As an example, the isomer
shifts of a series of Sb compounds are plotted in Fig. 2.5 against the calculated
p(0) values [11], and from the approximate linear relation we obtain
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Fig. 2.5 Relationship between measured isomer shifts of Sb
compounds and calculated p(0) values.

% (Sb) = (—0.368 + 0.035)a; mm s (2.21)
or

AR

<= (—10.4 + 1.0) x 107*. (2.22)

There are many results for the calibration constant « of °”Fe in the literature [19-
25], the most recent result being «(*’Fe) = (—0.22 + 0.01)a? [26], which agrees
with the previous results quite well.

Isomer shift is one of the hyperfine interaction parameters that can only be
measured through the Mdssbauer effect, and the information on the electronic
structure provided by isomer shift is not available from any other methodologies.
For example, Sb atoms can be doped into a semiconductor substitutionally and
used to monitor the electron density around the atoms that are replaced by Sb.
Information about the nature of local chemical bonds is uniquely provided by
the isomer shift of 2!Sb [11]. Another example is that § measurements can
uniquely determine how electron density varies as alloys are formed [18].

2.2
Electric Quadrupole Interaction

2.2.1
Electric Quadrupole Splitting

In the case of an axially symmetric nucleus, we can choose its symmetry axis (i.e.,
its quantization axis) as the principal z’ axis of the nuclear quadrupole moment
tensor defined in Eq. (2.5). In such a coordinate system, only the diagonal ele-
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ments Q11, Q2, and Q33 are nonzero. We also have Q;; = Q3 because of the
axial symmetry and Q11 + Q2; + Q33 = 0 because the tensor is traceless. There-
fore, only one independent quantity Q is needed to describe the nuclear quadru-
pole moment for this case:

BQ = Q33 (223)

or

Q=1 [z - i) o (2.24)

If a nucleus has a prolate spheroid shape (longer along the z’ axis, and shorter
along the x’ or y’ axis), then Q > 0; if it has a oblate shape, then Q < 0. When a
nucleus spin I =0 or 1/2, the nucleus has spherical symmetry, Q = 0. Only
when I > 1/2 will there be electric quadrupole interaction.

To study quadrupole interactions in a solid, the principal axis system of the
EFG tensor, as defined in Section 2.1.2, must be chosen such that |V,| >
|Vix| = |Vyy|. Since EFG at the nucleus can only arise from electrons other than
s electrons and from ligand charges, both of which have zero electron density at
the nucleus, Eq. (2.7) for this case becomes the Laplace equation:

Vie + Viy + Vo = 0. (2.25)

As a result, only two independent parameters are needed to describe EFG. These
two parameters are usually taken as V,, and an asymmetry parameter #, defined
by # = (Viex — Vyy)/ Vzz. Tt is evident that 0 < < 1.

The Hamiltonian for quadrupole interaction is

1 3
A = 5}2 ViQj (2.26)

which can be eventually expressed as

€ szz

= -

o o 1 . o
{313 -r +5n(Ii + IE)] (2.27)
where I, = I, + ify and I_ =1, — ify are the raising and lowering operators, re-
spectively. The eigenvalues of the Hamiltonian are

eQV,,

\1/2
- HGioD 3m? — I(I + 1)] (1 + ’%> (2.28)

Eq

where m=1,1—1,... — ||
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The 14.4-keV energy level of °” Fe has a nuclear spin of I = 3/2, and this energy
level splits into two sublevels (m = +3/2 and m = +1/2) due to quadrupole inter-
action. Because the quantum number m in Eq. (2.28) appears only as its square,
each sublevel is doubly degenerate. The energy eigenvalues of the two sublevels
and the corresponding eigenvectors are

3 Vs 2\1/2
E0+EQ (ii> = EO+6Q ( %)

‘+7> = cos {|+ >+s1n§—f>
, (2.29)

‘—7> = cos {|— >+s1n§ >

\1/2
EO _,’_ EQ (il) — EO CQVZZ ( _~_’77)
2 3

e

(2.30)

—sin ¢

o
)

e 3

cos ¢ = [14+V3(3+7°) ]2/ V2,
sin ¢ = [1 - V303 +7%) ")/ V2.

where

The ground state of ’Fe has I =1/2, so Q = 0 and the energy level does not
split, as shown in Fig. 2.6(a).

When *’Fe is in a crystal of non-axial symmetry (7 # 0), #4 and I, do not com-
mute, and each of the four new eigenvectors is a linear combination of the origi-
nal eigenvectors as in Eqs. (2.29) and (2.30). However, since 0 <7 < 1, sin® { is
practically very small, and can be neglected as a first-order approximation. For
example, if # = 0.5, sin? { = 0.02 while cos® { = 0.98, and therefore the four
new states are essentially identical to the original four pure states |+3/2) and
£1/2).

The energy difference between the two sublevels in (2.29) and (2.30) is

2\1/2
AEq = eQZVZZ (1 +’%) (231)

where V. is in Vem™2, Q is in cm?, and therefore AE is in eV.

Now that the >’ Fe excited state is split into two sublevels, the singlet Méssbauer
spectrum becomes a doublet as shown in Fig. 2.6(b). The separation AEq between
the two resonance lines is known as quadrupole splitting, which is another im-
portant parameter in Mdssbauer spectroscopy.
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Fig. 2.6 (a) Quadrupole interaction splits the °’Fe energy levels. (b) A
quadrupole splitting Mdssbauer spectrum.

Electric quadrupole interaction is essentially an electric interaction, which can
be understood by considering the following simplified physical picture. Suppose
that two point charges are located at a and —a on the z-axis as shown in Fig.
2.7(a), and we want to calculate the potential V(zo) at a point z, far from the
point charges (zo > a). It is easy to show that

2¢  2ea?
\%4 =|—+— 2.32
o = (Z+%5) 232)
Zp

as+e +e +e
- —€
0t +2e e
—agte te +e
(a) (b) ()

Fig. 2.7 (a) Two positive point charges. (b) The equivalent charge
distribution. (c) The quadrupole component.
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This expression is the sum of the potential due to a point charge of 2e at the ori-
gin and the potential due to a quadrupole, as shown in Fig. 2.7(b), which is equiv-
alent to Fig. 2.7(a). When Eq. (2.24) is applied to calculate the quadrupole mo-
ment of the point charges shown in Fig. 2.7(c), the result is Q = 4a?. Since the
potential due to a quadrupole is

=3,
2z

the second term in Eq. (2.32) is indeed a contribution from the quadrupole
shown in Fig. 2.7. We also see that in this case Q = 4a? > 0. If the charges were
arranged on the x-axis instead (the oblate situation), a similar calculation would
show Q = —2a% < 0.

In order to understand the quadrupole interaction, we can treat the quadrupole
in Fig. 2.7(c) as two back-to-back dipoles along the z-axis [27]. A dipole in an elec-
tric field would experience a torque, having the tendency of rotating itself until
parallel to the external electric field. However, the net torque on the quadrupole
in a uniform electric field would be zero, resulting in no such rotational tendency.
If the electric field is not uniform and has a gradient (EFG), the situation is en-
tirely different. One dipole tends to move towards a direction where the electric
field is more positive, and the other tends to move towards the opposite direction.
A net torque is then applied on the quadrupole and it will rotate to a position
where the system’s energy is the lowest. This is the quadrupole interaction. If
the EFG varies in space from one point to the next, there will also be a net force
on the quadrupole, causing translational motion. But for a nucleus, this force is
extremely small and may be neglected.

Let us consider the case when V,, > 0, which means that there are excess neg-
ative charges in the xy-plane around the nucleus. In addition, for the excited state
of ’Fe, Q > 0. The nuclear quadrupole would therefore tend to lie near the xy-
plane to minimize the interaction energy. Consequently, the m = +1/2 states
would have lower energy than the m = +3/2 states. These can also be easily veri-
fied by calculating the energy eigenvalues in Eqs. (2.29) and (2.30). The energy
levels are shown in Fig. 2.6(a).

222
The Electric Field Gradient (EFG)

2.2.2.1 Sources of EFG
The electric charges distributed around a Méssbauer nucleus can contribute to the
EFG tensor only when they have a symmetry lower than cubic. In general, there
are two fundamental sources for EFG:
1. The charges on the neighboring ions or ligands surrounding
the Mossbauer atom, known as the lattice/ligand contribution
( sz)Lat-
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4

X

Fig. 2.8 Position of a point charge in the spherical coordinate system.

2. The charges in partially filled valence orbitals of the
Mossbauer atom, known as the valence electron contribution

( VZZ)Val'

In a solid, every lattice point around the Méssbauer atom may be regarded as
a point charge g;. The position of each lattice point may be described in the spher-
ical coordinate system as shown in Fig. 2.8. An axially symmetric EFG can then
be calculated by

322 —r? 3cos?0;—1
(Vaz) o = Z %‘% = Z qiTL
i i i i
and

3 sin? 0; cos 2¢4;
Niat = Vo E i = 2R 3 L, (2.33)
zz i

T

However, what the Méssbauer nucleus feels is not just this EFG, because the core
electrons that are polarized and distorted by (V,,),,, also contribute to the EFG
tensor. The net contribution from the lattice at the nucleus is (1 — ., )(Vzz)
where y_, is called the Sternheimer antishielding factor. The inner core electron
antishielding may cause an appreciable enhancement of EFG, so y,, is negative
and usually quite large. Some typical values are y, = —9.14 for ’Fe3* and
v, = —105 for “1pr3+,

In cases where the crystal structure is complicated and the principal axes of the
EFG cannot be found a priori, one is forced to choose an arbitrary coordinate sys-
tem for calculating its elements Vj; and then diagonalize the tensor matrix.

For the contribution from the valence electrons which may be considered as or-
biting around the Mdssbauer nucleus at high speeds, V., is evaluated by its ex-
pectation value with —e(3 cos? § — 1) /r> for each valence electron and adding all
the contributions together,



2.2 Electric Quadrupole Interaction

(Vz)ya = —€ ) _ <limi|3 cos® 0 — 1limi»{r°>. (2.34)

For calculating the asymmetry parameter, we evaluate V,, and V,, in the similar
way,

(Viplva = —€ Y _ limi[3 sin® 0sin® ¢ — 1{Limi>{r ),
(Vix)yal = —ez imy3 sin? 0 cos? ¢ — 1\l,vm,v><ri’3>.

The core electrons shield the effect of the valence electrons, only allowing the
nucleus to see a smaller EFG than (V,,),, as calculated above. This effect is ac-
counted for by multiplying (V.,)y, by a quantity (1 — R), which is less than 1.
Here R is called the Sternheimer shielding factor, which is positive and rather
small. For ’Fe?*, R ~ 0.32.

To summarize, the z component of total EFG at the nucleus is then written as

Ver = (1 - R)(VZZ)Val +(1- Voo)(VZZ)Lat (2.35)

where both (V.; )y, and (V.,),,, are inversely proportional to r3. Since the valence
electrons are closer to the nucleus than the lattice charges, the former is much
larger than the latter. For *’Fe*", we have a half-filled 3d®, and (V..)y, = 0 be-
cause of symmetry. For >’Fe?* | the sixth electron in 3d° is the main source pro-
ducing a significant contribution to the EFG. The quadrupole splitting for Fe?*
(AEq ~3.0 mm s™') has been found to be much larger than that for Fe’*
(AEq ~ 0.5 mm s~ 1) [28]. For the low spin states of > Fe?" and > Fe3", the former
has a smaller AEq (less than 0.8 mm s™!) while the latter has a larger AEq (0.7 to
1.7 mm s71) [29], again reflecting the one electron difference in their d orbitals.

When studying (V.;)y,, we usually consider only the p and d electrons, be-
cause the f electrons rarely participate in chemical bonding. Table 2.2 lists the
contributions to (V.;)y, from various d and p orbitals.

2.2.2.2 Temperature Effect on EFG

(Vzz)yar can be further divided into two contributions: (V,;)r due to the aspher-
ical population of the d-orbital electrons in the valence orbital caused by a crystal
field (see Fig. 2.9) and (V,;)yo due to anisotropic molecular bonding [30]. The
(Vzz)cr term dominates when there is little overlapping of orbitals, while the
(Vzz)mo term dominates for ions having symmetric electron ground states (e.g.,
Fe3* high spin or Fe(II) low spin). We will focus on (V,,)cp- Because of a crystal
field, the Fe °D orbital may be split into five orbitals in which the lower energy
orbitals will be populated according to the Boltzmann distribution. Hence
(Vzz)cr is strongly temperature dependent. On the other hand, (V.;)y, and
(Vzz)1. are hardly affected by temperature. Figure 2.9 shows how Fe?" high
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Table 2.2 Contributions to (V,;)y, from various d and p orbitals.

Orbital Magnetic quantum 1 v
number, m E( z)val
4, 3
d xy> -2 +7<V >

2
¥ -1 —a
1322 —r%) 0 7;<r’3>
2, 3
|xz) +1 —7<r >
2 2 4 -3
e — y*> +2 e AU
2, 3
p ly> -1 +<D
4 _
2> 0 —sa
2,
E +1 +=77)

| 3222 ) S
E,

[xz)

[yz)

T?s —<
i ENG 5 [a

free ion

Fig. 2.9 3D orbitals of high-spin Fe?* are split by crystal fields of various symmetries.

regular
octahedron

axial field

(compression)

rhombic field

spin °D orbitals will split in crystal fields, and Fig. 2.10 shows how electrons pop-
ulate the Ty, and E, orbitals. For Fe?* or Fe’* ions in a regular octahedron,
(Vzz)cg = 0. But the octahedral symmetry is usually distorted (such as Jahn-
Teller distortion). When the octahedron is compressed (or elongated) in the z-
direction, the two-fold degeneracy of E; will be removed and the three-fold degen-
eracy of Ty, will be partially lifted. When additional compression or elongation is
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Fig. 2.10 Electronic configurations of (a) high-spin states and (b) low-spin states of Fe ions.

present in the direction perpendicular to the triangular faces, degeneracy will be
completely removed. At low temperatures, the sixth electron in Fe?" occupies the
|xy) state, but as T increases, it has a higher probability of occupying a high-
energy state, and the symmetry of electron population will increase, causing
AEq to decline. However, in Fe*" and Fe(IIl) compounds, removing the orbital
degeneracy will not affect AEq, except for very high temperatures.

Ingalls [31] first studied in detail the temperature dependence of AEq in Fe’"
compounds. Suppose (sz)éF is the contribution to EFG from an electron in or-
bital i, then the total EFG is the thermal average of contributions from all orbitals:

Z( sz)(i:F exp[—A;/ (ks T)]

| ZGXP[—AL'/ (ks T)] (2.36)

(sz)cF =

where A; is the energy of the ith orbital with respect to the ground state.
If we assume A; & A; ~ A in Fig. 2.9 and neglect spin—orbital coupling, then

e —A/(ksT)

(Veder = 2> 1

T 2e VT (2.37)
For Fe?* in tetrahedral compounds, the E; orbital has a lower energy than T,
and (V,;)cy has a similar expression

4 A/ (ks T)

(Vader = 2> 11

1+ e T (2.38)

An experimental example of how AEq varies with temperature is given in Fig.

2.11 [32], where we can also see that AEq of the Fe" site is essentially indepen-

dent of temperature.
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Fig. 2.11 Temperature dependence of AEq for Fe?" and Fe** in chromite spinels.

2.2.3
Intensities of the Spectral Lines

Based on the calculations by Karyagin [33], Zory [34], and Alimuddin et al. [35],
the relative intensities of the spectral lines of the quadrupole doublet in a single
crystal can be written as

c
13/2:7(4«1—}-(7]2/3)—0—3&52H—1+nsin20cosz¢),
V14 (#?/3) (2.39)
c
Iijjp=——-(4/14 (#?/3) — 3 cos? 0+ 1 — y sin? 0 cos 2
2= VT 02 . »

where ¢ is a constant, and 0 and ¢ are the polar and azimuthal angles of the inci-
dent y-ray in the EFG principal axis system.

In the case where the EFG is axially symmetric, # = 0, and Eq. (2.39) gives the
following ratio of the intensities of the two absorption lines:

Ly 1+cos? 0

Ly 3—cos?2 6’

(2.40)

For a polycrytalline sample or a powder sample, the crystal axes are randomly
oriented. Spatial average of the two intensities in Eq. (2.39) gives
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1 .
T EJIW sin d6d¢

Ch2y iJII/Z sin 0d6dg
47

=1, (2.41)

which means that the two lines have the same intensity.

224
The Sign of EFG

Since Q > 0 for >Fe, the sign of the quadrupole splitting is determined by the
sign of the EFG component V,,. From Fig. 2.6, we see that whether V,, is positive
or negative determines whether the energy level of [+3/2) is higher or lower than
the energy level of |+1/2).
1. Consider first a single crystal. If = 0, the two spectral lines
will in general have different intensities. For example,
I3,/ 112 is 3.0 when 0 = 0, and it is 0.6 when 0 = 7/2.
Therefore, a single measured spectrum can unambiguously
determine the sign of V,, provided the crystal axes are
known. If 5 # 0, this method fails. Signs of V,, in single
crystals have also been determined by using polarized y-rays
[36].
2. For polycrystalline or powder samples, an external magnetic
field is required for the determination of the sign of V..
Collins [37, 38] extensively investigated this problem, and the
results are illustrated in Fig. 2.12. The external magnetic field
further splits the energy levels. In cases where these
splittings are smaller than the quadrupole splittings,

& < AEq, (2.42)

the admixture between |+3/2) and |+1/2) can be neglected
and we may obtain approximate analytical solutions. In the
presence of an applied weak external magnetic field B, the
original doublet in the spectrum transforms into a quartet
and a doublet. The quartet appears to be a triplet due to two
lines not being completely resolved. If the doublet is on the
positive velocity side, then V,, > 0; if the quartet is on the
positive velocity side, V,, < 0. This method may also be
applied to single-crystal samples. Figure 2.13 shows a
concrete example of determining the sign of V., in a powder
sample using this method [39].
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Fig. 2.12 %7Fe nuclear energy level splittings and absorption spectra
due to y-ray transitions under an axially symmetric EFG (n = 0) and a
weak external magnetic field.
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Fig. 2.13 Mossbauer spectrum of FeCO3 (V,, > 0) with an external magnetic field Bexy = 3.5 T.

It should be noted that if the external magnetic field is too large or AEq is too
small, condition (2.42) may not be satisfied. Consequently, after the |[+3/2) and
|+1/2) levels split, they also mix with one another, making it very difficult to de-
termine the sign of V,, [40].
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Magnetic Dipole Interaction

The interaction between the nuclear magnetic dipole moment x and the magnetic
field B at the nucleus produced by the surrounding electrons or ions is called the
magnetic hyperfine interaction. This interaction lifts the degeneracy of the energy
level of a nucleus of spin I and splits it into (21 4 1) sublevels. This type of split-
ting in the nuclear ground state had been observed in nuclear magnetic reso-
nance and paramagnetic resonance. In optical spectroscopy, the Zeeman effect
in atoms was observed a long time ago. But the nuclear Zeeman effect, a similar
effect in principle, was impossible to observe before the discovery of the Mdss-
bauer effect, because the splittings between the nuclear sublevels are too small
to resolve. Using the Méssbauer effect, Hanna [41, 42] first observed the magnet-
ic hyperfine interaction in the nucleus, i.e., the nuclear Zeeman effect.
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Fig. 2.14 (a) Magnetic splittings of the ' Fe nuclear energy levels. (b) A
Mdossbauer spectrum of FeF; at 4.2 K showing a sextet due to magnetic
splittings [44].
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2.3.1
Magnetic Splitting

The Hamiltonian of the interaction between the nuclear magnetic dipole moment
# and the magnetic field B is

My =—u*B=—guyI-B (2.43)
and the corresponding sublevel energy is
Ey = —gmBuy, (2.44)

where g is the nuclear g-factor, m = I, I — 1,..., —I, and yuy is the nuclear magne-
ton.

The >’ Fe first excited state with spin 3/2 splits into four sublevels equally sepa-
rated by ge Buy, while the ground state with spin 1/2 splits into two sublevels, as
shown in Fig. 2.14(a). The gy-factor of the ground state, in general, is different
from g. of the excited state; therefore the separation between the sublevels in the
ground state is different from that in the excited state. Since the y transition in
>’Fe is of the magnetic dipole type (M1), it can take place provided the selection
rule Am = +1 or 0 is obeyed. Thus the six allowed transitions give six absorption
lines as shown in Fig 2.14(b). The transitions with Am = +2 are forbidden.

The position of each line in the characteristic sextet can be easily calculated
according to Eq. (2.44). As can be seen from Fig. 2.14(b), the successive separa-
tions between adjacent lines are in the ratio of 1:1:x:1:1, where for >’Fe x =
(82 — Igel)/Ige] = 3/4, gg = 0.1808, and g. = —0.1031.

2.3.2
Relative Line Intensities

The excited substates |I.m. ), the ground substates |I;m,», and the quantum state
of the incident photon [y[*) are related by the Clebsch—Gordan (C-G) coefhi-
cients:

emey = > gmgLm|Iemed|Igmg|x]". (2.45)

m=me—mg
The relative absorption probability W for each of the transitions is
W(0) = [<IgmgLm|Ieme )" (04)|". (2.46)

The angular dependence of the probability is contained in y[", and for M1-type
radiation [43]
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Table 2.3 Angular distribution of the relative intensities for the six
allowed transitions in *'Fe. C = {IgmgLm|l.m.) are the C-G

coefficients.

Subspectral Transition Am c? w(0) w(0) w(90°) w
line

1(6) +1-+3 +1 1 3(1+cos?0)  3/2 3/4 1
2(5) +1-4] 0 2/3  sin?0 0 1 2/3
3(4) +1—F1 71 /3 1(1+cos?0)  1)2 1/4 1/3

3
it = \/;(fz sin 0 cos ¢ + x cos 0) + i(—z sin 0 sin ¢ + y cos 0)
(2.47)
3
= i\/; sin 6(—x sin ¢ + y cos ¢)

where x, y, z are the unit vectors, and 6, ¢ are the polar and azimuthal angles
describing the direction of the incident y-ray with respect to the magnetic field di-
rection. The ¢ dependence disappears in W (0) because in this case |;/*|* depends
only on 0. The function yJ* is normalized as follows:

2n rm
L L lx"|* sin 0d0dg = 4n. (2.48)

The angular distribution of relative intensities for the six allowed transitions is
listed in Table 2.3. For a thin absorber, the Mdssbauer fraction f is isotropic, and
when the angle between B and the y-ray is 6 = 0, the relative intensities of the
six subspectral lines are in the ratio of 3:0:1:1:0:3. When 6 = 90°, the ratio is
3:4:1:1:4:3. If the magnetic field vectors at the nuclei are randomly oriented,
then an integral over 0 gives an intensity ratio of 3:2:1:1:2:3.

233
Effective Magnetic Field

A convenient way to describe the magnetic hyperfine interaction is using the ef-
fective magnetic field, which is the sum of the local magnetic field By, at the
Mossbauer nucleus by the lattice and the hyperfine magnetic field By by the
Mossbauer ator’s own electrons:

Beg = Bioc + Buy. (2.49)

The local field by the lattice may be due to the material's magnetic ordering, or
may be applied externally, or both. It may have the following contributions:
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4n
Bioc = Bext — DM + ?M (250)

where Bey is an external field, M is magnetization, DM represents the demagnet-
ization field, and 47M/3 represents the Lorentz field. In general, the local field is
much smaller than the hyperfine field.

The hyperfine field By has three contributions:

By = B, + B, + Bp (2.51)

where B is called Fermi contact field produced by the s electron spin density at
the nucleus, and may be expressed as

Bo= =2, S g (O~ Iy (O)) (252)

where ug is the Bohr magneton and |1//ns1(0)\2 and |l//nsl(0)‘2 represent the ns
spin-up and spin-down electron densities at the nucleus, respectively. Actually,
such a difference in the spin densities is caused by unpaired d electrons. To un-
derstand this mechanism, let us consider *’Fe as an example. The basic reason is
that there exists an exchange interaction which would slightly reduce the repul-
sion between electrons having the same spin quantum number ms. The unpaired
d electrons all have the same spin (say, spin-up, or ms = +1/2), and they tend to
repel the spin-down s electrons more than the spin-up electrons, therefore polar-
izing the spins in the otherwise perfectly balanced s shells. The s electrons having
relatively large densities at the nucleus are polarized into two groups that interact
differentially with the nucleus. This net interaction is equivalent to a magnetic
field, called the Fermi contact field, in the opposite direction to the field generated
by the spins in the d orbitals. In iron compounds, Bs is the largest among the
three terms in Eq. (2.51). In high-spin Fe3* (3d°), the number of unpaired d elec-
trons is the largest, resulting in a maximum spin polarization of the s electrons,
and the Fermi contact field becomes as high as 50 to 60 T, while high-spin
Fe?*(3d®) has four unpaired d electrons, so B is lower and varies in the range
20t0 50 T.

By is called the orbital field, due to the orbital motions of the unpaired elec-
trons around the nucleus. This motion constitutes a circular current, which in
turn produces a magnetic field at the nucleus:

BL = — 20 up(r XL (253)

where L, is the z-component of the orbital angular momentum. For Fe3* (3d°) in
a solid, orbital angular momentum is quenched, L, ~ 0. When the spin—orbit
coupling mixes the non-degenerate states with the excited state, thus introducing
an angular momentum in the ground state, By has a finite value. Because the ex-
cited state mixing may cause the g-factor of the ion to deviate from the spin-only
value of 2, By has been expressed as [45]
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K _
B == i {r (g = 2)<5). (2:54)

For Fe3*, g ~ 2, and consequently By ~ 0. For high-spin Fe?*, B; ~ 20 T and op-
posite to Bs. The By, values for rare earth compounds are relatively large.

The third term in Eq. (2.51) is the dipole field at the nucleus, produced by the
total spin magnetic moment of the valence electrons. It can be written as

Bp = %ﬂ3<r—3><3 cos? 0 — 15¢S,>. (2.55)

Obviously, Bp, is zero for a charge distribution with cubic symmetry. For Fe group
ions, Bp is small even in non-cubic systems, ranging only from 0 to 8 T. However,
in rare earth compounds where the orbital momentum is not quenched, Bp can
be quite large.

A necessary condition for a magnetic hyperfine field is that the atom has a
magnetic moment due to unpaired electrons. There are two main characteristics
associated with this field: it is very strong (Bys & —33 T in o-Fe) and it is local
(not over the entire lattice). There are several ways to measure the sign of the
magnetic hyperfine field. One is to apply an external magnetic field of 2 to 5 T
and detect whether B.g increases or decreases. When it increases, By is positive;
otherwise it is negative.

So far we have limited ourselves to isolated magnetic hyperfine interactions.
Now we will discuss Beg in ferromagnetic, antiferromagnetic, and paramagnetic
materials. In ferromagnetic materials, the coupling between spins of different
atoms is very strong (spontaneous magnetization), forming areas known as do-
mains. Within each domain, the magnetic moments of all atoms are parallel to
one another. Even at room temperature, the nucleus feels the interaction of a sta-
ble B, although the domains have random orientations. In paramagnetic com-
pounds, the coupling between atomic moments is weak, and thermal excitation
causes random fluctuations of the spins. As a result, the hyperfine field at the nu-
cleus also fluctuates rapidly, so that the nucleus may not catch the instantaneous
values of Beg, but the average value B.g = 0. The fluctuation process has a char-
acteristic time called relaxation time zg. It is possible to observe hyperfine field
only when the following condition is met, tg > 7 (7L is the Larmor precession
period of the nucleus). For many paramagnetic compounds, 7 can be increased
by lowering both the temperature and the density of the Méssbauer nuclei in the
material, thus allowing the observation of the magnetic hyperfine splitting.

The Mossbauer effect has found extensive applications in magnetism and in re-
search of magnetic materials. Without requiring an applied external magnetic
field, Mossbauer spectroscopy can be used to study the temperature dependence
of spontaneous magnetization, the magnitude and orientation of hyperfine fields,
and the magnetic structure of new materials. It can also be used to measure the
ordering temperatures (Tc, Ty) and spin reorientation temperature, to detect
phase transitions and determine phase compositions, to study magnetic lattice
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anisotropy and relaxation phenomena, etc. From 1960 when Hanna first observed
a magnetic hyperfine spectrum to 1980 when Nd,Fe;4B was investigated until the
recent discovery of new types of rare earth permanent magnets R,Fe;;N, and
R,Feq7Cy, the field of magnetism would not be this successful without M&ss-
bauer spectroscopy. There is a tremendous amount of literature on this subject,
and there are many excellent books and review articles [46—50].

Magnetism arises mainly from the atomic magnetic moments. Transition
metals (3d, 4d, 5d), the lanthanides (4f), and the actinides (5f) all have unfilled
valence electrons and have atomic magnetic moments. Fortunately, many iso-
topes of these elements are Méssbauer nuclei, e.g., >’ Fe, ®INi, Ru, 1%*Ir, *'Sm,
B1Ey, 155Gd, °Tb, ¢! Dy, ®Ho, °Er, 1%Tm, 7°Yb, and ¥’ Np. Obviously, >’ Fe is
the best one because Fe is the most important element in magnetism. Not sur-
prisingly, most of the Méssbauer effect studies in magnetism involve > Fe.

24
Combined Quadrupole and Magnetic Interactions

It is often the case when both a magnetic field and an electric field gradient are
present. The shape of a Méssbauer spectrum depends on not only the relative
strengths of these two interactions but also the relative orientations of the EFG
principal axis, the magnetic field, and the incident y-ray. In the principal axis sys-
tem of the EFG (see Fig. 2.15), the total Hamiltonian as the sum of Eqgs. (2.27)
and (2.43) is

Hom = AqQ + Hwm
eQV,,

~ N 1 . .
=== 312 _ 24 _p(I2+ 17
41(21—1)[ e Dagnl+ 1)

- gyNB{ B(L +1_)cos¢ +%(f+ —I.)sin 4 sin 0+ I, cos 0}. (2.56)

Fig. 2.15 Relative orientations of B, V,,, and the y-ray direction.
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It is quite easy to obtain the eigenvalues and eigenstates of this Hamiltonian
for I = 1/2, but somewhat more complicated for I > 1/2. In the early days, such
eigenvalue problems were solved essentially by numerical methods [51-56].
Various computer programs developed for this purpose are widely used. Ana-
lytical solutions for the eigenvalues were only available for the case where the
quadrupole interaction is much weaker than the magnetic interaction, i.e.,
V..Q /2 < gepn B, or i and 0 are both zero.

An important step was made when analytical solutions for eigenvalues of Ham-
iltonian (2.56) were obtained. Higgstrom [57] first presented an analytical solu-
tion of the secular equation. By an improved method for spherical angular aver-
ages [58], his results allow a faster and more precise calculation of measured
spectra. Later, Blaes et al. [59] gave an analytical expression for the line intensities
by the superoperator technique. Even though their expressions are complicated,
they allow angular averages to be performed analytically, not numerically as
done in Higgstrém's procedure.

Although the numerical method is always necessary and the analytical method
still has some imperfections, the idea has fundamental significance. Therefore,
we choose Higgstrom's method for discussing the combined hyperfine interac-
tions.

For *”Fe (or ''Sn), the ground state and the excited state have I = 1/2 and 3/2,
respectively. The matrix elements of the Hamiltonian (2.56) are

1, 1 > cos  cos fe'?
—,m'|Hom|z,m ) = —¢ ) 2.57
<2 1l 2 & [Sin fe’?  —cos 6 (2:57)
3. 3 /
7:m |JfQM|E,m =¢eH', (2.58)
where
1
&g = Egl/ZﬂNBv
1
e = Eg3/2ﬂNB7
_ o IR _
R—3cos —+/3sinfe ™ = 0
V3
. ; . _ nR
—+/3 sin fe'? —R —cos 0 2 sin fe =™ -—
H - V3
nR L T
= —2 sin fe™? —R+cos® —+/3sin fe
V3
0 1R —V3sin e’ R+3cosd
L V3 |

(2.59)
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and

R— eQV;, .
4ee

The above matrix is not diagonal in the angular momentum states |Im}) except
when 7 and 6 are both zero. As can be seen from (2.29) and (2.30), the electric
quadrupole interaction will mix states differing in m-value by +2 units. Similarly,
the magnetic dipole interaction will mix states differing in m-value by +1 unit.
Accordingly, for I = 3/2 the four eigenvectors can then be represented by linear

combinations of the states |Im):
3 3 3 1
574‘5 +bj1)2 57"‘5

3 .
E7J> = hjﬁz/z
3 01 3 3
E’_E> +bj_,_3/2 > (2.60)

+b; =, —=
)j,—1/2 2° 2
where the coefficients bj ,, are normalized to unity:

ST bwml? =1, for j=1,2,3,4
M

Analogously, for I =1/2

1, 1
E’l = ai1/2

1
E’+§> +ai_1)2

where the coefficients a;, m, are also normalized to unity:

! 1> (2.61)

272

> laim|P =1, fori=1,2.
Mg

Let 4 be the unknown eigenvalue of the matrix H'. The secular determinant
equation can be then expressed as

Wt pit+gi+r=0 (2.62)
where
p=—10—2R*(1+7%/3),
g = —8R(3 cos® 0 — 1 4 7 sin® 0 cos 24),
(2.63)
r =9+ 2R%(6 sin? 6 + 52 cos 26 + 4y sin? 6 cos 2¢ — 5)
+RY(1+7%/3).
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The real roots of such an equation of the fourth order for g > 0 are [60]

M=V =V -V
2=V — VRtV

(2.64)
3=tV - Vs
=Vt Vrt v
where
Vi :é\/pz +12r cosfp/3 + (k— 1)2n/3] —g k=1,2,3, (2.65)

2p® + 279 — 72pr
cos g = 2 E278 =727
2(p? +12r)
For q < 0, all 4; given above should be multiplied by —1.

The energy eigenvalues of the Hamiltonian with I = 3/2 are then given as a
product

E(3/2,)) = & x 4. (2.66)
Substituting these values into the eigenvector equation, the coefficients b; ,,, can
be calculated (see Appendix B).

The transition energies, Et, are the differences between the eigenvalues of the
excited and ground states

Er(3/2,4;1/2,i) = E(3/2, ) — E(1/2,1). (2.67)

When y-rays in a direction (f, o) are absorbed, the relative transition probabilities
are then [51]

3 1 +1 2
where
+1/2
Cm = Z a;gb(ngrm)(Igmglm\Ie(mg +m)y, form=-1,0,+1. (2.69)
my=—1/2

Using the values of appropriate Clebsch—Gordan coefficients, the coefficients in
(2.69) are reduced to
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* 1 *
611 = 0] p1yab 1372 /380 512b5 2172,
(2.70)

2 * *
Co = \/%(“i, v12bj 1172 87 _10bj 1))
Inserting the vector spherical harmonics y{* from (2.47) into (2.68), one obtains

3 .01, 3 .
W</)’70<;5,J;5,l)=Z[(|C+1\2+|C—1\2)(1+C052/3)+\Co|22 sin?

— V2 sin 2y Re(cy1cge'™)
+ 2 sin? f Re(c 1c,e%)

— V2 sin 28 Re(coc™0')]. (2.71)

This formula should be used when the sample under investigation is a single
crystal. For a powder sample, Eq. (2.71) must be averaged over f and o, giving
the following simple result:

3 .1,
W(3530) = leal + ol + e (272)

In order to understand the physical meanings of |c4|* and |co|?, let us consider
the pure magnetic hyperfine interaction just discussed above. In this case,
V.. = 0 (or R = 0). The coordinate system is chosen so that § = 0, and the matrix
(2.59) will be diagonal. This means the absence of mixture between substates. In-
deed, since R =0, we have p = —10, r =9, and q = 0. Solving Eq. (2.58) gives
four eigenvalues: +3e. and +e. which are the same as Eq. (2.44). For the
Am = +1 transitions (corresponding to line 6 in Fig. 2.14), we have by 3/, = 1,
by1/2 =bs 172 =b4 _3/2=0, a1,12 =1, and a; 1/, = 0. Using Eq. (2.70), we
can calculate ¢,1 = 1, ¢_; = ¢g = 0, where ¢, is none other than the C-G coeffi-
cient for this transition whose relative transition probability is W1 = |c,1|* = 1.
Analogously for the Am = 0 and Am = —1 transitions, the relative probabilities
are Wy = |c0|2 =2/3 and W_; = |c_1|2 = 1/3, respectively. The values of W are
exactly the same as earlier results listed in Table 2.3.

A subroutine program has been written which calculates the transition ener-
gies Er, and the corresponding intensities, using the above analytical formulas.
This subroutine has been incorporated into a least-square fitting program to pro-
vide a practical way of analyzing Méssbauer spectra in the presence of combined
interactions. Here we will show the results from a hexagonal FeGe powder as an
example [57]. The parameters used are B, AEq, 1, 6, ¢, together with ordinary pa-
rameters such as background, area, linewidth, etc. In Table 2.4 are given experi-
mental results of >’Fe Méssbauer spectra at four temperatures, and one of the
spectra is presented in Fig. 2.16.
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Table 2.4 Results from the fitting of 3’ Fe Mdssbauer spectra of FeGe
hexagonal compound at four temperatures.

T (K) B (T) AEg (mms™) o (mms™) 7 0(°) 4 (°)
10 15.7(1) —0.56(3) 0.39(1) 0.3(1) 82(2) 70(25)
295 11.8(1) —0.60(2) 0.28(1) 0.3(1) 89(1) 70(10)
360 8.7(1) —0.58(1) 0.23(1) 0.4(1) 89(1) 80(15)
390 5.2(1) —0.55(2) 0.22(1) 0.3(1) 90(1) 70(10)

-4 3 2 - 0 +] 2 43 +4
Velocity (mm/s)

Fig. 2.16 Fitted 5’Fe M&ssbauer spectrum of hexagonal FeGe at room temperature.

It should be noted that the exact expressions, such as (2.63), (2.68), (2.69), etc.,
are indeed very tedious for practical purposes. It is often the case where either the
magnetic hyperfine interaction or electric quadrupole interaction is dominant
while the other occurs as a perturbation, i.e., R > 1 or R « 1. We now briefly con-
sider these two extreme cases.

When the magnetic interaction is dominant, R « 1, expanding /; into a Taylor
series at R = 0 (see Appendix B) can give the approximate energy eigenvalues for
the four sublevels as follows:

(2.73)
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where

k1 == (2 cos? 0 — 1+ 5 sin? 0 cos 24).

N =

This means that each of four sublevels in Fig. 2.14(a) shifts an amount of +Rk;
or —Rk; further.

If the electric quadrupole interaction is dominant as shown in Fig. 2.12, R » 1,
to a first-order approximation we may neglect the four elements in matrix (2.59)
that mix the +3/2 states with 4+1/2 states. Suppose also # = 0, then only the in-
ner 2 X 2 matrix is required to diagonalize. A similar calculation gives the approx-
imate eigenvalues and eigenstates for the excited state with:

3 V.
E(f 2) = —(ngzz—se\/4—3cosz 0,

E2 = —sin 31 + cos 3.1

27) T g "2°72
3 \%

E(f 3):—8%%+se\/4—3cos20,

3 31 301

—,3)=cosyg -, —=

2 2 27 2

7’E> +Sln7’]
3 eQV. 3
E(§,1): Q‘4ZZ—3£ec050, ’E’1>:

(2.74)

3.3
272

3 eQV, 3 3 3
E(E74>: Q’4224>38e(:0507 ’E,4>: i,+i>
where
(4 — 3 cos? 0)Y? — cos 0
tanzn: 73 .
(4 — 3 cos? 0)"? + cos 0
25

Polarization of y-Radiation

From the viewpoint of electromagnetic waves, polarized y-rays behave basically
the same as polarized visible light, except that y-rays have more of a particle char-
acter. In optics, polarization is described by the vibration of the electric field vec-
tor E. Suppose an electromagnetic wave travels in the z-direction, and all E vectors
are in one particular plane, then this wave has a plane polarization or linearly
polarization. If the E vectors at different locations form a perfect helix around
the z-axis, then the wave is circularly polarized, with either a left-handed or a
right-handed helicity. For a particle, polarization is described by its spin. The po-
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larization of a y-ray can be defined by its helicity h, which is the projection of the
photon’s angular momentum along the z-axis. Therefore, it can have two values,
h = 11, corresponding to right- and left-circularly polarized y-rays.

When h = 41, we use a polarization vector e, and the state |[+1) to describe
the right-circularly polarized y-ray. Similarly, when h = —1, we use e_ and |—1)
to describe the left-circularly polarized y-ray. The two vectors e, and e_ form an
orthogonal basis for circular polarization. Two other vectors e, and e, can also be
taken as an orthogonal basis for linear polarization and ey can be written in
terms of e, and ey,

e = i%(ex + ie)) (2.75)
and
1y = 1%0@ T ile,)). (2.76)

The y-rays as well as light are electromagnetic waves of very high frequencies;
however, the above definition of helicity for right- and left-circularly polarized
y-rays is opposite to that in optics where h = +1 and —1 correspond to left- and
right-circularly polarized light. As is known in optical spectroscopy, an external
magnetic field By makes the emitted light linearly #- or s-polarized, depending
on whether E // By or E L B,. These conventions are also followed in Mdssbauer
spectroscopy, but it is more often to use the polarization plane or the polarization
vector to describe linear polarization. For instance, the polarization plane of the
p-rays emitted from the Am = +1 transitions is perpendicular to that of the
y-rays emitted from the Am = 0 transitions. The polarization vector of the former
is parallel to By, while that of the latter is perpendicular to By.

Mossbauer experiments with polarized resonance radiation yield a considerable
amount of information not otherwise easily available. In particular, it can be used
to determine the signs of both the quadrupole coupling (eQV,,) [36] and the
magnetic hyperfine field B.g [61], and to determine the magnetic structure [62,
63]. It is also this method that allows one to observe the resonant y-ray Faraday
effect [64] and to decompose poorly resolved spectra [65]. Investigation of polar-
ization effects in resonant p-ray diffraction, interference, and refraction leads to
development of the y-ray optics theory [66].

In this section, we will first describe the methods for producing multi-line and
single-line polarized sources, followed by a detailed analysis of Méssbauer spectra
measured with these two kinds of y-ray radiations.

2.5.1
Polarized Méssbauer Sources

The methods to produce polarized Méssbauer y-rays from radioactive sources are
almost invariably based on hyperfine interactions that split nuclear energy levels
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into sublevels. The y-rays emitted from these excited sublevels are all or partially
polarized. One has to use the hyperfine fields because external magnetic fields in
excess of 33 T are not easily obtainable today, and it is extremely difficult to pro-
duce an external EFG that would result in discernible AEq in the spectrum.

1. Multi-line sources. The effective fields Beg at all of the >’ Co nuclei are aligned
by a weak external magnetic field applied to a °’Co/a-Fe source. The y-rays emit-
ted in a direction perpendicular to the magnetic field (s = 90°) will give a spec-
trum of six lines, all linearly polarized. The Am = 41 transitions have a =-
polarization and the Am = 0 transitions have a o-polarization; the polarization
plane of the former being perpendicular to that of the latter. If we look at the
y-rays emitted in the direction of the applied magnetic field (6, = 0°), then the
system has an axial symmetry. Angular momentum along the magnetic field di-
rection should be conserved, and thus those spectral lines due to the Am =0
transitions will disappear. Consequently, the spectrum has only four lines, among
which two are left-circularly polarized and two are right-circularly polarized. In an
arbitrary observation direction (0° < 05 < 90°), the emitted y-rays are elliptically
polarized.

2. Single-line sources. Using a magnetized filter to produce monochromatic po-
larized y-rays is the most promising approach. The filter is placed between an un-
polarized single line source and the absorber, and is moving at a constant Dop-
pler velocity with respect to the source such that y-rays with one polarization are
resonantly absorbed and the remaining y-rays with the other polarization are al-
lowed to pass and reach the sample absorber. Thus, the filter magnetized by an
external magnetic field serves as a polarizer. The first successful construction of
such a source was reported in 1969 [67]. However, the required additional velocity
transducer makes the apparatus quite complicated. Several source-polarizer sys-
tems in which relative motion is not required have since been found. This means
the resonance absorption in the polarizer occurs at zero Doppler velocity. An
example of such a system used for producing linear polarization is a 3’ Co/CoO
source with an Fe-Rh—Ni polarizer [68]. The > Fe nucleus in the CoO matrix
has a very large isomer shift so that its y-rays can be in resonance with the fourth
line of the sextet of the Fe—~Rh—Ni polarizer. The polarizer is glued to the source
and both are mounted on the standard Méssbauer transducer. In general, the ra-
diation transmitted through the polarizing filter contains the complementary or
orthogonal polarization to that absorbed by the filter. When an external magnetic
field applied to this polarizer is perpendicular to the y-ray direction, a beam of
monochromatic radiation of 80% linear polarization is obtained. Another system
used for producing circular polarized radiation has a *’Co/Cr source and an
Fe—Si polarizer, which seems to be a better combination [69]. Such a source is
shown schematically in Fig. 2.17. It is found that the mismatch between the third
absorption line of *’Fe, g5Si1 15 and the emission line of > Co/Cr does not exceed
0.01 mm s~!. This system has many advantages. For example, Fe in Cr matrix
has a relatively narrow single line, so Cr is used as a standard matrix; in Fe—Si,
the separation between the absorption line and the nearest line with a different
polarization is large. The polarizer of thickness 34 mg cm~2 is magnetized by an
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Fig. 2.17 Layout of the circularly polarized source.

applied longitudinal magnetic field of about 1 T. Using this system, monochro-
matic circularly polarized y-rays with a (80 + 2)% polarization was obtained.

In addition, one can construct a polarized y-ray source by using quadrupole
interaction. In a case where the principal axis of the EFG is perpendicular to
the direction of observation, the py-rays from the +3/2 — +1/2 transitions
(Am = £1) are linearly polarized, and the y-rays from the +1/2 — +1/2 transi-
tions (Am = +1,0) are only partially linearly polarized.

In all these methods, a polarized source is obtained at the expense of the radia-
tion intensity. Today, Méssbauer sources from synchrotron radiation (SR) are be-
coming more accessible, which usually have high intensity and high degree of
polarization.

252
Absorption of Polarized y-Rays

Now we focus our attention on a comparison of >Fe absorption spectra taken
using a multi-line polarized source with those using a single-line polarized
source. In each case, the absorber is magnetized. In Fig. 2.18, the y-ray is travel-
ing in the z-direction, and By and B, represent the magnetic fields applied to the

absorber

source
Fig. 2.18 Relative arrangement of the source and the
absorber in external magnetic fields B and B,,
respectively.
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source (or the polarizer) and absorber, respectively. We will designate the emis-
sion spectral lines as A, B, C, D, E, and F, and the absorption spectral lines as a,
B, 7,9, &, and n (Fig. 2.19) in addition to the number notation in Fig. 2.14(a).

1. Circularly polarized y-rays. In Fig. 2.18, if 0, = 0, = 0, the source (>’ Co/a-Fe)
and the absorber (a-Fe) are in collinear longitudinal magnetic fields. This multi-
line source emits only four spectral lines corresponding to the Am = +1 transi-
tions. In the absorption process, angular momentum conservation in the mag-
netic field direction is also required; therefore, the helicity of the y-ray (h = +1 or
—1) will have to match the angular momentum change of the transition in the
absorber. When the source is driven with the appropriate Doppler velocities, the
total number of absorption spectral lines observed is not 16 (4 x 4), but 8 because
of the constraints of angular momentum conservation. The positions and inten-
sities of the 8 lines depend on the ratio B,/Bs as indicated in a nomograph at the
bottom of Fig. 2.20 (see also Table 2.5). The spectrum in the upper portion of Fig.
2.20 is observed when B, = B, [61]. Let us analyze the origin of the spectral line
on the right. When the source velocity corresponds to an energy (|¢'e| + [¢/]),
where ¢c and ¢’y are defined in Fig. 2.19, emission line A has the same energy
and helicity as the absorption line J, and resonance absorption takes place. In
the meantime, C is absorbed by #. Both these absorptions, A; + C,, occur at the
same velocity. Similarly, the rest of the six absorptions superimpose to give two
spectral lines, one in the center and one on the left, with an intensity ratio of
10:3. We can see from the nomograph that, when B,/B; = 0, there are four ex-
pected lines because of the absence of nuclear level splitting in the absorber.
When B, = — B, six absorption lines are expected.

If the single line source shown in Fig. 2.17 is used, the spectra become simpler.
Four spectra taken from o-Fe and HoFe; absorbers are illustrated in Fig. 2.21,
each of which consists of two lines despite that the fields Bs (acting only on the
polarizer) and B, are parallel (6; = 6, = 0) or antiparallel (6; = 0, 0, = 180°) [69].

Based on these spectra, we can discuss an important problem, namely to deter-
mine the sign of hyperfine magnetic field Bys. As we know, the sign of Byy is
reflected in the sense of the circularly polarized hyperfine transition y-ray (i.e.,
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Fig. 2.20 Top: a Mdssbauer spectrum using a 3’ Co/a-Fe source and an
o-Fe absorber, both equally magnetized by an external longitudinal
magnetic field of 5.2 T. Bottom: a nomogram showing the intensities of
the spectral lines and their positions as functions of the ratio B, /Bs
(see Table 2.5) [70].

y-ray helicity) along the field direction. In other words, if the helicity of emission
or absorption y-ray is found, the sign of Bys in a source or an absorber can be
unambiguously determined. The helicity of the emitted y-ray can be analyzed by
a longitudinally magnetized absorber whose By direction is known. When the
fields Bs and B, are parallel, only lines 1 and 4 have large intensities. Traces of
other lines come from incomplete polarization and incomplete alignment of the
moments in the absorber. Since By in o-Fe is negative, lines 1 and 4 have the
helicity h = +1, thus the emitted y-rays must also have h = +1. Consequently,
the sign of By¢ in Fe—Si polarizer is determined to be negative. After reversing
the direction of B, (0, = 180°), lines 3 and 6, as expected, become dominant.
Similarly, the sign of By in the ferrimagnetic HoFe, has been determined to be
positive as evidently shown in Fig. 2.21. As far as unambiguously determining
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Table 2.5 Relative intensities in Mdssbauer spectra using

polarized sources and thin absorbers, either of which may
be a magnetized ferromagnet with the Mdssbauer nuclei in

unique sites with an axially symmetric crystal field [70].

Circularly polarized y-ray source (6; = 0°)

0, = 0°, Ag indeterminate

0, = 180°, A¢ indeterminate

o y o n o y 0 n

A 9 0 3 0 A 0 3 0 9
C 0 1 0 3 c 3 0 1 0
D 3 0 1 0 D 0 1 0 3
F 0 3 0 9 F 9 0 3 0
linearly polarized y-ray source (6s = 90°)
0, and A¢ variable

o B e 7,0
A F 9(1 — sin? 0, 12 sin? 6, sin® A¢ 3(1 —sin? 0,

sin? Ag) sin? Ag)
B, E 12(1 — sin? 0, 16 sin? 6, cos? A¢ 4(1 — sin? 0,

cos? Ag) cos? Ag)
C, D 3(1 — sin? 0, 4 sin? 0, sin? A¢ (1—sin® 0,

sin? Ag) sin? Ag)

0, = 90°, Ap = 0° 0, = 90°, A = 90° 0, = 0°, A ind.

awn  Be 7,0 an  Be 7,0 awn  Be 7,0
A F 9 0 3 0 12 0 9 0 3
B, E 0 16 0 12 0 4 12 0 4
C,D 3 0 1 0 4 0 3 0 1

>

the sign of By is concerned, a partially circularly polarized y-radiation may be
sufficient, provided the spectrum changes appreciably when the applied B, (or
B;) is reversed [71].

2. Linearly polarized y-rays. When 0s; = 90°, the six emission lines from a mag-
netized >’Co/o-Fe are all linearly polarized. For simplicity, we will assume
$s = 90°. In this case, four of six lines are of the n-type (Am = +1), with the elec-
tric field vector E parallel to B, i.e., the polarization plane is in the yz-plane. The
other two lines are of the o-type (Am = 0), E L B, with the polarization plane in
the xz-plane. In general, using such a source for a magnetically ordered absorber
would result in a total of 36 absorption lines. But if we limit ourselves to the cases
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Fig. 2.21 Spectra of o-Fe and HoFe; measured with a single-line
circularly polarized source shown in Fig 2.17 when the fields Bs and B,
are parallel (a, c) and antiparallel (b, d). The helicity of each line is
indicated by +1 or —1.

where the magnetic hyperfine field in the absorber is also perpendicular to the
p-ray direction (0, =90°), the spectrum will be greatly simplified, especially
when Bg // B, or Bs L B,. Figure 2.22 shows Mdssbauer spectra obtained in these
two special arrangements [70].

Now that we have linearly polarized y-rays perpendicular to both Bs and B,, it is
impossible to use simply angular momentum conservation to determine whether
an emitted line would be absorbed or transmitted. We may use the intensity of
each absorption line calculated in Table 2.5 to determine how many lines are
expected in a spectrum. But here we describe a more intuitive graphical method
to analyze them. Take the emission lines A and B as examples. Line A has a =-
polarization with its polarization plane parallel to Bg, while line B has a o-
polarization with its polarization plane perpendicular to Bs. The squares in Fig.
2.23 represent the respective polarization planes. There are two types of absorp-
tion lines, one with its polarization plane parallel to B, and the other perpen-
dicular to B,. When Bg / B,, A will cause four absorption lines: A,, As, A,, and
A,. Although the other two lines Ag and A, meet the energy requirement, they
are not absorbed. Now we change the magnetization of the absorber so that
B; 1 B,, and we expect that the originally transmitted lines (A; and A;) be ab-
sorbed and the originally absorbed lines will go through. For emission line B,
similar diagrams in Fig. 2.23 will help us determine which lines are absorbed
when Bs / B, and B L B,. All told, 20 out of the possible 36 spectral lines will



70

2 Hyperfine Interactions

1.00 4 i3 e
& A
8]
4 ]
g 090
g
2
o 1 B,/ B, B. LB,
8 ] parallel perpendicular
= ]
e

Velocity (mm/s) Velocity (mm/s)

Fig. 2.22 Mossbauer spectra obtained with a 3’ Co/a-Fe source and an
o-Fe absorber, both at room temperature and equally magnetized
perpendicular to the y-ray direction (B,/Bs =1, 05 = 0, = 90°). Left: Bs
and B, are parallel (¢, = ¢,). Right: Bs and B, are perpendicular

(s — ¢, = 90°). The letters next to the stick diagrams indicate the
origins of the lines. The nomograms at the bottom show the positions
and intensities of the lines for any ratio of B,/B;.

appear if Bg / B,, and 16 lines will appear if B; L B,. In cases where B and B,
have equal magnitudes, some lines are superimposed, resulting in spectra as
shown in Fig. 2.22. We can clearly see a trend that when the source and absorber
are both magnetized, an emission line resonates with an absorption line if their
polarization planes are parallel, and the emission line will transmit if the these
polarization planes are perpendicular. This selective absorption based on polariza-
tion is identical to the phenomenon of dichromism in optics.

If the above multi-line source is replaced by the single-line source consisting of
7Co/Co0 and the Fe-Rh-Ni polarizer, the spectra in Fig. 2.22 will change into
that shown in Fig. 2.24 [68]. As can be seen from these comparisons, using a
monochromatic source significantly simplifies the complex spectra, and this is
of the greatest importance in practice. In fact, the intensity and position of a line
in Fig. 2.22 are strongly dependent on the ratio B,/Bs. Moreover, if the absorber
is not simply o-Fe, but SrFe;;019 or Nd,Fe4B, the measured spectra can hardly
be decomposed. In other words, the practical application of a multi-line source
may be limited, and a single-line source has a unique advantage.
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Fig. 2.24 Spectra of o-Fe with a single-line polarized source when the
fields Bs (applied to the polarizer) and B, are parallel and
perpendicular.

2.6
Saturation Effect in the Presence of Hyperfine Splittings

It has been observed [72] that in a sextet spectrum due to a magnetic hyperfine
field, there is a higher saturation effect on the areas A of the outermost lines 1
and 6 than the inner lines 3 and 4. We begin with the quadrupole splitting as an
example.
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Fig. 2.25 Absorption area A(t,) as a function of effective thickness t,.
Due to the saturation effect, 2A(t,'/2) > A(t.'), and 12A(t.'/12) >
6A(t)'[6) > 4A(t) [4).

The presence of the saturation effect shown earlier in Fig. 1.10 is redrawn in
Fig. 2.25. Considering a single-line absorber with a particular effective thickness
t)', we first assume that, due to the quadrupole interaction, the single absorption
line suddenly splits into two well-resolved lines of equal areas. Of course, the pa-
rameters f, og, and d in t," are not affected by any hyperfine splittings. Among all
the nuclei resonantly absorbing y-rays, one half is in the excited states |+3/2),
while the other half is in the excited states |+1/2). Thereby each line now has
an effective thickness of t,'/2, yielding an area A(t,’/2). As shown in Fig. 2.25,
the total area 2A(t,’/2) (indicated by the dashed line) may be appreciably larger
than the area of the single line A(t,"). An important conclusion is that the split-
ting of a line has resulted in an increase of the total absorption area, and conse-
quently a decrease of the saturation effect, although the recoilless fraction has not
changed at all.

A similar effect is observed when the single absorption line splits into a sextet
in the magnetic field. Only one-sixth of all the excited nuclei contribute to the two
absorption lines 3 and 4, so each line has an effective thickness of t,’ /12, yielding
an area A(t,’/12). Analogously, line 2 or 5 and line 1 or 6 have effective thick-
nesses of t,’/6 and t,'/4, yielding areas A(t,’/6) and A(t,'/4), respectively. As
shown in Fig. 2.25, line 1 or 6 is clearly suffering from the saturation effect
more than line 3 or 4. Therefore, only very thin absorbers can guarantee the in-
tensity ratio of 3:2:1 in the sextet spectrum.

2.7
Méssbauer Spectroscopy

Mossbauer spectroscopy is mainly used to study the properties of materials
through hyperfine interactions. Isomer shift J, quadrupole splitting AEq, mag-
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netic hyperfine field, second-order Doppler effect, and the recoilless fraction are
all basic parameters in Méssbauer spectroscopy. They are determined by the posi-
tions and the areas of spectral lines. Moreover, the spectral shape and linewidth
are also very important. These parameters are dependent on external conditions
such as temperature, pressure, and magnetic field. It is clear that Méssbauer
spectra can provide an abundance of information.

Using hyperfine interactions, the Mossbauer effect serves as a bridge linking
the nucleus with its environmental details, which include the crystal structures
of materials, the perfectness of a crystal, lattice periodicity and magnetic ordering,
crystallinity, the amorphous state, oxidation state in a compound, coordination
number, and effect of ligands, as well as the vibrations and diffusions of atoms
in the solid. Because of its extremely diverse applications, Mdssbauer spectros-
copy has developed into a truly unique and specialized interdisciplinary field of
science.

Mossbauer spectroscopy has enjoyed continued popularity because of the fol-
lowing extraordinary characteristics and advantages: (1) it has decisively the high-
est energy resolution of all spectroscopic methods; (2) it requires only a relatively
simple apparatus, in contrast to other nuclear physics research systems that are
usually huge in size and exorbitantly expensive; and (3) it is a nondestructive
method for studying a solid and gives microscopic statistical information on the
atomic scale rather than a macroscopic average. Méssbauer spectroscopy comple-
ments other nuclear methods such as neutron scattering, perturbed angular cor-
relation, nuclear magnetic resonance, etc. Like any other experimental methods,
Moéssbauer spectroscopy has its own limitations. Although the total number of
Mossbauer isotopes now exceeds 100, some of them have very short half-lives,
and others require liquid nitrogen or even liquid helium temperatures for the ob-
servation of the Méssbauer effect. By and large, for most of the isotopes, either
the corresponding sources are very expensive or their Méssbauer effects are diffi-
cult to observe. *’Fe remains as the best Méssbauer nucleus. Iron is found in a
large array of materials. Many minerals have certain amount of Fe, magnetic ma-
terials are largely based on Fe, and there are numerous iron alloys and iron com-
pounds. Because of this economic implication of iron and iron products, research
using >’ Fe Méssbauer spectroscopy has always assumed a leading role. In addi-
tion, Mdssbauer spectroscopy is very sensitive to the changes of the environment
around the nucleus, but in some cases it is not capable of unambiguously distin-
guishing the origins of the contributions. Experimentally, we usually have to pre-
pare a series of samples to fix certain conditions such as crystalline structure and
composition, quenching temperature, etc., and use comparative methods to study
phenomena of interest. Therefore, Mdssbauer spectroscopy is mainly a relative
methodology.

Mossbauer spectroscopy has a history of 50 years since the first experiments of
resonant absorption of nuclear y-rays, and new aspects of this nuclear technique
are still being investigated, especially as new materials and new theories are de-
veloped constantly in solid-state physics.
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3
Experimental Techniques

The development and advancement of Méssbauer spectroscopy represents one of
the great achievements in experimental physics. To someone new to Méssbauer
spectroscopy, this ingenious experimental method often seems mysterious as to
why it can offer an energy resolution of the same order of magnitude as the “nat-
ural width” of the energy level. In this chapter, we first describe the principle of
energy modulation using Doppler velocity, which is a key step in observing a
Moéssbauer spectrum. This technique is well developed and well documented in
the literature [1, 2]. Next, we describe the Mossbauer radiation sources and the
y-ray detectors. These sources and detectors must possess certain particular prop-
erties and are specially prepared. The data acquisition system is relatively simple,
which we briefly deal with.

3.1
The Méssbauer Spectrometer

To measure the characteristics of any resonance phenomenon, e.g., the resonance
curve of an LC circuit, one must have a signal generator whose frequency can be
continuously adjusted. To obtain the resonance curve of a nucleus absorbing
y-rays, the energy of the incoming y-ray must also be modulated. This is achieved
using the Doppler effect, in which the perceived frequency of a wave is different
from the emitted frequency if the source is moving relative to the receiver. Sup-
pose the source and the receiver have a relative velocity of v, then the perceived
frequency of the y-radiation is

f= fo(l +§ cos e) (1 —?)_1/2 (3.1)

where fj is the frequency of the radiation when the source is at rest, ¢ is the speed
of light, and 0 is a small angle between the relative velocity and the y-ray direc-
tion. To obtain a typical Méssbauer spectrum, vpma, < 1 m s™1, thus v/c « 1, and
a very good approximation of the above equation is
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v
Af:f—fO:foE cos 0,
or
v
AE = Ey— cos 6. (3:2)
c

In principle, the energy of the emitted y-rays may be changed by either raising
the source temperature or applying an external magnetic field to cause Zeeman
splitting of the nuclear energy levels in the source [3]. But both have serious lim-
itations and have never become widely adopted. At the present time, almost every
Mossbauer spectrometer has a velocity transducer based on Eq. (3.2), modulating
the y-ray energies in order to observe the resonance curve. In most cases, the
source undergoes a mechanical motion, whereas the absorber is at rest so that it
is easier to change its temperature or to apply an external magnetic field to the
absorber.

The velocity transducers are generally operated in two modes: constant velocity
and velocity scan. The first is the simplest, developed in the early 1960s. In this
case the spectrum is recorded “point by point” throughout the selected velocities
provided that the measurement time interval at each velocity is fixed. The Moss-
bauer spectrometers used at the present time are almost exclusively constructed
using the second mode, in which the source scans periodically through the veloc-
ity range of interest. If every increment/decrement in velocity between adjacent
points is the same, the source motion must have a constant acceleration, and the
velocity-scanning spectrometer becomes a constant-acceleration one. For record-
ing the transmitted y-rays, each velocity has its own register (usually called a
channel) which is sequentially held open for a fixed, short time interval synchro-
nized with the velocity scan. The number of channels, i.e., the number of velocity
points, is usually chosen to be 256, 512, or sometimes 1024, etc.

Figure 3.1 shows a block diagram of a velocity-scanning spectrometer in trans-
mission geometry. It consists of a radiation source, an absorber, a detector with its
electronic recording system, a clock signal and a function generator, a drive cir-
cuit, and a transducer.

The radiation source is not monochromatic. For example, in addition to emit-
ting the 14.4-keV y-rays, a °’Co source also emits y-rays and x-rays of other ener-
gies (see Section 3.3). In order to pick out the signal due to the 14.4-keV radia-
tion, a single-channel analyzer (SCA) is placed behind the amplifier. Figure 3.2
shows various control signals and an observed spectrum.

The clock generates a synchronizing signal, which sets the starting moment
(t = 0) for velocity scanning. A triangular wave from the waveform generator be-
gins to increase (decrease) from its minimum (maximum), and the first channel
also begins to open. After that, each channel is opened in turn by an advance
pulse alone. The velocity of the transducer is scanned linearly from —vy, to +vy,
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Fig. 3.1 Block diagram of a Mdssbauer spectrometer in transmission geometry.
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Fig. 3.2 Various control signals in a constant-acceleration spectrometer
and an absorption spectrum.
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and a spectrum taken during the linear ramp is stored in one half of the total
channels. Then, the velocity decreases from vy, back to —vy,, completing a back-
ward scan, during which the measured data are stored in the other half of the
available channels. Therefore, in one scan period, a multiscaler or a computer
will record two spectra, which are mirror images of each other. In order to obtain
a spectrum with a good signal-to-noise ratio, hundreds of thousands of scans are
usually necessary. An occasional synchronization problem would have no impact,
because it recovers at the next scan period.

One obvious advantage of using a constant-acceleration spectrometer is that the
stability requirement is not as strict as in a constant-velocity spectrometer. If in-
stability, such as a discrimination voltage drift at SCA, should cause a decrease in
the absorbed line intensities during one scan or several scans, it has a small effect
on the absolute intensities but no effect on the positions and the shape of the
spectral lines because this process is equivalent to shortening the experiment du-
ration slightly. Another advantage is that this mode can make full use of digital
technology, improving the properties of the spectrometer and allowing automatic
data acquisition.

3.2
Radiation Sources

Among the isotopes in which the Méssbauer effect has been observed, “°K is the
lightest one. It is a pity that there exist no lighter Méssbauer isotopes. The M&ss-
bauer isotopes are not distributed evenly, with three-quarters of them concen-
trated in elements with atomic numbers between 50 and 80. There are only a lit-
tle over 20 Mossbauer isotopes that are in practical use, which amount to about
one-quarter of the total number of Méssbauer isotopes. >’Fe and ''?Sn are the
most popular, whose decay schemes are shown in Fig. 3.3. >Fe is by far
the most important one, for more than 69% of research work involves >’ Fe. The

S'.I'C0

1!9msn
270d S e
EC 245d
52 136.48 keV
% 91% 3/2° A 23.87 keV

32— ‘ 14.4 keV
R T R B

STFe 19gn

Fig. 3.3 Nuclear decay schemes of 3’Co and ''°Sn.
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next few frequently used isotopes are 'Eu, '7Au, 21, 121Sh, and *Te. In-
creased attention has been paid to 2’Np, 1°Gd, *'Dy, and especially to ’Zn
and ®1Ta, which are used to obtain high-resolution spectra.

The quality of a M6ssbauer source depends on the properties of the isotope and
the host (matrix) material. The Méssbauer isotope and the host should satisfy the
following criteria:

1.

E, should be limited within 5 to 150 keV, preferably less
than 50 keV. This is because both f and o, decrease as E,
increases, and especially f decreases more severely. For y-rays
of energies less than 5 keV, too much self-absorption makes
Mossbauer radiation very weak.

It is desired that the halflife T/, of the excited state should
lie between 1 and 100 ns. If T;, is too long, the natural
width T, of the excited state is very narrow and a slight
mechanical vibration may destroy the resonance condition.
Conversely, if Ty, is too short, I'; would be too large such
that a spectrum with hyperfine structure may not be
resolved.

The internal conversion coefficient o should be small (<10),
to ensure a relatively large probability for y-ray emission,
which is especially important for the transmission geometry.
It is preferred that the parent nucleus has a long half-life,
and allows for easy production of a high-activity source.

The Mossbauer isotope should not have a high spin, which
would produce complicated spectra and make analysis more
difficult.

The Mossbauer isotope should have a reasonably large
natural abundance, so that isotopic enrichment in the
absorber can be avoided. Except for its low natural
abundance, >’ Fe satisfies the above criteria the best, followed
by °Sn. A good Méssbauer source also requires an
appropriate host, a suitable fabrication process, etc.

The radiation from the source should be monochromatic
with an energy width as close to the natural width as possible
(T's & T'y). This requires that the host matrix material be a
nonmagnetic crystal of cubic symmetry with a very low
impurity content.

In order to have the highest possible f value, the host
material should have a high Debye temperature. This is why
metals or ionic crystals of high melting points are usually
chosen as the matrix materials. Also, any nonequilibrium
charge distribution in a metal would only last for less than
10712 s, shorter than the life time of a typical Méssbauer
excited state (between 10~ and 10710 ). Because of this,
metals are better than ionic crystals.
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9. The number of stable Méssbauer nuclei in the host material
should be minimized; otherwise, the resonant self-absorption
would broaden the emitted y-rays.

10. The host material should be made very thin, to reduce the
photoelectric effect and Compton scattering caused by the
Mossbauer p-rays.

11. The host should be chemically stable, so that it does not
change its chemical composition or structure due to
oxidation, hydrolysis, etc.

Satisfying the above conditions, a Méssbauer source would provide a high re-
coilless fraction f, a small line width (X T',), and intense radiation. For *”Fe, Rh
and Pd are good hosts, giving an admirable f-value of about 0.784 at room tem-
perature.

A Mossbauer source is usually custom-made with a particular radioactive iso-
tope. A nuclear reaction in an accelerator or in a reactor produces a very highly
excited state. It quickly decays to a relatively long-lived parent nucleus (still an ex-
cited state), which is then isolated and diffused into the host material. Other
methods include the “in-beam” implantation, which could provide some of the
difficult-to-produce isotopes such as “°K or Méssbauer isotopes with short life
times. In the recent years, researchers have also been attracted to synchrotron ra-
diation as a new Mdssbauer source.

3.3
The Absorber

In Mossbauer spectroscopy, the absorber is usually the sample to be investigated.
In transmission geometry, the thickness of the absorber significantly affects the
quality of the spectrum and must be carefully chosen. In this section, we mainly
discuss this effect and the methods of correcting for it.

3.3
Estimation of the Optimal Thickness

The optimal sample thickness d,p; means such a thickness that would produce a
minimum statistical uncertainty in the Mdssbauer spectrum measured in a given
time duration, and therefore provide the most accurate values for the spectral pa-
rameters. When the sample is too thin, it would contain too few Mdssbauer nu-
clei. Consequently, the spectral intensity would be weak, with too much back-
ground and a large statistical uncertainty, and accurately extracting spectral
parameters (especially absorption intensities) would be difficult. When the sam-
ple is too thick, significant atomic absorption would occur, causing resonant ab-
sorption to decrease. Also, as the sample thickness increases, the Lorentzian
shape of the spectral lines would be gradually distorted. As the sample thickens



3.3 The Absorber | 85

to a certain extent, the Mossbauer effect can no longer be observed. Obviously,
there should be an optimal thickness between these two extremes.

In studies of subjects such as lattice dynamics, phase analysis, distribution of
anions, etc., it is necessary to measure the absorption intensity accurately. This
demands a high-quality Mossbauer spectrum. Therefore, it is important to prepare
a sample with an optimal thickness. Within three years of the discovery of the
Mossbauer effect, there were several reports on studies of optimal sample thick-
ness [3-5]. But at the present time, it is still very difficult to calculate the exact
optimal thickness. It would require an understanding of all interactions between
the y-radiation and the sample, as well as the details of sample composition and
structure. Therefore, we would be content with an approximate estimation of dop;.

In order to do that, we need to select a physical quantity for judging whether
the sample has the optimal thickness. Some use the height [6] or the area [7] of
the spectral lines; others use the signal-to-noise ratio (S/N) [8-12]. When one of
these quantities reaches a maximum, it is deemed to correspond to the optimal
sample thickness. It seems that using S/N is a good method [8]. For conve-
nience, Q (quality factor) is often used to represent S/N, with the following defi-
nition [11]:

S I(00,d) — I(vy, d) I(00,d) — I(vy, d)

TN T (A1, d) + Bln )T T d) + I d)]7

where I(c0,d) and I(vy,d) are the total y counts off- and on-resonance, respec-
tively. Al is the corresponding statistical uncertainty in I, and AI = /T because it
is a random process.

For a very thin absorber, the difference between I(c0,d) and I(v,d) is very
small, often less than 10% of I(c0, d), which means I(o0, d) + I(v;,d) = 2I(c0, d).
Therefore, we may redefine Q (within a constant factor) in a simpler manner
[9, 13]:

Q, _ E _ I(OO, d) B I(Urvd)
N (10, )"
= fulo'Pe 21 — e 2y (ip,d ) 2)]
= f;IOUZF(:uav.ura d) (33)

where I is the total intensity of incident y-rays, f; is the recoilless fraction of the
source, d is the sample thickness in mg cm~2 (note that u,d = t, is the effective
thickness), Jo is the zeroth-order Bessel function, x, (in cm? mg™!) is the atomic
mass absorption coefficient, and y, (in cm? mg™!) is the y resonance absorption
coefficient. Both y, and y, are defined in Chapter 1 [see Eq. (1.17)]:

My = Z piﬂ:iv (3.4

N,
Uy = raofamA—Ano (3.5)
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where p; is the mass fraction of the ith element in the sample, g is the maxi-
mum cross-section of y resonance absorption, a,, is the natural abundance of
the Moéssbauer isotope, Nu is Avogadro’'s number, Ay, is the molecular mass (in
mg) per mole, ng is the number of M6ssbauer atoms in a molecule of the ab-
sorber compound (e.g., no = 3 for Fe3BOg), and f is the recoilless fraction of the
absorber. The factor r in Eq. (3.5) needs to be further explained. It is the weight
factor to account for the intensity distribution in the case of hyperfine field split-
ting. For a single line absorber, r = 1. When there is a quadrupole splitting and
the sample is polycrystalline, resulting in a doublet of equal intensity, one of the
lines, which is used for calculating I(v;, d) in Eq. (3.3), corresponds to an effective
thickness of t,/2, so r = 1/2. If there is a magnetic hyperfine field in the sample
(e.g., a-Fe;03), we calculate I(vy, d) of line 3 or line 4 where the saturation effect
is the weakest according to the discussion in Section 2.6. If the sample is poly-
crystalline, the saturation effect is negligible, thus the effective thickness of line
3 or line 4 is t,/12, so r = 1/12. When the sample is a single crystal, r can be de-
termined in a similar way.
One can rewrite Eq. (3.3) as

Q= B il d) = etv) s (5)

where 1/1/1(o0,d) is the fractional standard deviation of the baseline counts, a
most commonly used precision index in “counting” experiments, and &(v;) is
given by Eq. (1.24). Equation (3.3) is a general definition of the signal-to-noise
ratio, but once it is rewritten as Eq. (3.6), we can see its physical significance
more clearly. A better Q requires a combination of a large Méssbauer effect and
a high precision in the measurement. Suppose we let fs[Io]l/ 2 = ¢ (a constant),
1,4 = x, and u,/u, = b, then Eq. (3.3) becomes

—x/2 —bx/2 - 1 bx Zk _
0 (b, %) = ce~*! [16 b/ ZHW(4> ]_cF(b,x) (3.7)
where
x) = e¥/2|1 _ a—bx/2 -~ 1 bj Zk
F(b,x)=e [1 e kgzo )’ (4) } (3.8)

Now we treat b as a parameter, and plot F(b,x), which is proportional to
Q(b, x), in Fig. 3.4. For every b, the curve has a maximum, and its corresponding
x-value gives the product y,d.p;. From given values of x, and x,, a computer pro-
gram based on Eq. (3.7) may be used to calculate such a curve, find its maximum,
and obtain the optimal thickness doy. To calculate the maximum of Q(b, x) ana-
lytically is somewhat more complicated, if not impossible. Table 3.1 lists numeri-
cally calculated results for potassium ferrocyanide, sodium nitroprusside, and fer-
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0.6

F(b, x)

Fig. 3.4 Theoretical curves of F(b,x) versus x for various b-values as indicated.

Table 3.1 Calculated d,p; values when f takes two different values for
each of the three materials.

Absorber u, (1073 u, (1073 f dopt
cm? mg™) cm? mg™) (mg cm~?)

K4Fe(CN)6-3H,0 19.14 15.9 0.2 68

23.8 0.3 63
Na,Fe(CN)sNO-2H,0 13.73 33.8 0.3 65

56.25 0.5 51
Fe(CsHs), 19.79 9 0.05 76

18 0.1 66

rocene, assuming f (or u,) is known and neglecting hyperfine splittings. In this
approach, it is imperative to know the precise values of x, and y,. The u, values
have been tabulated for all the elements (see Appendix H). A x, value may be cal-
culated using Eq. (3.5), since we can easily get precise values for all the factors in
Eq. (3.5) except for f. For a new sample under investigation, f is unknown. The
f value is not precisely known even for many common materials. But f can be
determined experimentally, and once f is known, doy can be readily calculated.
To do this, we obtain a set of spectra from samples of the same material but
with different thickness values d, to deduce the experimental Q. as a function
of sample thickness. Now, Eq. (3.7) is used to fit the Qe values with f as the
only adjustable parameter. The fit would give the f value, and the maximum of
the fitted curve would give a value for doy. The results of this procedure applied
to seven samples are listed in Table 3.2 and the fitted curves for six samples are
shown in Fig. 3.5.
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Table 3.2 Parameters obtained from fitting the Q(b,x) curves for seven samples.

Sample dopt I, £ (295 K) 1 2 Ref.
(mgem=) (107> cm? mg~") M e
exp. cal. exp.
Fe(CsHs), 81 19.79 19.36 0.08 50~100 13
CusFeS, 25 63.39 59.82 0.77 15.8~31.8 13
FeSO4-7H,0 89 16.23 15.98 0.16 61.6~123 13
SNP 79 13.73 12.64 0.37 73~146 13
K3Fe(CN)s 72 21.02 20.25 0.10 47.6~95 13
K4Fe(CN)s-3H,0 65 19.14 18.202 0.25 52~144 16
o-Fe,; O3 37 45.43 44.73 0.65 22~44 16
160
120 SNP
C T FeSO.TH,0
< B
8L
: K]l;e(CN)g
a0F Fe(CsHs),
o e a-Fe 05
r -V‘--_____ CusFeS,
0 [ O TR RN RN [N NS T N Tl w2 e (P SN NN N S
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d (mg/cm?)

Fig. 3.5 Experimental Q(d) data for the six materials indicated. The
lines are fitted curves by Eq. (3.7).

First of all, the excellent fit between the experimental data and the calculated
curve confirms that Eq. (3.7) describes Q as a function d very well. At room tem-
perature, sodium nitroprusside (SNP, Na,Fe(CN)sNO-2H,0) has f = 0.37, which
agrees exactly with the literature value [14]. For ferrocene (Fe(CsHs),), Table 3.2
gives f = 0.08, which is half of the value f = 0.169 reported in 1960 [15]. Later
in Section 8.3, f(295 K) = 0.09 is derived from known lattice dynamics parame-
ters, in good agreement with this experiment. This will confirm that the above
method for determining f is reliable, and the accuracy can reach 0.01 [16].

In Table 3.2, o-Fe,0; is the only magnetic sample. As mentioned above, we
only need to accurately measure the height of line 3 or line 4. Therefore, these
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experiments were done for velocities between —2.5 and +2.5 mm s!, and the re-
sult was f = 0.65 + 0.03.

The values for p, are available from Appendix H, but they can also be obtained
from these experiments based on the relationship I(oo,d) = I(0)e *. Table 3.2
lists both the calculated and experimental values of x, for each sample, and they
essentially agree with each other. If an experimental value turns out to be differ-
ent from the calculated value beyond experimental uncertainty, there must have
been some problems either with the sample composition or with the measure-
ment process. These problems must be corrected before proceeding to using u,
for estimating the optimal thickness.

When u,d is small, we may take the first two terms of the summation in Eq.
(3.7), and take e #%2 ~ 1 — yu,d/2. At the maximum of the curve, dQ/dx = 0,
we can derive the following approximate result for dyp:

2
dopt & —. (3.9)
7

a

However, this is the upper limit of the sample thickness, and the optimal thick-
ness should be thinner than 2/u,. An analysis has shown [11] that the optimal
thickness is between 1/u, and 2/u,. It is easy to see from data in Table 3.2 that
the results evaluated using the above experimental method are indeed within this
range.

Comparing the results in Table 3.1 with those in Table 3.2, one can find that
neglecting the hyperfine splittings may cause the deduced d,y to be underesti-
mated when b > 1. Owing to this approximation the maximum of Q(b,x) curve
is generally shifted towards the coordinate origin. When b < 1, as we see below,
such a shift does not affect dqy, so the approximation just mentioned is admissi-
ble. For b < 1, those curves in Fig. 3.4 change very slowly in the vicinity of the
maximum value Qa. The smaller the b-value, the flatter is the curve. In this
case, the thickness of the sample can be chosen in a relatively wide range be-
tween Qmax(1 —¢) and Qmax(1 + ¢), with little difference in the quality of the
spectrum. For example, if ¢ = 0.01, the corresponding sample thickness for ferro-
cene may range from 66 to 91 mg cm~2. This provides certain flexibility in the
sample preparation.

If the chemical composition of the sample is unknown, we may experimentally
determine the lower limit of the sample thickness. Let d = 1/y,, then by defini-
tion

==, (3.10)

which means that when the transmitted intensity is 1/e of the incident intensity,
the sample thickness is at the lower limit. However, the optimal thickness may be
far above the lower limit (see Table 3.2).
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332
Sample Preparation

Metallic or alloy samples are usually wrought or roll-milled into foils of the appro-
priate thickness. If only small pieces of sample foils are available, they may be
arranged to cover the entire sample area with fewest gaps and overlaps possible.

Samples in chemistry and biology research are usually in powder form. Most
solid-state materials are also prepared as powders. Samples may be immersed in
petroleum ether during grinding to avoid oxidation. A particle size of about 200
mesh is appropriate, and the powder is pressed to the desired thickness between
two pieces of thin plastic sheet. For low-temperature measurements, the powder
sample is usually mixed with a compressible solid chemical of light atoms such
as a sugar, and pressed into a “free-standing” sample. For high-temperature
measurements, the powder sample is usually placed between two pieces of boron
nitride sheet.

Sometimes, samples exhibit certain additional preferred orientation (e.g., tex-
ture), which causes the quadrupole split doublet to have different intensities. To
reduce such an effect in a powder sample, one may prepare a sample by grinding
it together with a little quartz. A small amount of chemically nonreactive additive
such as vacuum grease or silicone may also be used.

Liquid samples are usually sealed in a sample holder and refrigerated until fro-
zen. The sample holder’s window for y-rays must be made from a material of
light atomic number elements.

>7Fe has a relatively low natural abundance. If the > Fe content in the sample is
not sufficient to give a satisfactory spectrum, its enrichment in the sample may
be necessary.

3.4
Detection and Recording Systems

If the 14.4 keV recoilless y-rays were the only radiation emitted by a source con-
taining *’Co, as simply shown in Fig. 1.7, we would merely need to record the
number of transmitted y-photons at each source velocity with no need for the
detector’s energy resolution; thus, a Geiger—Muller counter with relatively high
efficiency would do the job. But in reality, this is not the case. Take the *’Co
source, for example. It emits y-rays of 136, 122, and 14.4 keV and x-rays of 6.3
keV (Fig. 3.6), with an approximate intensity ratio of 1:10:1:13. Therefore, the
14.4 keV Mossbauer radiation is only a small part of the total radiation, and
what is worse is that the flux of 14.4 keV y-rays is attenuated considerably after
going through a typical sample, but the flux of the 122 keV y-rays will be de-
creased very little.

Consequently, the detector must be highly efficient for the 14.4 keV y-rays, but
be as insensitive as possible to the 122 keV y-rays. As to the y-rays with energies
below 14.4 keV, they will be discriminated against by the SCA if they have been
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Fig. 3.6 (a) Schematic diagram showing various processes of secondary
radiation as y-rays from a 3’Co source travel through the absorber
towards the detector. (b) The resonance absorption and internal
conversion of the 14.4 keV radiation in a > Fe atom [17].

detected. The most widely employed detectors are proportional counters and
Nal(Tl) scintillation counters, followed by semiconductor detectors. Their main
characteristics are listed in Table 3.3. The choice of a detector also depends on
the Mgssbauer isotope in use.

Table 3.3 Characteristics of detectors in general use for M6ssbauer spectroscopy.

Detector Energy Efficiency  Maximum Resolution
resolution (%) (%) count rate (s™')  time (s)

Gas proportional counters 10 (E, = 14 keV) 80 7 x 10* 10°°
Nal (T1) counters 20 (E, =50keV) 100 2 x 10° 1076-10"%
Semiconductor counters 2 (E, =50keV) 100 ~10*
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3.4.1
Gas Proportional Counters

Typically, a gas proportional counter has a cylindrical metal tube (cathode) and a
metal wire on the axis (anode). It is filled with a gas, about 90% of it being a no-
ble gas such as xenon, krypton, argon, or neon and about 10% being a quench
gas such as methane or butane. A high voltage of 1500 to 3000 V is applied to
the anode. A krypton counter filled to a pressure of 100 kPa has a good efficiency
for the 14.4 keV yp-rays. This is because the krypton x-ray absorption edge is at
14.32 keV, which would largely absorb the 14.4 keV photons and mostly reject
photons with higher energies. Its energy resolution is about 10%, sufficient
enough to resolve the 14.4 keV y-rays from the 6.3 keV x-rays. In addition, the
gas proportional counter has a high signal-to-noise ratio and an upper count
rate; its cross-section for Compton scattering is lower than that of an Nal(Tl)
counter and is only 30% of that of a semiconductor detector. Therefore, the pro-
portional counter is the popular detector for y-rays of E, < 20 keV.

342
Nal(TI) Scintillation Counters

These are also widely used counters with detection efficiency as high as 100%.
When used in Mossbauer spectroscopy, the thickness of the Nal(T1) crystal must
be reduced to between 0.1 and 0.2 mm, which will ensure a high efficiency for
the 14.4 keV y-rays and a low efficiency for any higher energy y-rays. The 14.4
keV p-rays have an energy resolution of about 35%, and can be just resolved
from the 6.3 keV x-rays. Since the Nal(Tl) scintillation counter is highly efficient
and simple to use, it is often chosen for y-rays of E, > 15 keV (e.g., 11?Sn).

343
Semiconductor Detectors

Each semiconductor detector is essentially a p—n junction, with a reverse-biased
high voltage, creating a region that is sensitive to y-rays. Selecting the correct
thickness allows a great reduction of its sensitivity to high-energy j-rays. Semi-
conductor detectors offer the best resolution (about a few percent) over the entire
range of energies of interest in Mossbauer experiments, and their efficiency com-
pares favorably with proportional or scintillation counters. At the present time,
high-purity Ge detectors are available at lower cost than the lithium-drifted
Ge(Li) or Si(Li) detectors. For detecting the 35.5 keV y-rays or the 27.5 and 31.0 keV
x-rays from '»Te, proportional or scintillation counters would not be suitable,
and a high-resolution semiconductor detector must be used.

The emission spectra from a >’ Co/Rh source recorded by the above three types
of detectors are shown in Fig. 3.7.
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Fig. 3.7 57Co/Rh source emission spectra recorded by a semiconductor
Si(Li) detector, an Ar/CH4 proportional counter, and a Nal(Tl)
scintillation counter.

3.4.4
Reduction and Correction of Background Counts

Background counts are what the detector would record if all “sources” causing
the effect under investigation were removed. But separating the background
from resonance absorption counts is not a simple matter, because both come
from the same radiation source used in the experiment. Moreover, for different
absorbers, the detected background counts are also different. Although there are
methods of measuring background counts [18], it is advantageous to reduce the
background as much as possible. One step is to reduce the detector efficiency for
y-rays of higher energies. Another step for reducing background is to set up a
window (for 14.4 keV in the case of >’ Fe) in the SCA after the amplifier.

The background counts in the transmission spectrum come from the following
events:

(1) Compton scattering of high-energy y-rays in the sample or other compo-
nents of the spectrometer produces secondary y-rays, some of which fall into the
14.4 keV window. Also, high-energy y-rays may enter the detector directly and
produce a broad and nearly flat distribution of Compton electron energies from
zero up to about 40 keV (for the 120 keV y-rays), and those electrons within the
window contribute to the main part of the background.

Therefore, we would reduce the Compton scattering cross-section for high-
energy y-rays in both the detector and other parts around the detector. Removing
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the shields farther away from the detector can help, but completely eliminating
Compton secondary radiation is very difficult. This makes up the major portion
of the background counts. It is especially difficult when the radiation to be discri-
minated against is only slightly higher in energy than the M6ssbauer radiation
energy. For instance, the 1Sn Méssbauer radiation energy is 23.87 keV, but the
source also emits Sn K, x-rays of 25.2 keV, which a NaI(Tl) detector would not
be able to resolve. Fortunately, the K, absorption edge of Pd is at 24.35 keV, situ-
ated between the above two energy values. When a Pd filter of thickness of 0.05 or
0.10 mm is used, the x-rays can be largely absorbed with little attenuation of the
y-rays.

(2) The source also emits radiation with a continuous energy spectrum due to a
recoiled 14.4 keV emission, and some of this radiation may fall into the window.
It may be reduced by lowering the temperature of the source.

(3) Portions of the radiation with energies lower than 14.4 keV (e.g., the 6.3 keV
x-rays) are detected because of an imperfect detector resolution. For reducing this
contribution to the background a piece of aluminum of 0.1 mm thickness (or
Plexiglass of 4 mm thickness) would be able to attenuate the 6.3 keV x-rays to
about 1/50, with the 14.4 keV y-rays being reduced only by 3%.

345
Geometric Conditions

The two types of geometric arrangements are transmission and scattering. In
transmission geometry, the source, the sample, and the detector should be col-
linear and any deviation from that will have a substantial influence on the out-
come of the measurement. A good-quality collimator, as well as the shield used,
should be made of minimal x-ray fluorescent materials, such as Plexiglass or alu-
minum on the surfaces with lead in the interior. The distances separating the
source, the sample, and the detector should not be too short for two main rea-
sons. As the source vibrates, the solid angle it spans with respect to the detector
will change and the detector would record different y-ray counts for different po-
sitions of the source. A simple calculation for *’Fe indicates that if the minimum
distance passed over by the source does not exceed 0.2 mm, and if the source-to-
detector distance is L > 10 cm and the detector window radius is R = 1 cm, the
solid angle change can be limited within 0.5% and this effect may be neglected.
But for some Méssbauer nuclei, such as 1*Tm, larger Doppler velocities are re-
quired and the solid angle change would not be negligible. The second main rea-
son for a proper distance from the source to the detector is the cosine effect [19].
If the y-rays are emitted in a direction not exactly parallel with the source—
absorber relative velocity, but make an angle 6, then the Doppler shift is not
(v/c)Ey, but (v/c)Ep cos 0. This will cause line broadening, even a shift [20, 21].
Calculations have indicated that when R/L < 0.1, the spectral shift and broaden-
ing would be less than 0.4%.
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3.4.6
Recording Systems

In a typical spectrometer, the detected signal goes through a preamplifier, the
main amplifier, the SCA with a 14.4 keV window, and finally the multiscaler
consisting of several hundred registers (channels). The most usual way of data ac-
quisition has been to utilize a multichannel analyzer (MCA) in the multiscaler
operating mode. But more recent spectrometers use a NIM unit with a micro-
processor or a personal computer with special interfaces to perform SCA’s and
multiscaler’s tasks, etc.

3.5
Velocity Drive System

A velocity drive system is not only the most important component, but also a fea-
ture unique to Mdssbauer spectroscopy. Although there are several different types
of drive systems, the best and prevalent is an electromagnetic drive system com-
posed of a waveform generator, a drive circuit, a feedback circuit, and a velocity
transducer. Especially after the advent of digital technology, it exhibits excellent
stability, linearity, and reliability. Although its performance has improved tremen-
dously since the 1960s, it still operates on the same original principle. We now
describe the components of this system.

3.5.1
Velocity Transducer

The electromagnetic velocity transducer works in the same way as a loudspeaker
[22, 23]. The transducer converts an applied current into the velocity of the source
through a drive coil and provides a signal proportional to the actual velocity
through a pickup coil. It is equivalent to two back-to-back speakers but without
magnetic coupling between them. A shaft goes through the common center of
the coils. The radiation source is attached to one end of the shaft, and a prism
(or a mirror) for measuring velocity is installed on the other end. The drive coil
uses thick wires and a small number of turns, to allow enough current for driving
the shaft. The pickup coil uses thin wires and many turns for increasing its sen-
sitivity. The shaft is supported by two thin flat springs and can move along the
axis within certain amplitude. To ensure effective control of this motion, the fun-
damental frequency of the reference waveform should be close to the shaft’s nat-
ural frequency, typically ranging between 10 and 40 Hz.

Figure 3.8 shows a cross-sectional diagram of a high-performance transducer
developed recently [24]. Its drive component is not different from the usual de-
sign, but the pickup and feedback loop have been drastically modified. The
pickup coil of as many as 50000 turns of copper wire wound on a spool is fixed
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Fig. 3.8 Cross-section of a new type of velocity transducer [24].

inside the steel box and centered around the shaft, and its resistance is 5 kQ,
much higher than that of the 1.5 kQ pickup coil manufactured by Wissel. Incor-
porated into the shaft inside the pickup coil is a cylindrical bar magnet with max-
imum field strength of about 0.5 T. Furthermore, the pickup coil is divided into
two halves wound in opposite directions and connected in series to generate a
feedback signal. This new design completely removes any magnetic coupling be-
tween the drive coil and the pickup coil. Another modification in the feedback
loop is the introduction of a position feedback circuit for further improvement.
This drive system has therefore high stability as well as linearity and immune to
drifts in velocity and position, regardless of the duration of data acquisition. For
instance, its nonlinearity is only 0.1% (Wissel's transducer nonlinearity is 0.3%),
and the velocity at any point in the scan period has a maximum error ranging
from +1 ym s7! (at 3.5 mm s ') to +3 ym s7! (at 21 mm s71).

352
Waveform Generator

The function of the waveform generator is to provide the drive system with a ref-
erence signal which determines the waveform of the source motion. Sinusoidal
and triangular waves are the two most often used waveforms.

1. Sinusoidal waveform. The shaft can be easily driven by a sinusoidal wave-
form. As a result, the source motion could be controlled most accurately and
this is the main advantage of this waveform. Because there is no abrupt change
in acceleration, the effect of the system’s inertia is reduced to its minimum. How-
ever, the sinusoidal waveform has some disadvantages. Owing to a nonlinear re-
lationship between velocity and channel numbers, it is not easy to visualize what
the spectrum would look like on the linear velocity scale. At present, this is not a
serious problem because a simple computer program can easily manipulate the
data and give a spectrum graphed against the linear velocity. If the shaft is rela-
tively long, the mechanical load is heavy, or the velocity limits are high, the sinus-
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Fig. 3.9 Block diagram of a digital waveform generator.

oidal waveform should be used. By and large, sinusoidal waveform provides a
good operation mode.

Figure 3.9 shows a block diagram of a digital waveform generator [25], whose
principle of operation is completely different from the traditional one. Its key
components include a read-only memory (ROM), an address register, and a
digital-to-analog converter (DAC). For any address n (0 < n < 1023), the respec-
tive value of sin[(z/2)(n/1023)] is programmed into the ROM in the form of a
10-bit binary number. Each clock pulse triggers one up counting of the address
register, and the address register advances from 0 to 1023. The values of sin x
are read out in turn from the ROM, and converted to analog signals by the DAC,
forming the first quarter of a sine wave. Next, each clock pulse triggers one down
counting, and the circuit generates the second quarter of the sine wave. Execution
of this “up” and “down” counting sequentially again, provided that the polarity is
now inverted by the switching circuit, gives the third and fourth quarters, com-
pleting the entire period of a sine wave. In the meantime, the clock pulses are
also divided to give the synchronization signals whenever the velocity is at +vmax
OF —Umax-

2. Triangular waveform. This is another commonly used waveform. In this
mode, the motion of the shaft in the transducer has a constant acceleration. The
velocity starts at —vpmay, goes through zero, and increases linearly to +vp,y. It then
uniformly decreases back to —vp,y. In the circuit of Fig. 3.9, the DAC successively
reads in the address codes (from 0 to 1023) instead of the sin x value from the
ROM, and outputs a linearly increasing voltage in the first half and decreasing
voltage in the second half, completing a triangular waveform. A digital triangular
waveform generator is better than an analog generator, not only because of its
better linearity and stability, but also due to its versatility in providing the “region
of interest” waveforms and constant-velocity waveforms. In the latter case, the
counting of the address register is stopped for an exactly defined time precisely
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at the maximum of the output waveform. Using the triangular form, the system
records the spectrum twice as mirror images of each other, but a computer pro-
gram can easily fold the two parts together. In order to reduce the abrupt change
in acceleration, the triangular wave must be smoothed near +vm,. Such a wave-
form reduces impulsive forces and is easier for the driving system to follow.

There is also a sawtooth waveform, but it has no advantage over the triangular
waveform, and therefore recent spectrometers have eliminated the sawtooth op-
tion all together.

353
Drive Circuit and Feedback Circuit

The purpose of the drive circuit is to produce a current signal in the drive coil to
drive the shaft with the required velocity. In general, the circuit consists of three
op-amps (A1, Ay, and A;) as shown in Fig. 3.10. A; is for amplifying the differ-
ence between the pickup signal and the reference signal, A, is an integrator, and
Aj is a power amplifier.

The basic principle of the drive circuit operation is as follows. The pickup coil
is a negative feedback loop, electromagnetically decoupled from the drive coil,
and the amplitude and shape of the feedback signal depend only on the shaft’s
motion. The difference between the pickup signal and the reference signal,
known as an error signal, is proportional to the deviation of the actual velocity
from its reference value. As we know, introducing a negative feedback into an
amplifier can greatly improve its linearity and stability, and this is extremely im-
portant in velocity control [26]. Only when there is a suitable feedback would the
shaft move precisely according to the reference signal, because if there is a slight
deviation from the reference signal, the error signal instantly corrects the differ-
ence.

Let us now look at the function of the integrator. Suppose the waveform is tri-
angular, and a Lorentz force experienced by the drive coil balances the springs’
restoring force, F = ks = ci(t), where ¢ and k are constants, i(t) is the current
through the drive coil, and s is the displacement of the shaft with respect to its
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Fig. 3.10 Schematic diagram of the drive and feedback circuit system.
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equilibrium position. If we require the shaft to execute a constant acceleration
motion, then s = at?/2, and

o cdi(y)
== a

The frequency of the drive voltage ey(t) is very low and, as a result, it is almost in
phase with the current i(t). Therefore

c1 deo(t)

d = T

where ¢; is another constant. It is clear now that the output voltage of A; should
be the integration of a signal that is linearly proportional to time t. This is why an
integrator is normally used in the triangular waveform mode.

Careful attention must be paid to the stability of the negative feedback loop.
Analyses have shown that when the frequency of the reference signal is low and
near the natural resonance frequency of the shaft, its motion can be controlled
most effectively. When the frequency is high, the pickup signal will lag behind
the input reference signal. If such phase shift approaches 180°, the feedback is
no longer negative, but positive, resulting in self-sustained oscillations at a rela-
tively high frequency. This has been documented extensively in the literature
[22, 27]. In a practical instrument, there are controls for adjusting the feedback
gain and the frequency response so that the feedback circuit works under stable
conditions with a large gain, small error signals, and no undesirable oscillations.

354
Velocity Calibration

The horizontal axis of a Mdssbauer spectrum is initially labeled by the address
codes of the data registers or the channel numbers of the MCA. To express the
position parameters such as J, AEq, By, etc., in units of mm s~!, the channel
numbers must be converted to the velocities of the source, not only the values,
but also the direction of the motion. This is velocity calibration, and is usually
done by either a secondary standard method or an absolute velocity method.

3.5.4.1 Secondary Standard Calibration
In this method, the source velocity is calibrated using certain standard samples
whose hyperfine splittings have been most accurately measured [28]. For veloc-
ities in the range of 410 mm s~!, a-Fe or sodium nitroprusside is often used.
For velocities higher than 100 mm s~!, metallic Dy may be used as the standard
sample.

Metallic iron has many advantages, including relatively large separations be-
tween the spectral lines in the sextet, a very large f-value at room temperature,
and a cubic crystal structure (so V., = 0). However, there are slight differences
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among the «-Fe spectral results from various authors, mainly due to sample im-
purities [29]. Analyses have shown that in order to obtain a calibration accuracy of
0.1%, the a-Fe sample should have a purity of at least 9.99% [26], which is com-
mercially available. This method is very simple and its accuracy is high enough
for most research work. Many authors have made effort to measure the «-Fe hy-
perfine splittings as accurately and precisely as possible [30, 31], and the accepted
values are 10.627 mm s~! for the separation between line 1 and line 6.

3.5.4.2 Absolute Velocity Calibration

According to their underlying principles, the absolute calibration methods belong
to two main categories, ultrasonic modulation and optical methods, which would
directly give the velocity for each channel.

1. Ultrasonic frequency modulation [32]. Suppose we have a single-line source
(5Co/Pd) and a single-line absorber, and mount either the source or the absorber
on a piezoelectric crystal which vibrates with frequency w (e.g., 16 MHz). The ob-
served Mossbauer spectrum will have, in addition to the original single line (ab-
sorption intensity xy and frequency wy), a series of sidebands with frequencies
wo + nw, where n = 1,2, 3, etc. The corresponding absorption intensities can be
predicted by the squares of Bessel function values J2(xo/%). Because the fre-
quency of the piezoelectric crystal can be measured extremely precisely, this cali-
bration method can be very accurate, often reaching 0.1%.

2. Optical methods. Laser interference fringes and moiré patterns are often used
to measure the absolute values of the source velocity.

A simple Michelson interferometer is shown in Fig. 3.11, where M, is the sta-
tionary prism and M; the moving prism attached to the drive shaft. Let the wave-
length of the laser light be 1. Every time the shaft moves a distance of 1/2, a
bright fringe appears and the frequency of the emerging fringes is proportional
to the velocity of the shaft. These fringes are transformed by a photodiode into

/A\Mz (stationary)
M,
N~
laser D
z
beam —
splitter v

Ij photodiode

Fig. 3.11 Laser Michelson interferometer.
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pulses, which are counted by the multiscaler. The velocity value can be expressed

by

N; 2
i =—= 3.11
vi nty 2 ( )

where N; is the fringe count (usually more than 10° accumulated) in the ith
channel, n is the number of scans performed, and t; is the dwell time for each
channel.

The interference method can only measure the magnitude of the instantaneous
velocity of the source, so when the velocity uniformly changes from —V,, and
+ Vi, the multiscaler records a V-shaped spectrum. The data points in first half
of the “V” are flipped with respect to the horizontal axis. The two halves are
then combined and numerically fitted by the function ax? + bx + ¢, from which
the nonlinearity of the velocity scan (indicated by the value of a) and the precise
position of the zero velocity are determined (see Fig. 3.12). The signs of velocities
(4v or —v) measured from the o-Fe absorption sextet spectrum are also given in
Fig. 3.12.

This is a method of choice for many Méssbauer spectroscopists, and modern
spectrometers often have an interferometer attachment. The problem with this
method is that the fringe counts at low speeds are not as accurate, especially
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Fig. 3.12 (a) Triangular drive voltage. (b) A V-shaped interference fringe
spectrum, superimposed on a sextet spectrum.
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near zero velocity, because the error in fringe counts is +1. Therefore, the posi-
tion of the zero velocity cannot be directly calculated using Eq. (3.11). Recently,
there has been an improved version of the interferometer system capable of mea-
suring velocity within a wide range of 0.5 to 1000 mm s~! with a precision of
0.1% or better [33].

When the velocity values are vary high (around 700 mm s™1), a method using
gratings and observing changes in moiré patterns can be utilized [34]. In this
method, we also record the number of bright and dark fringes to obtain the speed
values, but the accuracy is not as good as in the Michelson interferometer
method.

3.6
Data Analysis

In order to obtain reliable microscopic information from Méssbauer spectroscopy,
it is imperative to analyze the measured spectra quantitatively. The experimental
spectrum is often quite complicated, because it is usually a superposition of
many sets of subspectra. Assignment of all subspectra before fitting the spectrum
and interpretation of the results after fitting must be carried out based on a cer-
tain physical model for the sample. The process of spectral fitting can be tedious.
There are many fitting methods, but they belong generally to two categories, ei-
ther fitting individual single lines or fitting the entire spectrum. The former is
based on the notion that the Mdssbauer spectrum is a superposition of Lorent-
zian lines, while the latter is done by calculating the nuclear energy splittings
and transition probabilities based on the model for the sample. We will briefly de-
scribe several methods, among which the single-line fitting using the Gauss—
Newton method or a modified version is probably the most widely used.

In recent years, there have emerged a few novel methods for data analysis, such
as the genetic algorithm [35] and the artificial neural network (ANN) [36]. ANNs
are composed of elements that perform in a manner that is analogous to the ele-
mentary functions of the biological neurons. The elements are organized in a way
that may or may not be related to the cerebral anatomy. ANNs learn from experi-
ence, generalize from previous examples to new ones, and extract essential char-
acteristics from inputs containing relevant data. ANNs are used for the analysis of
experimental data over a wide range of scientific disciplines and are now applied
to fitting Méssbauer spectra. It may develop into a very convenient and highly ac-
curate method, and may become quite attractive to Mossbauer effect researchers.

3.6.1
Fitting Individual Lorentzian Lines

Based on the thin absorber approximation, the Méssbauer spectrum is a super-
position of Lorentzian lines. There are some differences in the fitting procedures
for crystalline and amorphous samples.
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3.6.1.1 Spectra from Crystalline Samples
If the experimental spectrum is a superposition of n Lorentzian lines (for o-Fe,
n = 6), then

z A
p(xi,©) = (E+ Fr+ Gx) +y ————F
= (%)

/2

i=1,2,3,...,N

(3.12)

where x; is the Doppler velocity, the quadratic term (E + Fx; + Gx;2) describes
the baseline, ¢ represents a total of (3n + 3) parameters (A, x4(0), Ty, and E, F,
G) to be determined, and N is the number of data points in the spectrum. Here
Ay, x¢(0), and T}, are the height, position (in mm s~!), and linewidth (in mm s™!)
of the kth Lorentzian line, respectively. This expression gives a theoretical model
and is used to fit the experimental spectrum. The usual method is the least
squares fitting, minimizing the following function:

N
7' = wily(xi.0) — 3]’ = min (3.13)
i=1

where y; is the y-ray counts in the ith channel and w; = 1/y; is its weight factor. A
necessary condition for a minimum of the above quantity is

A2 N -
Oai =2 wily(xi, ) — UY(;CC‘.’ Vo, j=1,23.. M43 (314)
7 i=1 7

This actually represents a set of nonlinear simultaneous equations, and the pa-
rameters ¢; cannot be solved analytically. One approach to this problem is to esti-
mate the initial values of the parameters (zeroth approximation)

0) . (0)

= (@?,69,69,...,c9), (m=3n+3)

and to approximate the function y(x;,c) by its Taylor expansion about c¢(?. We
then keep all the linear terms, and neglect all higher ones. The function y(x, c)

is linear with respect to the unknown parameters ci, ¢y, 3, . .., C!
y(xi, ©) ~ y(xi, ) + & sWy 4 oy 5 (3.15)
’ ’ dcr] o ! Ocm| o ™

where ¢,V = ¢; — ¢;(¥). Substituting (3.15) into (3.14), the simultaneous equations
become
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m N A
1) dy(x;, c) dy(x;, c)
o; ;
Z J ZW |: 5Cj -0 (3Ck CLOJ
]

j=1 i=1
N Py )
=> w {M} [yi — yp(xi, )] k=1,2,3,...,m. (3.16)
—~ dcy, o

This may be written in the matrix form
(FTW,F)o) = FTW (Y — Y,),

and the solution is

o = (FTW,F) '"FTW,(Y — Y,) (3.17)
where
Y1 — y(x1, )
y2 — y(x2, )
Y- Y=
yn — y(xn, )
f1 f2 o fim
1 f2 o Pm
F=
le fNZ e me
wq
wy O
W, =
0
WN
and

6Cj

withi=1,2,...,Nand j=1,2,...,m. Once the values in the matrix 6(") are cal-
culated, we obtain the first approximation of the parameters c

V) = O 4 50,

Now we use ¢ as our initial values for the next round of calculations, which will
give us 6% and c?). The iteration continues until a satisfactory convergence is
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reached. The convergence condition could be (1) when the relative change in ¢
values from the kth iteration to the (k + 1)th iteration is smaller than a given frac-

tion (e.g., 0.01), or (2) when the function y? shows almost no change and satisfies
2

08 <% < 1.2, where v denotes the degrees of freedom of the y? distribution.
v

The above description is only the basic principle of the Gauss—Newton method.

Because it has some disadvantages, several modified versions are available.

Mathematically, good fitting results can be easily achieved with this method.
But without an appropriate physical model, it would often be laborious to find a
satisfactory interpretation of the fitted spectrum.

3.6.1.2 Spectra from Amorphous Samples

In an amorphous material, the atoms occupy random sites, and consequently the
isomer shift J, quadrupole splitting AEq, and magnetic hyperfine field B will have
continuous distributions. If all three interactions are involved, the spectrum
would be extremely difficult to analyze. In many cases, fortunately, only one is
dominant. For example, from FeyoNisoP14B¢ under certain conditions, only the
continuous distribution of quadrupole splitting was observed [37]. In some amor-
phous iron alloys, if the spectrum is a symmetric and broad sextet, it may be
taken as caused by a continuous distribution P(B) of the magnetic hyperfine
fields with AEq = 0 and an identical isomer shift for all Fe nuclei. In addition, it
is assumed that the area ratio within each sextet is the same, regardless of the
B-value, and that the recoilless fraction is also the same thus the total area of a
sextet is proportional to P(B). Let S(v) represent the experimental spectrum
from the amorphous material. Under the thin absorber approximation, it can be
expressed as

S(v) = J: P(B)%(B,v)dB (3.18)

where v is the Doppler velocity, (B, v) is the Lorentzian sextet with the mag-
netic hyperfine field B, and P(B) is the normalized distribution function:

EC P(B)dB =1.

For calculating P(B) from the experimental spectrum S(v), one may use one of
the following two methods developed by Hesse and Window, respectively.

(1) The Hesse method [38]. The range of the magnetic hyperfine fields in ques-
tion is equally divided by n, each interval being AB. The maximum field value is
therefore B,y = nAB and the hth field value is B, = hAB. The spectrum can be
now approximated by a finite series:

S(vj) = > P(By)Ze(Byvj) +5 j=1,2,...,N (3.19)
h=0
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where ¢ is a term representing the influence of the statistical error at v;. The ex-
pressions in (3.19) may be collectively written in the matrix form

S=LP+e: (3.20)
In order to avoid unrealistic fluctuations in the calculated hyperfine field distribu-

tion due to the statistical errors in the experimental spectrum, the data should be
smoothed. To do this, we introduce a smoothing factor y and require

F n—1 5 N )
871% kz;y(Pk,l —2Pk+Pk+1) -‘rZ;LVJSJ :0
= j=

This is a set of simultaneous equations with the probability values P, as the un-
knowns, and may also be written in the matrix form

yDP + L™We =0 (3.21)
where
1 -2 1 0O 0 0 0 0 0 0 0
-2 5 -4 1 00 0 0 0 0 0
1 4 6 410 0 o0 0 0 0
0 1 -4 6 41 o 0 O 0 0
D= ,
0 0 o0 00 1 -4 6 -4 1
0 0 0 0O 0 O o 1 —4 5 =2
Lo 0 0 00 o0 0 1 -2 1|
We now substitute ¢ from (3.20) into Eq. (3.21), and solve for P:
P=(L"WL—-yD) " (L"'WS), (3.22)

which gives a set of values for the magnetic hyperfine field distribution.
(2) The Window method [39]. The probability P(B) is expressed as a Fourier
series in the range from 0 to Bpay:

nnB

N
P(B) = %—0— Zan cos
n=1

Bmax

Imposing a boundary condition P(Bmax) = 0, the above series is reduced to

N
P(B) = aufu(B) (3.23)
n=1
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where

fu(B) = cos —(=n" (3.24)

When Eq. (3.23) is substituted into (3.18)

N

S =3 a, L " £.(B)%(B,v) dB.

n=1

The integral in this expression can be calculated because each f, is a known func-
tion, and the coefficients 4, can be determined by minimizing the following ex-
pression:

Z[S(U) - Sexp(v)}2 = min. (325)

Once values of a, are calculated, Eq. (3.23) gives the magnetic hyperfine field dis-
tribution P(B).

These two methods usually give similar results, both having the advantage of
not requiring a priori knowledge or constraints on the shape of the distribution.
But the calculated P(B) often exhibits oscillations at the low field end, and some-
times even shows unrealistic negative values. Several improved versions of these
methods are also available [40—42].

3.6.2
Full Hamiltonian Site Fitting

In this method, we assume that the entire spectrum is a superposition of several
subspectra of Lorentzian lines. Each subspectrum corresponds to one particular
crystal site (or one particular environment). The hyperfine interactions that would
result in a subspectrum have been discussed in Section 2.4. Using this method,
we are no longer mathematically fitting the Mdssbauer spectral lines to obtain
certain parameters, but are studying physical problems such as the splitting of
the nuclear energy levels and the corresponding transitions in randomly oriented
magnetic fields or in a low-symmetry EFG. This means that, before carrying out
any calculations for fitting the spectrum, a Hamiltonian for the hyperfine interac-
tions in the sample should be established. In a general case, it is the sum of all
three types hyperfine interactions. Solving the secular equations would give the
eigenvalues and eigenvectors of the ground state and the excited state. The ener-
gies involved in the allowed transitions between these states will determine the
relative positions of the absorption lines. The transition probabilities will provide
information on the relative intensities of the absorption lines. Such a spectrum is
then characterized by a set parameters including isomer shift J, magnetic hyper-
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fine field B, quadrupole splitting AEq, the asymmetry parameter #, linewidth,
area of the absorption line, external magnetic field orientation angles 6 and ¢,
and y-ray orientation angles o and . During iterations using the Gauss—Newton
method, these parameters can only be adjusted under the constraints of quantum
mechanics to ensure that the fitting conforms to the proper physical model.
Therefore, fitting the entire spectrum is theoretically a much better method than
the earlier methods that fit only individual lines.

3.63
Fitting Thick Absorber Spectra

In reality, the thin absorber approximation may not be always practical. For in-
stance, the thickness of a metallic Fe foil corresponding to t, =1 is only 2.4
mg cm~2, and when t, < 1 is required, the physical sample would be too thin.
Therefore, it has been concluded that the above approximation is not valid for
most >’Fe absorbers [43]. As the thickness increases beyond the thin absorber
limit, the spectral lines will be broadened. The finite absorber thickness is not
likely to produce shifts in a Lorentzian distribution, i.e., it does not affect the
line positions but will bring appreciable changes in the line area or the line
height. Therefore, in this case it is necessary to evaluate accurately the transmis-
sion integral T(v), defined in Eq. (1.19). Usually, fitting the data is either by nu-
merical method directly [44] or by analytic representations [45—47]. Fourier trans-
form is another way, which is relatively simple and easy to follow [48]. Especially
after the recent development of fast Fourier transform algorithms, this method
has attracted a great deal of attention and has been further studied [49-53].

If we assume that the emission spectral line is normalized and the background
has been corrected, Eq. (1.24) may be rewritten as

—e(v) _ —1(o0,d) +I(v,d) _ (* K )
o I(o,d)f; *J_wg’(E CEO)[A(E) 1]dE. (3.26)

The right-hand side of this equation is a convolution of two functions. % is the
Lorentzian distribution function and A(E) = exp[—oc(E)t,] modifies the Lorent-
zian shape, thus distorts the Mdssbauer line, due to a finite thickness of the sam-
ple. However, ¢(E) in the exponent is the absorber Lorentzian line shape. We are
aiming at calculating o(E) from the experimental spectrum ¢(v) using Eq. (3.26),
and in this process, the non-Lorentzian spectrum is converted to a Lorentzian
spectrum, eliminating the effect of finite thickness.

In order to calculate ¢(E), we Fourier transform both sides of Eq. (3.26), and
use a theorem for convolution integrals:

97{—8;7”)} = F{L} o Flexp|-a(E)t)] — 1}.

Let



F{exp[-a(E)t,] — 1} = 57{—8}—1:)} F{L} =n.

References

(3.27)

Applying inverse Fourier transform # ! to Eq. (3.27):

exp[—o(E)t.] = F Hn} +1,

and solving for (E),

—o(E)ty = In[Z7 " {n} +1].

(3.28)

Based on this method, the experimental spectrum is first fitted to give ¢(v), which
is then treated according to Eq. (3.28) to obtain ¢(E).
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4
The Basics of Lattice Dynamics

In a solid, atoms and ions are tightly bound to lattice points so that, when the
temperature is not extremely high, they can only execute small vibrations (ther-
mal motion) around their equilibrium positions. Lattice dynamics is a branch of
solid-state physics that studies such lattice vibrations. It was first initiated in the
1930s by the Born—von Karman theory, the details of which have be described in
the text by Max Born and Kun Huang [1]. Lattice dynamics is important in under-
standing various phenomena and properties of solids, such as thermodynamic
properties, phase transitions, soft modes, etc. However, further research has re-
vealed some of the difficulties with the Born—von Karman theory, especially con-
cerning the periodic boundary condition and the basic equation of motion. Ne-
glecting surface effects, the periodic boundary condition is only good for large
and perfectly ordered crystals. In many cases, the crystals are imperfect and sur-
face effects must be considered. In the basic equation of motion, the classical lat-
tice dynamics neglects the role of electrons. Nevertheless, the Born-von Karman
theory laid the foundations for lattice dynamics and, therefore, we first introduce
this theory, followed by a brief description of first-principles lattice dynamics,
which is a computational method developed in recent years. The distinctive fea-
ture of this method is its inclusion of the explicit effect of electrons on lattice
dynamics.

4.1
Harmonic Vibrations

4.1.1
Adiabatic Approximation

The adiabatic approximation, also known as the Born-Oppenheimer theorem [1],
allows one to decouple the motion of the atom (more precisely, ion core) from the
motion of the valence electrons. The essential idea of this approximation is that
the nucleus, being at least 10° times heavier, moves much more slowly than the
electrons. At any moment the electrons “see” the nuclei fixed in some (generally
displaced) configuration. During the atomic motion the electrons move as though
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the nuclei were fixed in their instantaneous positions. We say that the electrons
follow the atomic motion adiabatically. In an adiabatic approximation, an electron
does not make abrupt transition from one state to others but will be in its ground
state for that particular instantaneous atom configuration. In the following, we
give an outline of some expressions in this approximation. The properties of a
crystal consisting ion cores and valence electrons are derived from the solution
of the Schrédinger equation

AW(r,R) = e¥(r,R) (4.1)
with the total Hamiltonian

H =Ty + Te + Vin(R) + Vee(r) + Ven(r, R)

—h? —h? ZiZy
:ZTMV§I+ZLTWH T ZlRl Rl/

l;él/

S 42
2 |r; — 1j| |ri — Ry '

i#j

where r and R represent the coordinates of valence electrons (e) and nuclei (n),
respectively.

To obtain an exact solution of the many-body equation defined by (4.1) is
hopeless, but we can approximately break it down into two subsystems of the
valence electrons and the core due to the large difference in their masses, and
the problem can be substantially simplified. From (4.2) we abstract an electron
Hamiltonian

J[/E = Te + Vee(r) + Ven(r7 R) (43)

and diagonalize it for a given atomic configuration (i.e., R is not considered as a
variable but a parameter). The equation is

%W(rv R) = E l//(I', R) (4'4)

where y(r, R) is the wave function for the entire system of electrons. Assume
that the total wave function can be written as a product

¥(r,R) = y(r,R)x(R) (4.5)
where x(R) is the wave function for the entire system of nuclei.

Substituting Eq. (4.5) in (4.1) using (4.4), one obtains the following Schré-
dinger equation for y(R), determining the lattice-dynamical properties of a solid:

[ ivz + V(R) | x(R) = ¢x(R) (4.6)
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with
V(R) = Vnn(R) + Ee(R), (4.7)

provided that the mixed terms

h? h?
WQI/‘VJZJVO and m<W|VR|‘//>'VR

can be neglected [2]. Thus we obtain the adiabatic lattice equation (Eq. (4.6)) with
V(R) as an effective potential consisting of interatomic potential and electron
eigenvalue E.(R), the latter being the mean contribution from the electrons.
However, the evaluation of E.(R) is very difficult. A more practical approach is
to assume certain phenomenological potential for V(R) which involves only a
few parameters (see Section 4.2.6).

The adiabatic approximation may break down in some cases, but we will as-
sume the validity of this approximation in our discussions here.

4.1.2
Harmonic Approximation

When an atom is at its equilibrium position (a lattice point), the attractive and
repulsive forces on it are exactly balanced. Because of thermal motion, the atom
moves away from the equilibrium position, the forces are no longer canceled, and
the net force tends to bring the atom back to its equilibrium position. The farther
from the equilibrium the atom is, the larger the restoring force. The displace-
ment of one atom also changes the potential energies of the surrounding atoms
and consequently causes them to move. A wave motion is produced because of
this type of vibrational motion propagating through the entire solid. In a perfect
solid, such a wave is known as the lattice wave. Since we are interested in atomic
vibrational displacements much smaller than the interatomic distances, the
method of small oscillations in classical mechanics can be applied to atomic
vibrations in a crystal.

Unless stated otherwise, in the following sections a crystal with a Bravais lattice
(one atom per cell) is used. Suppose the equilibrium position vector of each lat-
tice point (or each atom) is

1= 11(11 + 12(12 + l3(13 (48)
where Iy, I;, and I; are any three integers, while a;, a,, and a; are three non-
coplanar basis vectors (Fig. 4.1). Suppose that the Ith atom deviates from its equi-

librium position by u(!). Its actual position is

R =1+ u(l). (4.9)
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‘- Fig. 4.1 Primitive cell in a crystal.
a3

1 a

the /th primitive cell Fig. 4.2 Displacement of an atom in a non-Bravais crystal.

—

For the mth atom in the Ith unit cell within a non-Bravais lattice (Fig. 4.2), it
would be

Ry, =1+ m+ u(lm). (4.10)

The total kinetic energy of the crystal is
IEE
T= z;Mua(l) (4.11)

where M is the mass of the atom, and o = x, y, z. The potential energy V(R) is a
function of the instantaneous positions of all the atoms. The displacements u,(l),
as mentioned above, are small and V can be expanded into a Taylor series:

V=Vt ;(Da(l)u“(l) 4 ;ZI gdm(l, Yo (uap (1) + -+ (4.12)
where

@, (1) = ajxl) S (4.13)

@0l 1) = #ﬁv/(l) : (414)

When each atom is at its equilibrium position, the potential energy value is
chosen to be zero, i.e., Vo =0. Under equilibrium, the net forces are zero
(®,(l) = 0), thus the second term in (4.12) is also zero. Keeping only the qua-
dratic terms, we are taking the harmonic approximation, which is the basis for



4.1 Harmonic Vibrations

treating small oscillations [2, 3]. Terms higher than the second order are known
as anharmonic, and they need to be included when studying problems such as
thermal expansion.

Under the harmonic approximation, the vibrational Hamiltonian and the net
forces on the atoms are

H = %Z Mii (1) +%ZZ%(L Yug (Dug(l'), (4.15)
ol wl B
F,(l) = - aj:z) == 0L uy(l), (4.16)

BV

and the equation of motion for the Ith atom in the direction o(x, y,z) takes the
form

Miiy (1) = = 37 (1,1 g (1), (4.17)
BV

4.1.3
Force Constants and Their Properties

According to Eq. (4.16), the net force on atom ! is a linear function of the displace-
ments ug(l’), and the coefficients @,4(1, ") are called atomic force constants. Their
physical meanings are very simple. Suppose only one atom I’ has a displacement
(Fig. 4.3) while all other atoms are still at their equilibrium positions, then Eq.
(4.16) becomes

n_ Bl
—Ou(L1) =—5. 4.18
O] O] a
up(l'y =1 L'ﬁ
DPop(l, 1) 7 I
/ Dyl ') I%?(r I

Fig. 4.3 Schematic illustration of the meaning of force constants.
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It is clear that —®,4(1,1") is the « direction force acting on atom [ when atom I’
has moved a distance of unit length in the # direction. The force constants have
the following properties.

1.

(0,1 = By (1, 1) (4.19)

which is due to the fact that the partial derivatives are
independent of the order in which the derivatives are taken.

D (1) =0. (4.20)
l/

This is true because when each us(l’) in (4.16) is replaced by
an arbitrary constant cg, corresponding to a motion of the
crystal as a whole, there would be no changes in the relative
positions of the atoms, total potential energy, and its
derivatives. Therefore, F,(l) = 0, which means

D> Dy(ll) =0

B v

and because ¢4 can be arbitrarily chosen, we have Eq. (4.20).

Dyl 1) == Dy(l,1) (4.21)

Il
which comes directly from Eq. (4.20).
Oyl 1) = B (0,1' — 1) = Dy~ ,0), (4.22)
This indicates that a force constant depends only on the

difference between [ and I', i.e., only on the relative position
between the atom pair.

. When the force constants between atoms ! and I’ are

represented by a 3 x 3 matrix, they exhibit certain symmetry
properties. When applied to a specific crystal, these symmetry
properties can greatly simplify the force constant matrix.
Some matrix elements may be equal to one another, and
others may be zero. Symmetry considerations are very
important in lattice dynamics.

As an example [4], suppose two lattice points ! and I’ in a simple cubic (sc) crys-
tal are at the origin O and at a(100), respectively. Let us obtain the force constant
matrix ®(1,1") between these two atoms. Because the potential energy is invariant
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under translations and rotations, ®(1,1") should remain the same when operated
on by a symmetric orthogonal rotational operator (matrix) S:

Slo(1,1)s = o(1,1). (4.23)

First, we assume

1 0 0
$§=|0 -1 O
0 0 1

which describes an inversion with respect to the xz plane, leaving the bond
between the two atoms unchanged. Substituting S into (4.23), carrying out the
operations, and comparing the resultant matrix with ®(l,l’) on the right-hand
side of (4.23), we find that —®;; = ®q;, which means ®;; = 0. Also, we get
®y; = O3 = O35 = 0. Similarly, we may let S be

1 0 O 1 0 O
01 o0 and |0 0 -1/,
0 0 -1 01 0

corresponding to an inversion with respect to the xy plane and a 90° rotation
about the fourfold symmetry axis, respectively. These operations lead to @3 =
@31 = 0 as well as @y, = P33, and the force constant matrix for the neighboring
atoms along the [100] direction must take the general form

0
0
B

o 0
o=—|0 B (4.24)
0 0
where o describes the longitudinal (I) force and f the transverse (t) force. Because
of the axial symmetry, the two transverse forces have equal magnitudes (Fig.
4.4(a)).

The force constants between two atoms form a second-order tensor, and there
exists a principal coordinate system in which its matrix is diagonalized. But this
coordinate system may not be the principal system for the force constant tensor
between another pair of atoms. For example, if the coordinate system used in Fig.

4.4(a) is applied to a face-centered cubic (fcc) lattice, the force constant matrix
between the atom at origin and the atom at (a/2,a/2,0) is

\
o = R
o ] =
= © o
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1 °

! I
0 N o 7T
a(1,0,0) 5{],1 0)
S 00 a y 0
-0 £ 0 -y a 0
0 0 f 0 0 B

Fig. 4.4 Force constant matrices between the atom at origin and its
nearest neighbor for crystals with simple cubic (sc) and face-centered
cubic (fcc) lattices. For an fcc lattice, fi = o+, fy =a—1y, and f, = .

which is not diagonal. The principal system for this matrix can be obtained by
rotating the original system by 45° with respect to the vertical axis, and the diag-
onalized matrix is

o+y 0 0
- 0 a—y 0
0 0o B

It is clear that the forces are no longer axially symmetric. If the forces between
atoms are central forces, then f =0and « — y = 0.

The force constant matrices between various atom pairs in crystals with fcc and
body-centered cubic (bcc) structures can be found in Appendix C.

4.1.4
Normal Coordinates

The kinetic energy in Eq. (4.15) is simply the sum of the quadratic terms, each of
which involves only one atom in the crystal. But the potential energy is more
complicated because of the cross products of atomic displacements, resulting in
coupled equations of motion and making it difficult to find their solutions. How-
ever, a linear transformation will allow us to find a new coordinate system in
which both kinetic and potential energies have only square terms and no cross
terms. As a result, the equations of motion become uncoupled. These new coor-
dinates are called the normal coordinates.

For a harmonic lattice, we try to solve equation (4.17) for an atom Il. One
possible oscillatory solution is

(L, t) = ul(l)e ", (4.25)
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Substituting (4.25) into (4.17) leads to the eigenvalue equation

Mio’ul(l) = D)/ Mpug(l') (4.26)
B
where
/ A (Dotﬁ(l l,)
Dl(l) = T (4.27)

are the elements of the matrix D’.
For a total of N atoms in a solid, Eq. (4.26) has therefore 3N solutions labeled
by an index s which runs from 1 to 3N:

Miow?ud(ls) = > Dy V)y/Myug(l,s). (4.28)
"B

2 must be real and, to keep

Since D' is a real symmetric matrix, its eigenvalues wy
the solid stable, w; must not be negative.

There is a unitary matrix B with elements B,(l,s) which diagonalizes D’ 3, 5]:

> Bi(Ls)Dl(LV)B,(1, ') = 2o, (4.29)
o, B, 11

and has the following properties:

> Bi(1,s)Bu(l,5') = 0,
o,l

(4.30)
Z B;(L,5)By(l',s") = dypouy.

Since M; is diagonal, after diagonalization of the matrix D’ the expression in
(4.28) becomes 3N separate equations, each of which describes a harmonic
vibration.

It is this very matrix B that transforms the Cartesian coordinates to a set of
normal coordinates ¢, through the formula

1
uy(l) :ﬁZBu(lv 5)%- (4'31)

In terms of the normal coordinates, both the kinetic energy and the potential
energy are without any cross terms:
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T=3> =52 (432)
V=20, (4.33)

and the Hamiltonian (4.15) changes into

H = Z (p? + wlq?). (4.34)

With this Hamiltonian, one gets 3N uncoupled equations

4+ 02qs =0, s=1,2,3,...,3N (4.35)
where each equation is simply solved in the form of

s = Ae . (4.36)

The vibration with a particular w; is called a normal mode. If only one normal
mode w; has amplitude A and all the others have zero amplitude, then (4.31)
becomes

B,(l,s)
VM

uy(l) = Agemiot, (4.37)

Here we see that different atoms in a crystal vibrate with the same frequency w;.
In other words, a normal mode vibration is not the vibration of one single atom,
but a collective vibration of all atoms in the crystal, forming a so-called lattice
wave.

For a perfect crystalline solid, a normal mode s can be represented by the
branch index j and wave vector k so that w, becomes w;(k), and the coefficient
in (4.31) can be expressed as [6]

B,(l,kj) = e, (kj)e'®! (4.38)

1
VN
where ¢,(kj) is the a-component of the polarization vector. When Eq. (4.38) is

substituted into (4.37), we can clearly see the meaning of the polarization vectors
which describe the directions of the atomic vibrations in a normal mode.
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4.2

Lattice Vibrations

4.2.1
Dynamical Matrix

Inserting (4.36) and (4.38) into (4.31), we get a general expression for the dis-
placement of an atom in a Bravais lattice:

ui(l) = V;_M;A@j)ex(kj) explilk- 1 - wj(k)t]}. (4.39)

A lattice wave traveling throughout the entire crystal results in displacements of
neighboring atoms differing by a phase factor k - I, while every atom will vibrate
with the same frequency w;. Substituting (4.39) into (4.17) with M = M, we ob-
tain, for each mode kj

ke, (kj) = ZDW; Yep (ki) (4.40)

which is the eigenvalue equation determining the relation between the frequency
w; and the wave vector k. The eigenvectors e,(kj) satisfy the following orthonor-
mality and closure conditions:

Ze (kj)e.(kj') = o7,

(4.41)
> e (kj)es(kj) = 6.
j
The matrix element D, in (4.40) is
Dy(k Z ®,4(0,1" — 1) explik - (I' = )]
l’ 1
1 .
= EL: ®,4(0, L) explik - L] (4.42)

where L = I' — 1 is the position vector from atom [ to atom I’. This 3 x 3 matrix D
is known as the dynamical matrix, which contains all the information about the
particular normal mode. One of the tasks of lattice dynamics is to find an explicit
expression of this matrix for a given crystal. Using the properties of ®,5, we can
prove that D is Hermitian:
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D,y(k) = Dy, (k). (4.43)
Based on (4.42), it can also be shown that

D,y(—k) = Dy (k). (4.44)

The condition for the simultaneous Egs. (4.40) to have nontrivial solutions is

det[®?d,5 — Dyp(k)] = 0. (4.45)
For each k value, there are three eigenvalues w;*(k) (j = 1,2,3), which are guar-
anteed to be real because D is Hermitian. Also, wj(k) should be either positive or

zero. For a particular j, the relation between the angular frequency w and the
wave vector k is known as the dispersion relation:

o=owjk) (j=1,23). (4.46)

Each j represents one branch of the vibration spectrum. In general, different
branches have different dispersion relations. Within one branch, o is a continu-
ous function of the wave vector k.

The vibration amplitude A(kj) depending on the average energy of mode kj can
be expressed as [4]

i E(kj
AR = (447
where
E(kj) = hooy(k) {; + 1} (4.48)
PN explhay(k)p) — 17 2)° ‘

Each atom’s displacement from its equilibrium position can finally be written as

o 1/2
) =\ S [ et exptihe 1 i) (409
k,j

For a non-Bravais crystal, let each unit cell have r atoms. The above derivation
is completely valid, provided that we use u,(Im) to replace u,(l), and also use
O,5(Im,I'm’), e,(m|kj), and D,p(mm'|kj) to replace the corresponding quantities,
where m = 1,2,...r. The dynamical matrix is no longer 3 x 3, but 3r x 3r. For
each wave vector k, there will be 3r eigenvalues w;?(k), j=1,2,...,3r.
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422
Reciprocal Lattice and the Brillouin Zones

4.2.2.1 Reciprocal Lattice

A perfect crystal is composed of periodically arranged primitive cells; each is de-
scribed by three basis vectors a;, a;, and a;. We now define the following three
new vectors from the basis vectors:

a; X as a X a; a X ay

_BEDB h =BT py =2 TR 450
a; '((12 X (13) 2 a; '((12 X (13) 3 a; '((12 ><03) ( )

b1 =2z

These new vectors b; can be used to construct a new lattice, known as the recip-

rocal lattice. The original lattice is called the direct lattice. The position of each
reciprocal lattice point is

t = hyby + hyb, + h3bs (4.51)

where hq, h,, and h; are integers and z is referred to as the reciprocal lattice
vector. The reciprocal lattice has the following properties:
1. The reciprocal basis vectors b; satisfy

a; - bj = 27159‘ (l,_] = 1, 2, 3). (4.52)

2. The dimensions of the direct lattice and reciprocal lattice are
L and L7, respectively. Since the dimension of any wave
vector is also L', it may be represented in terms of the basis
vectors of the reciprocal lattice, and therefore the reciprocal
space is also known as the k-space. If the volume of the
direct primitive cell is V,, the reciprocal primitive cell volume
is (27)%/ Va.

3. The scalar product of any reciprocal lattice vector with any
direct lattice vector yields an integer multiple of 2z.

- L= (bi + hyby + h3b3) - (Liay + Lra; + Lzaz)
= Zﬂ(”t]Ll + ”Lsz + h}L}) = 2nm (453)

where h;, L;, and m are all integers.

4. The vector 7 defined in Eq. (4.51) is perpendicular to a family
of lattice planes with Miller indices hq, h,, h; in the direct
lattice. Each of the 14 different Bravais lattices has its specific
reciprocal lattice type. For example, a bce direct lattice has an
fcc reciprocal lattice.
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It should be noted that the number of unit cells in the direct crystal is very
large and, therefore, the allowed k values form densely and uniformly distributed
points in the k-space. For example, in a one-dimensional atom chain of 1 cm in
length, the size of its Brillouin zone is about 10® cm™!. There are 108 allowed k-
values and they can be regarded as quasi-continuous.

4.2.2.2 Brillouin Zones

In the dynamical matrix, the wave vector k appears only in the exponent of <L,
If k is increased by any reciprocal lattice vector, we have

ei(k+1)-L _ ei(k~L+2nm) _ eik-L (454)
and therefore

D(k + 1) = D(k). (4.55)

This shows that k and (k + 7) are equivalent in both the dynamical matrix and
the dispersion relation. Therefore, it would be sufficient to confine k within the
following ranges:

2 -2

<<, (4.56)

This region is called the first Brillouin zone, a reciprocal primitive cell.

Equation (4.56) also tells us how to construct the first Brillouin zone. We start
by selecting a particular reciprocal lattice point as the origin (k = 0), and connect
this point to the nearest neighbor and next nearest neighbor reciprocal lattice
points with straight lines. Now we construct perpendicular bisector planes of the
lines. These planes form the smallest polyhedron that encloses the origin, and
the space inside the polyhedron is called the first Brillouin zone. Similarly, sec-
ond and third Brillouin zones can be constructed. Each zone has the same
volume, and none of the bisecting planes cuts through it. Figure 4.5 shows
three Brillouin zones for a two-dimensional square reciprocal lattice. If a vector
7 = —b; is added to every point in area A,, it will be superimposed exactly onto
A;. Similarly, B,, C,, and D, can be made to coincide with By, Cq, and D4, respec-
tively. In summary, any higher Brillouin zone is a repeat of the first Brillouin
zone.

The fcc lattice primitive cell and its reciprocal lattice first Brillouin zone are
shown in Fig. 4.6. The basis vectors of the primitive cell are
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Fig. 4.5 First, second, and third Brillouin zones in a two-dimensional square reciprocal lattice.

Fig. 4.6 (a) Fcc lattice and (b) the corresponding reciprocal primitive
cell and the first Brillouin zone.

a; 22(171’0)7 aQ = (07171)7 as = (1a071) (457)

N R
N R

with a volume V, = a*/4. According to (4.52), the corresponding reciprocal lattice
basis vectors are

_2n _ e —1,-1,1). 4.58
by . (1,1,-1), b, . (-1,1,1), bs , (1,-1,1) (4.58)
Similarly, the basis vectors of the bcc primitive cell are

a = g(la 17 _1)’ a = (_]'a 17 1)7 a = g(lv _17 1) (459)

N R

with a volume V, = a3/2. The corresponding reciprocal lattice basis vectors are

2 2 2
b1:§(17170)7 b2:l(07171)7 b3_ *

. =~ (1,0.1). (4.60)
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ke k.
(b)

Fig. 4.7 First Brillouin zones of (a) a bcc lattice and (b) an fcc lattice,
with some special reciprocal lattice points as indicated.

Comparing the four sets of vectors in Eqs. (4.57)—(4.60), we can see that the
reciprocal lattice of fcc is bee and the reciprocal lattice of bec is fcc. The first
Brillouin zones of these two types of lattices are shown in Fig. 4.7.

423
The Born—-von Karman Boundary Condition

The general method for solving crystal vibrations discussed above can actually
only be applied to an infinitely large crystal. A real crystal has a finite size and
those atoms on the surface vibrate differently from the atoms in the interior.
The forces between atoms are short ranged; thus there is only a small minority
of surface atoms whose vibrations would be governed by equations of motion
different from those discussed above. What complicates the matter is that the
equations of motion for vibrations of atoms are all coupled together. In order to
overcome the mathematical difficulty in solving the simultaneous equations,
Born and von Karman proposed a periodic boundary condition [7]. For a one-
dimensional chain of N atoms, it is modeled by a ring of N atoms as shown in
Fig. 4.8. If N is very large, the curvature is small, and motion along the circum-
ference is approximately the same as a one-dimensional motion along a straight

Fig. 4.8 Born—von Karman boundary condition for a one-dimensional chain.
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line. The Born—von Karman boundary condition for a monatomic linear chain
requires that the vibration of the first atom is the same as that of the (N + 1)th
atom:

u(l) = u(N+1).
According to Eq. (4.39), we have

eNak — 1 (4.61)
which means

_27z

k=

(4.62)

where h is an integer and a is the nearest neighbor distance in the chain. Since
k is restricted in the first Brillouin zone (—z/a < k < n/a), there are only N pos-
sible integer values for h (—N/2 < h < N/2). These N different k values corre-
spond to N different lattice waves, which coincides with the total number of unit
cells in the chain, indicating that we have obtained all the possible normal modes.

For two- or three-dimensional crystals, similar boundary conditions are im-
posed. For example, the basis vectors for a three-dimensional primitive cell are
a;, a;, and as, and there are a total of N = N; N, N3 primitive cells where each
N; is a large number. The boundary condition requires that

eMok =1 (1=1,2,3).

The only difference is that a diagram depicting the three-dimensional boundary
condition would be much more complicated than Fig. 4.8 [5].

The addition of the periodic boundary condition does not change the solutions
to the equations of motion, nor the dispersion relations. The only difference is
that k-values are no longer continuous, but discrete. The limited number of dis-
crete values that k can take is equal to the total number of primitive cells in the
crystal. The continuous lattice vibrational spectrum becomes a discrete one.

4.2.4
Acoustic and Optical Branches

A slightly complicated one-dimensional lattice is the diatomic chain, each unit
cell containing two atoms. Solving the vibrations of this system is mathematically
simple, but it is important because it already contains most of the essential con-
cepts of the dynamics of atoms in a crystal [8].

Let m and M be the mass values of the two atoms, a be the interatomic distance
at equilibrium, and u and v be their displacements along the chain (Fig. 4.9). Sup-
pose each atom only interacts with its two nearest neighbors with a force con-
stant o. The net forces on the atoms m and M in the Ith cell are respectively
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Fig. 4.9 Equilibrium positions and displacements of a one-dimensional diatomic chain.
a(vp—w) —o(w —v—1) and a(wq — v;) — o(vy — wy). The corresponding equa-
tions of motion for the two types of atoms are

mii = ot(l)l +vq = 2ul) (4 63)
M, = CX(qu + u; — ZUI).

For a chain with N unit cells, there are a total of 2N simultaneous equations. We
will try to solve Eq. (4.63) using traveling waves of the following forms:

w = Ae i[2lka—wt]

. (4.64)
v = Bel[(ZHl)kafwt].
Substituting these into (4.63), we obtain
—mw?A = o[B(e™ + e7*4) — 24]
(4.65)

~Mo?B = o[A(e™ + ¢ **) — 2B].

These two equations do not depend on [, indicating that all pairs of equations in
(4.63) are reduced to the same equations in (4.65) as long as the solutions are in
the form of a lattice wave. What we have in (4.65) are two homogeneous linear
equations for A and B, and the condition for nontrivial solutions is
‘mefZa 20 cos ka o, (4.66)
20cos ka  Maw? — 2a

from which we obtain two solutions for w?:

1/2
1 1 1 1\ 4
b)) ] e

1 1\ 4 2
o (—+—) — — sin® ku} . (4.68)
m m.
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Fig. 4.10 Dispersion curves of a one-dimensional diatomic chain.

The first relation is for a longitudinal acoustic branch w4 (k) and the second for
a longitudinal optical branch wio(k). Their dispersion relations are shown in
Fig. 4.10.

If m = M, the acoustic branch dispersion relation becomes

wa(k) = 2\/%

which is just the dispersion relation for a one-dimensional monatomic chain.
We now impose the same periodic boundary condition on the diatomic chain
with N unit cells. There are N possible integer k-values in the first Brillouin zone:

sin ? (4.69)

n
——<k< —.
2a 2a

For every k-value, (4.67) and (4.68) give two frequencies. Therefore, we obtain a
total of 2N lattice waves, a complete set of normal modes.

Let us analyze some characteristics of lattice waves in the two branches w; and
w10-

1. In the limit of k — 0. For the acoustic branch dispersion relation,
sin? ka ~ (ka)?, and expanding Eq. (4.67) for small k gives

200
WA X a - Mk. (4.70)

This shows two major characteristics of the acoustic branch: w4 is proportional
to k and when k = 0, wia = 0. Furthermore, the ratio of the vibration amplitudes
of the two atoms is
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Fig. 411 Schematic illustration of displacements of a one-dimensional diatomic chain [9].

(A/B),, ~ 1. (4.71)

This indicates that when k — 0 (long wavelength), the two types of atoms vibrate
with nearly the same amplitude and the same phase. The wavelength is much
longer than the dimension of the unit cell. If all the atoms are moving towards
the right within one half wavelength, then the atoms in the next half wavelength
are all moving towards the left, with the linear atomic density varying like a wave,
as shown in Fig. 4.11(a). In this case, the lattice may be treated as a continuum,
and a long-wavelength lattice wave can be regarded as an elastic wave. It can be
shown that the phase velocities of the long waves and the continuum elastic
waves (sound waves) are the same, and hence the name “acoustic branch.”

For the optical branch, when k — 0 (long wavelength), we obtain the following
dispersion relation:

M
wro ~ 4[24 / (mm+ M) (4.72)

and the ratio of amplitudes

(A/B)o = —M/m. (4.73)

The dispersion relation shows that the frequency is independent of wave vector k.
The amplitude ratio indicates that the two types of atoms vibrate in opposite
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directions and the center of mass of each unit cell remains stationary as shown in
Fig. 4.11(b).

Long-wavelength optical modes in ionic crystals can absorb infrared waves, and
light can be used to excite vibrations in the optical branch, hence the name “opti-
cal branch.”

2. When k = +x/2a. In this case

A
oA =/ 20/M, E:O,orA:O,
(4.74)

A
wro = \/20/m, 3= o0, or B=0.

For the acoustic branch, atom m is stationary while for the optical branch, M
remains stationary (Figs. 4.11(c) and (d)). Compared to a monatomic chain, the
most important feature of a diatomic chain is the addition of an optical branch.
Furthermore, there is a gap between the dispersion curves (w0 — wia), and the
Brillouin zone is only half as large.

425
Longitudinal and Transverse Waves

The lattice waves described in the last section are longitudinal waves (denoted by
the subscript L), propagating along the direction of atomic vibrations. If a wave is
propagating in a direction perpendicular to atomic vibrations, it is a transverse
wave (denoted by T). A perfect one-dimensional chain of atoms does not produce
transverse waves, but a real crystal can have both longitudinal and transverse
waves [9].

So far, a one-dimensional lattice vibration has been solved by applying New-
ton’s laws. For a three-dimensional crystal, the method given in Section 4.2.1
should be used. In this section, we use an fcc crystal as an example to show how
a transverse wave can exist and, more importantly, to demonstrate the process of
solving a general problem of lattice dynamics.

In order to solve Eq. (4.40) we must first find the dynamical matrix. In an fcc
crystal, each atom (or ion) has 12 nearest neighbors (Fig. 4.12), and the corre-
sponding 12 force constant matrices are given in Appendix C (actually only 6
distinctive matrices). The latter fact indicates that the dynamical matrix can be
expressed as follows:

6
D= ZDH—%CD(0,0) (4.75)
i=1

where ®(0, 0) is the self-force constant matrix of the atom at the origin, and it can
be calculated by Eq. (4.21):
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t

(101)

(101) o

Fig. 4.12 Coordinates (x, y,z) of the 12 nearest neighbors of the atom
at the origin in an fcc crystal.

4428 0 0
®(0,0) =2 0 4o+ 2f 0
0 0 4o+ 2

Suppose D is the contribution to D from two nearest neighbors at + g (1,1,0),
then [4]

o y 0
1 L 4 L0
Dlzfﬁ y a 0 {exp{tki(l,l,O)]+exp{71k~5(1,1,0)}}
00 p
y 0
. ak1 akz
0 f

where ki, k;, and k3 are the components of k along the cubic crystal axes. The
other five matrices D, to Dg can also be written down in a similar manner. Mak-
ing a sum of these contributions, we obtain D with the following elements:

4 k k k
Dy :Ma {2 — Cos % (cos %Jrcos %)}

4ﬂ akz ak3
abvi {1 — cos —= cos 7} , (4.77)

and D5, and D33 have similar expressions, the off-diagonal components being
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4}) ak1 . akz

DlZ = D21 :M Sil’lT sin 77
4y . aky . aks
D13 = D31 =— — — 4.78
13 31 M sim 2 s 7 ( )
4 k k
D23 = D32 :My sin % sin %

The first Brillouin zone is shown in Fig. 4.7. Let us calculate the vibrational

modes along the [100] direction, where k = —(,0,0). Here ( is the reduced

2n
a
wave number along the [100] direction, and it changes from 0 (at the origin I') to
1 (at the zone boundary X). Using this notation

akli akzillkgi
5 =, 5 =75=0

the corresponding dynamic matrix can then be simplified to

20 0 0
(I—cosnl)| 0 a+p 0 |. (4.79)
0 0 o+ p

D— 4
M
In this case, D is already diagonal, and we can immediately write down the
eigenvalues:

0} =o0?= (1 — cos n{).

Substituting each eigenvalue back into the original equation (Eq. (4.40)) to find
the corresponding eigenvector:

(L mode),

(Ty mode), e(3) = (T2 mode). (4.80)

= o O

These are three unit vectors, none depending on k, in the x-, y-, and z-directions,
respectively. As mentioned above, « is the longitudinal force constant, so w is the
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Fig. 4.13 Dispersion curves along the [100] direction in an fcc crystal.

longitudinal wave frequency. Inspecting Fig. 4.4 and the matrix in (4.79), we can
see that w; and ws represent vibrations perpendicular to the [100] direction, i.e.,
transverse waves. Therefore, the dispersion relations are

[a . ak

WA = 4 M sin I7 (481)
a+f . ak

OTA = 4 72Mﬁ sin Z, (482)

and the dispersion curves are shown in Fig. 4.13.

It is interesting to look at the patterns of atomic displacements for a mode at
the zone center ({ = 0) or the zone boundary ({ = 1). Using the basis vectors a;
for the fcc lattice and Eq. (4.8), we can calculate the vector I for any atom in the

crystal, I = ;(ll + 13,11 + 15,1 + 13), where I4, I, and I3 are integers. In the case

of { = 1, the atomic displacement is given by Eq. (4.39) whose exponent is

k' 1 = 2771-(1,0, 0) . (ll + l37l1 + lz,lz + 13) = (ll + l3)7‘[ = iSﬂ. (483)

N

Here s = I; + I3 is also an integer labeling successive lattice planes all parallel to
the yz-plane and perpendicular to the wave propagation direction. When this is
substituted into (4.39), we obtain the displacement for an atom in the sth plane:

u(s) = u(0)e™ e (4.84)

which happens to be a standing wave, not a traveling wave. All the atoms in the
same plane have the same phase; for even s-values, e = 1, and for odd s-values,
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Fig. 414 Schematic representations of atomic displacement vectors in

an fcc crystal [8]: (a) at the Brillouin zone boundary k = 277{(1,0,0); (b)

PEEE 0
a \22
while the even planes are stationary, 2 = v/2a.

2z (11
for k = ( >, alternate odd planes move in opposite directions

e = —1; therefore atoms in alternate planes have opposite phases (Fig. 4.14(a)).
The wavelength of the standing wave is 4 = 2r/k = a, which is consistent with
Bragg’s condition, 4 = 2d sin 0. When 0 = n/2, d = a/2 is exactly the interplanar
separation. We conclude that a vibration mode with a wave vector k at the Bril-
louin zone boundary does not propagate in the crystal, but is repeatedly reflected
like a standing wave.

It should be noted that during the construction of D(k) only the first nearest
neighbor atoms are involved, but in practice one has to include interactions at
least out to the fifth nearest neighbors.

Now we turn our attention to the modes that propagate in the [110] direction.
The wave vector is k = (2r/a)({, {,0) with { running from 0 (at the origin) to 3/4
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(at point K). Following the above procedure, we obtain the corresponding disper-
sion relations:

8 o (nl\ | 4 .
o =wl, = M(a + ) sin? (5) +M(o< +7) sin? #¢,
8 . n 4 .
1_ 2 _9%/ o A 2
) = 0Ty, —M(1+/3) sin <2>+M(fx y) sin” (4.85)
160 . ,(wl\ 45 .
] =i, = Vi sin’ (7) +a7 sin® n{,
and the eigenvectors
. [1
e(1) = 7 1| (LA mode),
K
. -1 0
e2)=—12| 1 (TA; mode), e(3)=|0]| (TA; mode). (4.86)
V2 0 1

The patterns of atomic displacements for k = n (17170> are shown in Fig.
a \2'2
4.14(b).

The modes along the [111] direction can also be calculated, and the results are
similar to those for [100], with sinusoidal functions for w and the degenerate
transverse waves [4].

The solutions in the above examples are relative simple, where the eigenvectors
are all independent of the vectors k, which are along three highly symmetric
directions. Hence the direction of atomic displacement is determined by the crys-
tal symmetry rather than the force constant, and both L-mode and T-mode are
strictly pure.

In a general case, the eigenvectors will depend on both the magnitude and
the direction of k; that is, their orientation relative to k depends on the force
constants and therefore the modes will not be purely longitudinal or purely
transverse.

One final point is that if each primitive cell has r atoms, the number of mode
branches is 3r. Among these, there are three acoustic branches, one longitudinal
(LA) and two transverse (TA) modes. The rest (3r — 3) branches are optical
branches, also characterized by longitudinal (LO) and transverse (TO) modes.

4.2.6
Models of Interatomic Forces in Solids

Although this is one of the important issues in lattice dynamics, we will only
briefly discuss the methodologies here. In the general principles of the Born—
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von Karman theory described above, the force constants (o, f, y, etc.) in the dis-
persion relations w;(k) are still unknown. There are generally two methods for
calculating the vibration frequencies w;(k). One is a phenomenological approach
and the other is a microscopic theory of lattice vibrations in which a general
expression for the force constants is derived from first principles based on the
electronic structure of the solid. Here we will confine ourselves to the phenom-
enological models of interatomic forces, the details of which can be found in
Ref. [8]. In this approach the force constants (o, f8, y, etc.) are considered as
parameters adjusted to fit experimentally observed vibration frequencies w;(k) or
derived from an empirical potential model for the crystal under investigation to
calculate w;(k). A good empirical potential model should contain a few feasible
and physically meaningful parameters.

When inert gases Ne, Ar, Kr, and Xe solidify at low temperatures, they form fcc
crystals. The interatomic interaction is characterized by a two-body central poten-
tial, the most successful being the Lennard-Jones potential expressed as

V(r) = 4¢ {(‘:)12 - (‘:ﬂ (4.87)

where r is the distance between the atoms, the first term represents the van
der Waals attraction, the second term represents the repulsive interaction, e is
the minimum value of the potential energy, and ¢ is the minimum distance be-
tween two atoms when V(r) =0. The two parameters ¢ and ¢ can be deter-
mined from the measured lattice constant ag and the heat of sublimation —L,
respectively.

From this empirical potential one can obtain the force constants and then
phonon dispersion. For example, the observed w;(k) curves of **Ar at 10 K are
satisfactorily consistent with the theoretical calculated dispersion relations [10].
This model has also worked quite well with a number of simple metals (such as
aluminum and alkali metals).

For ionic crystals in which the ions are not polarizable, the Born—-Mayer poten-
tial is generally applied. It consists of a short-range repulsive term and a Cou-
lomb interaction term. But when the polarizabilities of ions and electrons need
to be included, the shell model must be used. In the latter, an atom is represented
by an unpolarizable ion core and a shell of valence electrons, and an electric di-
pole is generated by the relative displacement of the shell with respect to the core
[11].

Covalent crystals are clearly distinct from other crystals, because the covalent
bonds are highly anisotropic. Therefore, alternative models have been developed
which use angular (the Keating model [12]) or bond charge (the bond-charge
model [13]) to simulate the effects of the highly anisotropic distribution of elec-
trons in these crystals. Recently, a multibody empirical potential has been pro-
posed in the form of Morse pair potentials, which has provided more accurate
descriptions of the interatomic forces in covalent systems [14, 15].
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43
Quantization of Vibrations: The Phonons

In the previous sections we treated a normal mode in a crystal as equivalent to an
oscillator. Quantum mechanically, the eigenvectors of the crystal vibration can be
represented as a product of wave functions of a one-dimensional harmonic oscil-
lator. The energy of a particular normal mode with w is quantized and given by

1
En:(nJrE)hw, n=0,1,2,... (4.88)

where n is a positive integer (including zero), and 1 fiw is the oscillator energy at
absolution zero (zero point energy). At nonzero temperatures, a series of higher
energy levels (n =1,2,3,...) are excited, the energy difference between adjacent
levels being fiw (Fig. 4.15). These quantum states for a particular normal mode
can be described by a set of integers n =0,1,2,3,..., in units of iw. Analogous
to the photon for the electromagnetic field, the energy quantum #w for the lattice
waves is called a phonon. We see that one lattice wave or one type of vibration
produces one type of phonons, and n = 1,2, or 3,... is the number of phonons
of frequency w. Two equivalent ways for describing a normal mode are shown in
Fig. 4.15. The minimum energy exchanged between a y-photon (or an electron)
and the lattice is one phonon. The normal mode methodology is possible only
because of the harmonic approximation. Therefore, the introduction of the pho-
non concept is a direct consequence of this approximation.

Phonons are nonlocalized quasi-particles. Atoms or nuclei are the real particles
participating in the vibrations. Phonons are the energy quanta of their collective
motion. A phonon as a quasi-particle does not have mass, and it is impossible
to get a “phonon beam” out of a crystal. The wavelength of a phonon is usually
quite long; therefore it is a nonlocalized state.

Harmonic Oscillator Description Phonon Description
n = quantum number n = number of phonons each
with energy how
quantum state energy I,
. 9°
n=4 —_— 5 ho n = 4 phonons
7
n=3 —_— 2 heo n =3 phonons
& i
n=2 —— Ehw n =2 phonons
4 3
n=1 —r 5 ho n =1 phonon
1
n=0 _— Eﬁw n =0 phonon

Fig. 4.15 Two different descriptions of a normal mode ().



4.4 Frequency Distribution and Thermodynamic Properties | 141

A phonon in a crystal does possess momentum. When it interacts with a
particle such as a photon or a neutron, it behaves as if it has a momentum of
hk. Therefore, hik is called the quasi-momentum of a phonon or the crystal
momentum.

Phonons are bosons. Each lattice wave corresponds to one type of phonons, and
they are all identical particles with zero spin (bosons). The higher the tempera-
ture is, the larger the amplitudes of lattice wave, and consequently the higher
the average energy and the higher the average number of phonons. Therefore,
the total number of phonons is not conserved. In a thermal equilibrium, the av-
erage phonon number <{n(kj)) is given by the Bose—Einstein statistics

1

(n(kj)) = exp[haj(k)p] — 1 (4.89)
where f# = 1/kgT. The average phonon energy for mode kj is
(o (K, 1)> = <ot + 5] b k). (490

The total energy of the lattice is the sum of the above over all the vibration modes

heoj(k
T)) = ; CE(wj(k), T)) = ;W Zhwj (4.91)

where the second term is temperature independent.

The introduction of the phonon concept transforms the study of lattice vibra-
tions to a problem similar to that of an ideal gas — a phonon gas system. When
y-photons or neutrons are scattered by a solid, phonons can be created or annihi-
lated, and thus the dispersion relation w;(k) can be measured by such experi-
ments. A process in which no phonons are created or annihilated is precisely the
recoilless process in Mossbauer experiments.

Note that the phonon concept can be extended to disordered solids, where a
phonon represents a quantum of atomic vibration energy but without the crystal
momentum k.

44
Frequency Distribution and Thermodynamic Properties

4.4
The Lattice Heat Capacity

The heat capacity ¢, of a solid at constant volume is conventionally defined as

__(E
vo\oT),

where E is the average internal energy of the solid.
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It has two contributions, one from lattice vibrations (lattice heat capacity) and
the other from the thermal motion of electrons (electronic heat capacity). When
the temperature is not too low, electronic heat capacity can be neglected because
it is much smaller than lattice heat capacity. In this section, we discuss lattice
heat capacity only.

According to the classical equipartition of energy, the average energy of each
harmonic motion is kgT. If there are N atoms in the solid, the total number of
harmonic vibrations is 3N, and the average total energy is 3NkgT. From this, we
obtain ¢, = 3Nkg, which indicates that the lattice heat capacity is independent of
the material's properties and temperature. This is the well-known law of Dulong
and Petit. For high temperatures, experiments agree with this law, but at low tem-
peratures, ¢, is no longer a constant and decreases as temperature drops. When
T — 0, ¢y goes to zero for all solids. Quantum mechanics is required to explain
the low-temperature behavior of lattice heat capacity.

From the previous section, we know that Eq. (4.90) is the energy of a lattice vi-
bration mode. The temperature-dependent part of total energy in Eq. (4.91) may
be replaced by an integral over the frequency distribution, if we treat values of
wj(k) as almost continuous:

e I 1 [

— explhoy(k)f] =1 —8(w)do (4.92)

N o explhiof]

where g(w) is the normalized frequency distribution function
J " g(w)do =1 (4.93)

and oy, is the maximum frequency. g(w) is termed the phonon spectrum or the
density of states (DOS). It describes the probability of lattice waves having fre-
quencies between w and o + dw, and hereafter it will be called DOS. The deriva-
tive of (4.92) with respect to temperature gives cy:

on exp(hoff)

G = ke (o) — PP o)
N [ kathop)? g
B onl hop/2 |

From this result, we see that when T — 0, ¢, indeed approaches zero. At high
temperatures, kg T > hiw, ¢, approaches 3Nkg. Both of these limits agree with
experiments. Now we need to find an appropriate frequency distribution function
so that the integral predicts ¢, for intermediate temperatures as well.
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4.42
The Density of States

Generally speaking, as long as we know the dispersion relations w;(k), for all k in
the first Brillouin zone, the density of states can be calculated according to

8(0) =55 52> ol — oy(k) (495)
7k

where g(w) satisfies the normalization condition (4.93). Figure 4.16 shows the
w;(k) curves and the corresponding calculated g(w) curve for NaF.

Sometimes, it is more convenient to use another distribution function, defined
as

3 N
81(0) =55 32> 00" — (k) (496)
7k
where

|, et =1, (") = glo)/20

Recently, the first-principles quantum mechanical method, a very powerful
tool, has been used to calculate g(w), which appears to be somewhat complex.
The two simplified models, namely the Einstein model and the Debye model,
have been widely used for a long time. In many cases they can give results con-
sistent with the experimental data.
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Fig. 4.16 Dispersion curves wj(k) and phonon frequency distribution g(w) for NaF [16].
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4.4.2.1 The Einstein Model

Einstein postulated that all atoms are vibrating independently with the same fre-
quency wg. For a three-dimensional lattice at temperature T, the total vibration
energy is

SNhog | 3N, (4.97)

E= aplhomp) =11 2

from which the lattice heat capacity can be calculated as

_ (OE\ hoep/2  1* 0g/2T 1°
*= (&) =2 [hirongra] ~ N iceror) o
where
0 = hog /kg (4.99)

is called the Einstein temperature. At high temperatures, kg T > hw, ¢y ~ 3Nkg,
the classical value. As temperature decreases, ¢, decreases, consistent with the
trend in the experimental results. But in the low temperature region, the pre-
dicted ¢, values decrease too fast and do not exactly match the experimental curve
(Fig. 4.17). The Einstein model is a good approximation for an optical branch
where o is a weak function of k.

Although the Einstein model played an important role in the development of
the quantum theory, it is over simplified. In a real crystal, the interactions be-
tween atoms are strong enough so that it is impossible for an atom to oscillate
without affecting its neighbors. We now turn to the following more realistic
model.

251 Op=215K

. 20r
o
7, 15F
(=]
E
= 10
<
sk
0
1.0 2.0
/6

Fig. 4.17 Heat capacity of Ag as a function of temperature T: a
comparison between the Einstein model and the Debye model [16].
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4.42.2 The Debye Model

At low temperatures, the optical branch phonons have energies higher than kg T,
and therefore almost none of the optical branch waves is excited. Only acoustic
waves (especially long-wavelength ones) contribute to the heat capacity. For an
acoustic branch, ® — 0 as k — 0, and the Einstein model obviously fails to in-
clude this feature. The main assumption of the Debye model is that the Bravais
lattice is regarded as an isotropic continuum, and therefore the lattice waves are
elastic waves (one longitudinal branch and two independent transverse branches).
The frequency is not a constant but has a specific distribution with a cutoff
frequency wp, above which no shorter wave phonons are excited. In the Debye
model, g(w) takes the following form:

27,3
(@) :{3w Jwd, when o < wp, (4.100)
0, when o > wp.
We may also define
HD = th/kB7 (4101)

which is known as the Debye temperature, an important quantity in solid-state
physics. One should note, however, that wp is merely a parameter, not the actual
maximum phonon frequency in the solid.

Substituting (4.100) into (4.94), we obtain

3 rxp 4.
¢y(T) = 9Nkg T—SJ dez = 9Nkg for (0 /T) (4.102)
0pJo (e*—1)

where x = hwf, xp = hwpf =0p/T, and fo(0p/T) is called the Debye heat
capacity function. The Debye model has been very successful in calculating the
heat capacities for many solids, which agree well with the experimental results.

When T > 0p, c, approaches the classical value of 3Nkg. In the low-
temperature region, Debye’s heat capacity is remarkable, because when T « 0p,
Eq. (4.102) becomes

4 3
o =2 (1> . (4.103)

5 Op

Here ¢, is proportional to T3, known as the Debye T* law. The lower the temper-
ature, the better the Debye approximation, because almost all excited phonons be-
long to the long-wavelength waves in the acoustic branches and the crystal indeed
behaves like a continuum. However, the T3 law is applicable only for T < 6p /5.
The Debye temperature 0y as defined in (4.101) is a temperature-independent
parameter. As more sophisticated low-temperature techniques are now available,
different 0p-values have been observed at different temperatures. For many
materials, 0p is a constant for T > 0p/2, it decreases as T decreases, reaches a
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Fig. 4.18 Debye temperature 0p of indium as a function of temperature T [17].

minimum around 0p/10, and rebounds at lower temperatures (Fig. 4.18). This
indicates that the Debye model has its own limitations, and does not completely
agree with experimental results.

In fact, the crystal cannot be completely treated as an elastic medium, but
should be modeled based on its atomic structures as in the Born—-von Karman
theory. Neutron scattering experiments and theoretical calculations have shown
that each crystal has its own frequency distribution g(w), and ¢, cannot be accu-
rately calculated unless g(w) is available.

443
Moments of Frequency Distribution

Today, because of the advances in computer science and neutron scattering, pho-
non spectra g(w) have been obtained theoretically or experimentally for a number
of perfect crystals, but for most of solids g(w) is still unknown. There exists, how-
ever, an approximate method for obtaining thermodynamic quantities similar to
¢y without knowing g(w) itself. This is an average method using the moments
of frequency distribution, and several authors contributed to this method in the
early 20th century [18, 19].
The nth moment of the frequency distribution function is defined as
u(n) = J " 0'g(w) dow (4.104)
0

where oy, is the maximum allowed frequency. When (4.95) is substituted into
(4.104), it becomes

u(n) = —3" (k). (4.105)
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The even moments u(2n) can be expressed as [20]

u(2n) = 31Nkzj (k) = %; tr D"(k) (4.106)

where the trace of D"(k) remains invariant under its diagonalization through a
unitary transformation, and the diagonal elements are just szn(k)_ The fact that
the even moments u(2n) can be evaluated from the dynamical matrix makes
them vary useful in describing the characteristics of the unknown g(w).

Now we derive ¢, in terms of u(2n), the moments of frequency distribution
[19]. One uses the series expansion

«© 2n

exx_ =1 —g— };(—1)”32”% (Ix] < 27) (4.107)

where B are the Bernoulli numbers:

B _! By = L B ! B !

2560 + =30 6 =37 8 =30
5 691 7

Bip = — By = —— =_ t

10 66’ 12 2730’ 14 6 etc

Expanding the lattice energy (4.92) according to (4.107) and taking a derivative
with respect to T, we obtain an expression for cy:

¢y 2 W 2n—1/ B\
3N@"1+;;C_U &”(mo!(ﬁﬁg u(2n). (4.108)

This series converges for T > 50 K [21]. In fact, only several low moments (e.g.,
up to n = 3) are usually required to obtain a relatively good accuracy. This is the
most prominent feature of this method [22].

The moment method cannot give the low-temperature characteristics of c.
Although Montroll [19] pointed out long ago that g(w) could be calculated if all
moments were known, high moments are usually not available because their cal-
culations are very complicated. If only a limited number of moments are used,
the resultant low-temperature phonon spectrum is only a poor approximation.
In the 1970s, modified moments were introduced, and this method was further
developed [23-25]. It has become a useful theoretical method in lattice dynamics
[26-28].

Just like the lattice heat capacity, there are some other quantities that need to be
evaluated as statistical averages using g(w). Such quantities include <u?» and
{v*», which are discussed in the next chapter.
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Suppose that a Debye spectrum with a cutoff frequency wp(n) has its nth fre-
quency moment up(n) exactly equal to the nth moment of the actual phonon
spectrum u(n), we would have

op(n) 3602 3
n do = " (n) =
J, ottt = et = um
or
3 1/n
wD(n):[”JZr ,u(n)} L n> -3, n#0. (4.109)

The temperature corresponding to this cutoff frequency is called the weighted
Debye temperature 0p(n), written this way to distinguish it from the usual Debye
temperature p:

_ hkaB(n) kz {n + 3ﬂ(n)]1/".

Ob(n) = 5 (4.110)

This is how u(n) can be calculated [29] using the parameter 0p(n), and the impor-
tance of 0p(n) is analyzed as follows.

Each dynamical or thermal property of the solid depends on a different way in
which the phonon frequency spectrum is weighted. For instance, {u?)> and recoil-
less fraction f are mainly determined by the low-frequency phonons whereas
(v*) is more sensitive to the high-frequency phonons. Furthermore, the Debye
temperatures 6p obtained by measuring the entropy, the thermal energy, and the
heat capacity are not in general the same. A typical example is the study of KBr
crystals [30]. It is therefore more appropriate to use 0p(n) of different n-values for
describing dynamical and thermal quantities than to use just dp. We now point
out the relations between several specific quantities and 0p(n) with different n-
values [31-35].

At high temperatures, heat capacity, entropy, and the mean square atomic dis-
placement <u?) depend on 0p(2), 0p(0), and Op(—2), respectively. Under the
limit T — 0, the heat capacity is related to 0p(—3) while <(u?) is related to
0p(—1). The 0p derived from the elastic constant measurements should be equal
to Op(—3) [36].

For an ideal Debye solid, 0p(n) = 0p for all n-values. But for a real solid, 0p(n)
depends on n, which gives a measure of the difference between the actual pho-
non spectrum and the Debye spectrum.

In Méssbauer spectroscopy, 0p(—1) and 0p(—2) can be obtained by measuring
the recoilless fraction, while 0p(1) and 0p(2) can be deduced from the second-
order Doppler shift (see Chapter 5).
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Fig. 4.19 Phonon DOS g(w) for o-Fe [37].

4.4.4
The Debye Temperature 0p

We now focus our attention on 0p to obtain a better understanding of its physical
meaning. It will facilitate the analysis of Debye temperature p (or 6y) from
Mossbauer experiments and the comparison of #p with results from other
methods.

In the Debye model, a maximum cutoff frequency wp was introduced so that
the total number of vibration modes in a Bravais lattice is exactly 3N, and conse-
quently the Debye temperature was defined 0p = hiwp/ks. The Debye model is
most successful in describing the vibration frequency distribution g(w) in crystals
such as Fe, Cu, K, and Na (Fig. 4.19). There is clearly a sharp cutoff point, but the
cutoff frequency is not wp, and the distribution in the high-frequency portion has
large deviations from the Debye model. For most crystals, g(w) differs from the
Debye model significantly; however, the parameter 0p can still be obtained. It
makes us wonder as to the exact meaning of 0p. However, large amounts of ex-
perimental data indicate that the Debye model is essentially correct and 6p is an
important parameter of the solid. As already mentioned above, because many
thermodynamic quantities are expressed as averages over the frequency distribu-
tion g(w), they are not sensitive to its details. This may be one of the reasons for
the Debye model's success. Therefore, the Debye temperature should be under-
stood as a parameter that may not correspond to the actual cutoff frequency wp
on DOS curve. Since 60 is related to many other physical quantities through a
variety of expressions, we can investigate it using several theoretical and experi-
mental methods.

4.4.4.1 The Physical Meaning of 0p
Only after a material's 0p is determined would the terms “high temperature” and
“low temperature” be meaningful. High temperature means T > 0p with all the
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vibration modes excited, whereas low temperature means T < 0p with some of
the vibration modes beginning to be suppressed. For many solids, 0p is obtained
through measuring c,, but the relation between 6p and ¢, is very complicated.
The following two points would help us to find out which quantities are con-
nected with 0p.

1. When k — 0, acoustic branch waves resemble elastic waves. The classical
theory of elasticity may be applied to study the elastic properties of a crystal. Ex-
perimentally obtained elastic constants and elastic wave speeds can be used, even-
tually leading to 6p according to Eq. (4.101). As an example, consider an fcc
crystal with short-range central forces between atoms. The elastic constants
Caa = €11/2, and v} = v, = c4a/p, Where p is the density of the solid. In the long-
wavelength limit, p can be calculated [4, 5, 16, 38] as

e \1/2 2 \172
Op = cv ~ c(ﬁ> = c’(—) (4.111)
P M

where ¢ and ¢’ are constants, « is the force constant between adjacent atoms, and
M is the mass of each atom. It is clear that 0p is proportional to the square root of
the force constant o and inversely proportional to the square root of the mass of
each atom. For example, diamond is light and hard, because the mass of the car-
bon atom is low and the interatomic covalent bond is extremely strong, and con-
sequently its Debye temperature 0y, is very high (2200 K). On the contrary, lead is
heavy and soft, and its 0p is very low (102 K). However, the force constant may
vary over several orders of magnitude and therefore plays a larger role in deter-
mining fp. Solid neon, for instance, has a 6p of only 63 K because the van der
Waals force between the Ne atoms is very weak. By the way, we could also derive
(4.111) directly from (4.81).

2. When the temperature of a solid rises, the amplitudes of atomic vibrations
increase, the forces between atoms fail to hold the atoms in the solid form, and
melting begins to take place. Since 6p is proportional to the square root of the
force constant, it is not surprising that 0p is related to the melting temperature
Tm of the solid and given by

T 1/2

where ¢ is a constant, having values of 137 and 200 for metals and nonmetals,
respectively. When the temperature approaches T, the atomic motion can no
longer be treated as small oscillations, and thus the anharmonic effect becomes
significant. As a result, the 0p value obtained from (4.112) usually has a poor
agreement with the 0p values from other methods.

4.4.4.2 Comparison of Results from Various Experimental Methods
The methods for determining 6p include elastic constant measurements, heat
capacity measurements, x-ray and neutron scattering, and the Mdéssbauer effect.
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Table 4.1 Debye temperature 0p values (in K) of several solids obtained
from elastic constant, heat capacity, and melting temperature
measurements [39, 40].

Solid Elastic constant Heat capacity Melting temperature
method method method

Al 438 428 ~400

Cu 365 345 ~300

Ni 446 450

Pb 135 105

Zn 307 327

C (diamond) 2230 ~2000

Na 164 158 ~160

The first two are macroscopic methods. Although they are based on different
principles, they give similar low-temperature results for 0p (Table 4.1). As men-
tioned in the last section, different quantities such as c,, entropy and {u?} are re-
lated to different 0p(n) in different temperature regions, not simply to a single
parameter Op. Therefore, Op values determined using different methods would
never be exactly the same. The last three are microscopic methods, in which
the Debye temperature fp is obtained through the measurements of either the
Debye—Waller factor or the recoilless fraction. Both these factors are exponential
functions of the mean-square displacement {u?), and replacing g(w) in the
expression of {u?) with the Debye model distribution would give 0p. From this
argument, it seems that the 0p values obtained using neutron scattering and the
Mossbauer effect should be in good agreement, whereas the x-ray scattering re-
sults for 0p in most cases are only slightly higher than the Mdssbauer results
due to the possible deviation of the adiabatic approximation. When the Moss-
bauer atom is only one of the constituent elements in a sample, the x-ray result
may be noticeably larger than that from the Mossbauer effect (see Table 4.2).

Table 4.2 Debye temperature 0p values (in K) of three compounds
obtained from the Méssbauer effect and x-ray diffraction [41].

Compound 0p (Méssbauer effect) Op (x-ray diffraction)
Fe[Co(CN)g] 146(30) 245(25)
Fe[Rh(CN)] 153(9) 274(30)

Fe[Ir(CN)s 177(13) 287(30)
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4.5
Localized Vibrations

So far, we have been dealing with crystals of perfect periodic atomic arrange-
ments, and their vibrations form lattice waves. In reality, such ideally perfect crys-
tals are rare, and most crystals have impurities or other defects, which greatly in-
fluence their vibration properties. As the impurity concentration increases, the
vibrations become very complicated and lattice waves can no longer exist. In this
section, we will only discuss situations of extremely low concentrations of substi-
tutional atoms, namely, isolated impurity atoms. Due to these impurity atoms,
the physical picture for lattice vibrations is not easy to visualize; the mathematical
treatment also becomes very difficult and one usually resorts to the Green’s func-
tion method [42] or the molecular vibration method.

The Mossbauer effect is a suitable method for studying the dynamics of impu-
rity atoms, because it has absolute isotope selectivity and the Méssbauer nucleus
is often the impurity atom in a host crystal. The discovery of the Méssbauer effect
has greatly advanced the research of impurity dynamics. The development of im-
perfect crystal dynamics has been divided into two stages, and the advent of the
Mossbauer effect has been recognized as the beginning of the second stage [43].
While more details can be found in the next few chapters, here we will only de-
scribe the vibrations of isolated impurity atoms and their effects, in order to have
a basic understanding of the phenomenon of local vibrations.

As an example, suppose we have a diatomic chain of 48 atoms, My = 31 u and
m = 70 u (compound GaP) [44]. First, simultaneous equations (4.65) are solved
and 48 modes are obtained. Modes 1 through 24 form the acoustic branch,
and the remaining modes form the optical branch, with the maximum frequency
of wy, =370 cm~!. (Wavenumber frequency units are used here, 1 cm™! =
3 x 10! Hz = 18.8 x 10'° rad s™1'.) Now a lighter atom (M) replaces an atom
(Mp) in the chain, and we assume that this substitution does not change the force
constant. A computer program can numerically solve a set of equations similar to
(4.65) and obtain also 48 modes, some of which are shown in Fig. 4.20. For clar-
ity, the atomic displacements along the chain are all drawn perpendicular to the
chain.

The most obvious change after substitution of the atom M is the emergence of a
new mode with w; = 416.4 cm™!, which is higher than the maximum frequency
om of the lattice waves. The atomic displacement u in this mode is no longer a
sinusoidal function in space, but has a maximum at the position of M and decays
quickly to zero at a distance only a few atoms from M. This is known as localized
vibrations or a local mode, because it is restricted in a region near the impurity
atom.

For the above situation where there is only one impurity atom, the solutions to
the equations of motion can be categorized as either symmetric (4, = u_,) or
antisymmetric (4, = —u_,). The impurity atom only influences the symmetric
modes, because the impurity atom is at rest in antisymmetric modes and thus
has no effect on them. As can be seen in Fig. 4.20, modes 4 and 24 are antisym-
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1 0
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24 205.0
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4.5 Localized Vibrations

Fig. 4.20 Selected vibration modes of a 48-atom linear diatomic chain
with one impurity atom [44].

metric and their frequencies do not change, and modes 5, 25, and 47 are sym-
metric and their frequencies all become higher. As shown in Fig. 4.21, if M de-
creases, the localized vibration displacement u at M site increases, whereas the
spatial spread decreases accordingly. A measure of localization is usually defined

as
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Fig. 4.21 Displacement vectors of local modes when M = 25,20, and 5 u.

n=1—M/M,. (4.113)

Figure 4.21 indicates that besides the atom with M =5 u, the others hardly
move. The frequency of the localized mode is approximately

oL ~ \/20/M. (4.114)

The decrease of M has another important effect, namely it increases the intensity
of the entire acoustic branch (see Fig. 12 in Ref. [44]), which will be very useful.

When M > M, the localized mode is situated between the optical and acoustic
branches, and thus known as a gap mode wggp.

As one of the heavier atoms m is replaced by m’ and m’ > m, the localized
mode falls within the acoustic branch, causing increases in vibration amplitudes
of nearby original atoms. This mode is therefore called a resonant mode, and it is
a quasi-localized mode.

The above discussion involves only a change in the atomic mass. If the force
constant also changes, a high-frequency localized mode can also be produced
even with a heavy defect (M > M) as long as its interactions with the surround-
ing atoms are much stronger than those in the original perfect crystal.

In a real solid, the localized vibrations are much more complicated than the
above model. The frequencies of localized modes are in the infrared region, and
thus the existence of high-frequency modes or gap modes can be verified using
infrared absorption experiments. Figure 4.22 shows infrared absorption spectra
of AgBr with its Ag replaced by natural lithium (92.6% 7Li and 7.4% °Li) and
by lithium with enriched °Li [45]. Figure 4.22(a) shows two absorption peaks at



4.6 Experimental Methods for Studying Lattice Dynamics

T T T T T T T T
60 - AgBr: Li i
Iy
L [ |
@ 1) ®
- [y
7 a0 I\ .
=1
s ;’ \
- ]. -
] | \
/ \
20 J \ .
/ \
L / \ g
/ N
0 L 'rf\‘“l‘_" 1 \""‘r-
180 190 200 210 220

wave number (cm™)

Fig. 4.22 Infrared absorption spectra of AgBr doped (a) with natural Li
and (b) with Li enriched by °Li.

191.8 and 205.9 cm™!, with an intensity ratio consistent with the natural abun-
dance ratio of ’Li to °Li. When °Li enrichment was used in the impurity atoms,
the spectrum becomes that of Fig. 4.22(b), also showing two peaks at the same
frequencies except a change in the relative intensities, as expected. Since the
lighter defect atom should result in a localized mode with a higher frequency,
this isomer effect verifies the existence of high-frequency modes.

4.6
Experimental Methods for Studying Lattice Dynamics

The experimental methods for studying lattice dynamics are all based on the
interactions of electromagnetic radiation or particles with the solid. According to
the subjects of investigations, the methods can be divided into three groups. The
first group involves the measurements of phonon dispersion curves w;(k) or DOS
curve g(w). Currently, the best method is inelastic coherent neutron scattering,
which can give complete w;(k) curves in the entire Brillouin zone. Before neutron
scattering was available, dispersion curves for most crystals were unknown. In-
elastic x-ray scattering and inelastic nuclear resonant scattering as means of
obtaining wj(k) or g(w) have been developed only after synchrotron radiation
became accessible. The second group involves the studying of vibration modes
near the center of the Brillouin zone (k — 0). The experimental methods include
infrared spectroscopy and Raman scattering to study optical modes and Brillouin
scattering or the method of elastic coefficients to study acoustic modes. The third
group is based on principles of statistical mechanics, obtaining the Debye—Waller
factor, and hence the atomic mean-square displacement <u?Yand the mean-
square velocity {v?), as well as 0p. These quantities are weighted statistical aver-
ages over the phonon spectrum g(w). The method of specific heat and later trans-
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Table 4.3 Energies, wavelengths, and wave vectors of several radiations and particles.

Energy (eV) Approximate Approximate
wavelength (A) wave vector (A7)

Phonons 0.013 3 2

Thermal neutrons 0.025 2 3

Electrons 16 3 2

X-rays 4100 3 2

y-rays 14400 0.86 1.6

Visible light 3 4000 1073

mission Mdssbauer spectroscopy, etc., all belong to this group. These are indirect
methods compared with those in the first group.

As can be seen from Table 4.3, only thermal neutrons so far are found to be
suitable for inelastic scattering to create or annihilate phonons in a solid with
considerable momentum transfer. They have energies comparable to typical
phonon energies and wavelengths comparable to atomic distances in crystals.
As to x-rays, for an appropriate wavelength, say 3 A, the corresponding energy
(Ex = hc/Jy) is as high as 4136 eV. There is a large mismatch between the inci-
dent energy of x-rays and the phonon energy. Thus, to get the dispersion curve
it requires an energy resolution of 1077 or better in the x-rays. In short, lattice
dynamical studies by conventional x-rays are limited.

The energy of visible light is much less than that of x-rays, and the wave vector
is proportionally reduced to about 1073 A. So visible light scattering is only used
for measuring those vibration modes of extremely long wavelengths.

In this section, we discuss neutron scattering, followed by x-ray scattering. In
Chapter 7, new methods using synchrotron radiation in combination with the
Mossbauer effect are described.

4.6.1
Neutron Scattering

Neutrons can be scattered by an atom through two mechanisms, nuclear scatter-
ing and magnetic scattering. Here we focus on the first mechanism. Through nu-
clear scattering, a neutron is scattered by the nucleus within the range of strong
nuclear force (10712 ¢cm). Neutron scattering may be elastic or inelastic, coherent
or incoherent. Coherent elastic scattering is usually called neutron diffraction,
which is mainly used for determining the crystal structure and the Debye—Waller
factor. To obtain the dispersion curve w;(k), we need to detect inelastic scatterings
which involve the creation or absorption of phonons.
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Fig. 4.23 Neutron scattering process.

4.6.1.1 Theory
1. Basic formulation. For the sake of simplicity, we will neglect neutron spin for
the time being. Before scattering, the neutron has energy E, and wave vector k.
The scatterer has a wave function |1) and energy E,. After scattering, these quan-
tities become respectively E, k', |A’>, and E, (Fig. 4.23). The changes in the neu-
tron energy and wave vector are, respectively

B2

how = EO—E:%(kS—k’Z), Q=k' — ko (4.115)

where m is the mass of neutron. Within a solid angle AQ in the 6 direction, the
neutron flux d® in an energy range from E to E + AE recorded by the detector is

d® ~ DAQAEy (4.116)

where @ is the incident neutron flux and 7 is the detector efficiency.

The proportionality constant in Eq. (4.116) is called the double differential
cross-section, denoted by d?c/(dQdE). According to the Born approximation
[46-48],

d%e K[ m \ )
=_|— k' |V (r)|kot)|*0(hew + E; — E;» 4.117
0 dE ko(hhz);pz;K [V(r)lko2> a0 ) (1)

where the J-function is due to energy conservation. Here a summation is first
carried out over 2/, and it is then averaged over the initial states |4). The weight

_ exp(—E;/ksT)
P S exp(—Ei [k T)

is the probability of having the initial state |1) in the scatterer at temperature T.
The neutron—nucleus interaction V has the form of a Fermi pseudopotential:
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where b is the scattering length, whose square is the cross-section of the low-
energy neutron—nucleus scattering

do

p—— 2
dQ b

The interaction potential between the neutron and the entire scatterer is

Znhz

Zblér—Rl

where R; and b; are the position vector and the scattering length of the Ith nu-
cleus, respectively. Substitution of this potential into Eq. (1.117) yields

deE ZplZzbz*bl'<i\e*iQ‘Rl’|)/>

AL

x (2 [e"258(hw + E; — Ey). (4.118)

In order to carry out the summation over 1’ and the average over /, the é-function
needs to be expressed as a time integral:

o(hw+ E, — E;y) = ﬁlhj exp|—i(E;, — E;/)t/hle ™" dt. (4.119)

After substituting this into (4.118) and summing over 2/, we have [47]

d o k' 0 o R, »
AQdE ko ZHFLZbl bl’zp’J (e RO IR W] yemt dy

hz bl bl'J <e IQ-Ry( ) iQ-Ry/(t) >Tefiwt dt

L

N k'
=+ 1?02 by by Sy (Qu) (4.120)
L

where
1 ([~ : ;
S0(Qu) = g | (eTRRORR) i gy (4.121)

is known as the scattering function which describes the dynamic properties of
the target system, N is the number of nuclei in the Bravais scatterer, and <...>r
represents a thermal average over the initial states |1). The scattering length b is
not a dynamic quantity, and therefore is taken out of the thermal average. Equa-
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tion (4.120) is then a simplified expression for the double differential cross-
section.

2. Coherent and incoherent scattering. The summation in Eq. (4.120) is to be
done over pairs of nuclei (I,1’). The scattering function S contains the complete
information about the physics of the scatterer. Nuclear scattering lengths b are
different for different elements, and even for the same element in the scatterer,
b also depends on the nuclear spin orientations and the amount of different iso-
topes, which should be randomly distributed in general. Therefore, we should use
an average of b/'by over all possible nuclear states. If the b-values for different
nuclei are independent of one another, then

biby = [b]>, 1#V

o (4.122)
biby = b*, 1=1.

Using these in Eq. (4.120), the double differential cross-section can be written as
the sum of two terms:

dza' B Ngcoh k' ZS NO'mC ;ZS ( ) (4 123)
AQdE ~ 4nh ko 22V (Qw) + h kg 2 S1Qw :

where
Teoh = 47|b|?,  ine = 4n(|b|” — |B|*).

The first term in Eq. (4.123) is the coherent scattering cross-section, which de-
pends on the correlation between positions of different atoms at different times
and therefore has an interference effect. The second term is the incoherent scat-
tering cross-section, which depends on the correlation between positions of the
same atom at different times, and has no interference effect.

4.6.1.2 Neutron Scattering by a Crystal

Suppose the scatterer is a Bravais crystal, in which atoms are vibrating around
their equilibrium positions. We see from Eq. (4.120) that neutron scattering by a
solid is essentially described by the S function. Substituting R; from Eq. (4.9) into
the S function in (4.123), we have

cohstu,:f J (eiQuik0eiQuit)y iU -De-iot gy (4.124)
ll/ ll — 0

"
Sinc Zsu J (emiQull0)giQullt)y oiot qp (4.125)

If we carry out the thermal averages according to the quantum theory of har-
monic oscillators, we would obtain [46]
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o0
Seup — 1 ow Z ei@l J <Qu(0,0)Qull. )7 =it gy (4.126)
2n 7 e
1 *® ,
Sine = 7e—ZW J e(Q.u(O,O)Qu(OAt))Teft(ut dt. (4127)
2n —w

Suppose that the atomic displacements u are very small (harmonic approxima-
tion), then the first exponential factor can be expanded into polynomials:

e$IT =14 ¢Q - u(0,0)Q - u(0,t)>r

+%<Q-H(O,O)Q-H(O,t)>%+--- (4.128)

When this is substituted into (4.126) or (4.127), it will have three terms, de-
scribing zero-phonon (elastic scattering), one-phonon, and two-phonon processes,
respectively.

1. The Debye—Waller factor. In the above expressions for scattering cross-
sections, there is a common factor e 2%, known as the Debye—Waller factor. For
a cubic crystal, its exponent can be written as

2W = ([Q - u(0,0)]*>r = Q2<u?(0,0)>r

or

oy P (@)
(@

2
=— Qng+ 1> (4.129)
2MN &
where s = kj and M is the atomic mass. For a cubic Bravais crystal

(Q-e)’ =%Q2, (4.130)

and the above expression becomes

h?Q? 1 1 1
W= M ﬁ;hws coth(iha)s/f)

n*Q2 [ 1 1
= 25‘1 J% coth (i hwﬁ)g(a)) do. (4.131)
To understand this factor e2%, let us look at the process of coherent elastic scat-
tering. Here we have |ko| = |k’|, the neutron energy does not change after scatter-
ing, namely there is no creation or annihilation of a phonon in the crystal (the
zero-phonon process). The corresponding cross-section is
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do _ Ocoh (271)3 ow .
(dQ)coh,el_ - NTe Zo(Q 7) (4.132)

where V, is the unit cell volume of the crystal and 7 is a reciprocal lattice vector.
Since 2V < 1, the intensity of the diffraction peak is reduced. The reason for
this is that as temperature rises, the atomic mean-square displacement <{u?) in-
creases, causing e 2V to decrease drastically. When T = 0, the atoms are at rest,
<(u?» =0, and in this case e 2% = 1. Therefore, the Debye—Waller factor is used
to describe how the diffraction intensity changes with temperature.

Inspecting the quantity i*Q2/2M in Eq. (4.131), we recognize that it equals the
recoil energy of a free nucleus when a neutron is scattered by it [46, 49]. Compar-
ing (4.131) with (1.82), we also see that, except for Q instead of the wave vector k
of the Mdossbauer radiation, the Debye—Waller factor and the recoilless fraction
have exactly the same form, both having the same temperature dependence.

2. Coherent inelastic scattering. Let us now substitute the expansion (4.128) into
(4.126), and discuss the second term

0

Scoh = zl—ne*ZW > el J <Q-u(0,0)Q - u(l,t)>re " dt (4.133)
1 [ee)

which describes the process of the creation or annihilation of a phonon. After
some manipulations, we obtain

e " o K 20} 1y (Q-e,)?
(deE)COh_ 4r ko Vi 2M© ZZ o,

1 1
X<n5+i + E>5(w$w5)(5(Q Fk—1) (4.134)
where the + sign represents either the creation or the annihilation of one phonon
of the sth mode during the scattering of a neutron. The two J-functions indicate

the requirement of simultaneously satisfying the conservation of energy and
momentum:

ﬁ’z 2 n
1o (ko — k%) = ho, (4.135)

Q=k'—-ky=1+k (4.136)

Later in this section, we will use these relations to measure the dispersion rela-
tions w;(k).

3. Incoherent inelastic scattering. Similarly, if we focus on the second term in the
expansion (4.127), we obtain the cross-section of one-phonon incoherent neutron
scattering:
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( d’ >+ w1 yy(Q-e)’
dQdE/,,. 4n ko 2M - ws
11\, _
X { g +E + = Yo(w F wy). (4.137)

It contains only one J-function, d(w F ws). Thus only the energy conservation
needs to be satisfied, i.e.,

h? ,
+w=w, or iﬂ(kgw):hws. (4.138)

Using Eqs. (4.89), (4.95), and (4.128) we can evaluate (4.137) as

d’o \* gnc k' N 5 Hwglw) 1
(m) BRIV [“’th(i"‘w@ + 1} (4139)

This indicates that the phonon DOS g(w) can be measured experimentally by
one-phonon incoherent neutron scattering.

4. Measurement of dispersion curves. The experimental apparatus for this pur-
pose is the triple-axis neutron spectrometer, invented in 1955 by Bertram Brock-
house [49] who won the 1994 Nobel Prize in Physics for developing this appara-
tus and the constant-Q method. The triple-axis spectrometer is illustrated in Fig.
4.24. A beam of neutrons, obtained by a Bragg reflection (through an angle 20)
from a monochromator crystal, is scattered by the sample (through an angle 6)
and the energy of this scattered beam is determined by a second Bragg reflection

(through an angle 20, ) from an analyzer. The orientation of the sample is defined

monochromator
neutron

source

analyzer

detector

Fig. 4.24 Schematic diagram of the triple-axis neutron spectrometer. C;,
C,, Cs, and C4 are collimators.
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Fig. 4.25 (a) Brillouin zones within the (110) plane of a Cu crystal; (b)
a vector diagram of the constant-Q method; (c) scattered neutron
number N as a function of k'.

by the angle y between a reciprocal lattice vector = and the incident neutron
beam.

Suppose we take a single-crystal Cu sample (fcc) and choose its reciprocal lat-
tice plane (110) as the scattering plane, where the neutron beam, sample, and
analyzer are placed. All the phonons to be measured have their wave vectors lying
in this plane. The various Brillouin zones that this plane goes through are shown
in Fig. 4.25(a). As discussed in Section 4.2, the modes along the [100], [110],
and [111] directions are all pure longitudinal or pure transverse. The transverse
modes along the [100] and [111] directions are degenerate, while the two trans-
verse modes T; and T, along the [110] direction are non-degenerate. Therefore,
in the (110) plane, we will be able to measure the three longitudinal modes
L[100], L[110], and L[111], as well as the transverse modes T[100], T,[110], and
T[111]. The transverse branch T;[110] will have to be measured in the scat-
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tering plane (100). Here three polarization vectors are mutually perpendicular
e(l) L e(2) L e(3). Since Q- e(3) =0, the corresponding transverse mode will
not show up, according to (4.118). This simplifies the analysis of the results.

Now we briefly describe the constant-Q method for measuring the w;(k) curve
along the [100] direction in a Cu crystal. The energy of the incident neutron E is
kept constant, i.e., |ko| is fixed. A phonon wave vector k at point B in the direction
I' — X (Fig. 4.25(a)) is selected with |k| = 0.55(27n/a). The vector diagram of Eq.
(4.136) is illustrated in Fig. 4.25(Db), and a circle of radius |ko| is centered at (000).

So far, the sole unknown k' must be measured. Angles w and 0 are changed
such that point A as the common origin of k and k' moves but is confined on
the circle. At the same time, the number of scattered neutrons N(k') is collected
as a function of k’. When all conservation laws are satisfied, the curve N(k') will
show one peak, which yields a particular k' value. Therefore, we can calculate
o for a fixed k and complete one experimental point on the dispersion curve
(k). During the measurement, Q is kept constant, hence the name constant-Q
method. Now we choose other k’ values in the same direction, and eventually,
point by point, a complete dispersion curve of the T branch is measured [50]. Ro-
tating the sample about the crystalline axis [110] will allow us to measure the L
branch. Figure 4.26 shows the Cu dispersion curves in four major symmetry di-
rections [51].
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Fig. 4.26 Dispersion curves for fcc copper [51].
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5. DOS curves. As Eq. (4.139) indicates, a g(w) curve can be obtained by inco-
herent inelastic scattering provided oy is large enough. Unfortunately, the num-
ber of materials having sufficiently large oy, is limited. For the metals Cu and Fe,
the ratio oeoh/oinc is as high as 15.6 and 29.9, respectively. In these cases, one has
to measure the dispersion curves first, then calculate g(w). Calculations based on
(4.95) cannot be carried out because the modes easily observed are only in certain
high-symmetry directions and only consist of a few of all the normal modes. At
present, there are several approaches to the calculation of g(w) from experimental
dispersion curves. A fast and more accurate one is the so-called “extrapolation
method” [52, 53], which is outlined here.

The first step is fitting the experimental dispersion curves by the Born-von
Karman theory to get the force constants, assuming the obtained constants can
be used to calculate the DOS curve throughout all Brillouin zones (BZs). Then,
the dynamical matrix D(k) is diagonalized for a relatively small number of k
evenly spaced in the irreducible section of the first BZ. The frequencies between
two successive wave vectors are obtained by linear extrapolation. The frequency
gradients required for this extrapolation are given by standard perturbation
theory. For bec Fe, the calculated DOS curve is shown in Fig. 4.19.

4.6.2
X-ray Scattering

The theoretical description of inelastic x-ray scattering (IXS) is essentially the
same as for neutron scattering, so all formulas derived in neutron coherent scat-
tering are valid for x-ray scattering if the scattering length b is replaced by the
atomic form factor f(Q). This reflects the adiabatic approximation in which the
electron density follows the nuclear motion instantaneously. In the early years,
the lattice dynamics study by inelastic x-ray scattering was limited because of
two main problems: insufficient radiation intensity and poor energy resolution.
As mentioned above, x-rays with wavelengths comparable to interatomic dis-
tances have relatively high energies and such hard x-rays can only be found in a
continuous spectrum where the intensity is very low even from high-power rotat-
ing anodes.

High intensities of x-rays emitted by synchrotrons provide the possibility of IXS
with an energy resolution of meV. Phonon dispersion curves measured by coher-
ent IXS were first reported in 1987 [54, 55]. In the last 10 years IXS has become a
powerful spectroscopic tool, complementing the well-established coherent neu-
tron scattering [56, 57].

4.7
First-Principles Lattice Dynamics

Recently, a first-principles quantum mechanical method (ab initio) based on the
density-functional theory has become one of the most promising tools for study-
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ing structural and dynamical properties of real materials. This advanced theoreti-
cal method is impressive because it only requires input information on the mate-
rial's composition, such as the atomic number, atomic mass of the constituent el-
ements, and the lattice structure, with no need of any experimental results. The
agreement between the calculated phonon frequencies and the experimentally ob-
served dispersion curves is incredibly good. Therefore, it is now possible to map
accurate phonon frequencies onto a fine grid of wave vectors within BZs for
larger and larger lattice systems. Here, we describe the main features of this
first-principles method applied to lattice dynamics. Readers are referred to many
excellent reviews [58-60].

4.7.1
Linear Response and Lattice Dynamics

The first-principles theory takes into account the effect of electrons on lattice dy-
namics within the validity of adiabatic approximation (see Section 4.1.1), where
the electron system is assumed to be in the ground state with respect to the
instantaneous nuclear positions. The aim is to determine the interatomic force
constants through minimizing the total energy of a crystal with “frozen” nuclear
coordinates at any particular instance during the lattice vibration. The total en-
ergy Ei is an eigenvalue of the equation

J/tot‘P(r, R) = Etot‘}‘(r, R) (4.140)
where
Hiot = Te + Vee(r) + Ven(r, R) + Vin(R). (4.141)

Here the meaning of each term is given in Section 4.1.1, but the Hamiltonian
Hror in (4.141) differs slightly from that in (4.2). Under equilibrium, the net force
acting on each individual nucleus vanishes, so

F(l) = —Vg [E(r, R)] = 0. (4.142)

Consequently, one can calculate the vibrational frequencies of nuclei by the
Born—von Karman theory within the harmonic approximation. This involves eval-
uating the force constant matrix (also known as the Hessian) by taking the sec-
ond derivatives of Ej, constructing dynamical matrix D at a given point in the
BZ, and solving a secular equation such as (4.45).

Systematic studies of the effect of electrons on lattice dynamics were carried
out in the 1960s [61, 62], revealing a linear response of electron charge density
p(r) to perturbation caused by a change in the nuclear positions in the crystal. In-
formation on the harmonic force constants of a crystal is then clearly imbedded
in this linear response. It was also found that by employing the Hellmann-
Feynman theorem [63, 64], one can simply obtain the forces on individual nuclei
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through the electron charge density and its linear response without having to cal-
culate the total energy. This theorem is expressed as
JE,
04

= W,|05, /021, (4.143)

where A is a parameter (or a set of parameters) and ¥, is the eigenvector of a
Hamiltonian #, corresponding to the eigenvalue E;, i.e., #;¥; = E;¥,. Since
the nuclear coordinates are treated as frozen, the Hamiltonian in (4.141) is a para-
metric function of the electronic coordinates r, with the nuclear coordinates R as
parameters playing the role of 1 in Eq. (4.143). Taking derivatives with respect to
R is equivalent to taking derivatives with respect to u(l), because R; = I+ u(l),
where I is the equilibrium position of the Ith nucleus. Based on (4.143), the ex-
pression for the force will be

F(l) = —=VyEo = —C¥u | Vulior|Yugy - (4.144)

In the Hamitonian (4.141), the first two terms are independent of R, the third
term depends on R through the electron—ion interaction that couples to the elec-
tronic degrees of freedom only via the electron charge density, and the fourth
depends on R but not on r. Thus the expectation value in Eq. (4.144) can be
calculated:

F(l) = — J p(r, R)VyVen (1, R) dr — V Voo (R) (4.145)

where p(r,R) is the ground-state electron charge density with respect to the
nuclear positions R. Therefore, it is easy to obtain the force constants by taking
again the derivative of (4.145):

_0FR()  PEa
Oy (1) duy(1)ouy (1)

_ J p(r, R) 0Ven(r, R)
N aua’(l,) au?(l)

@, (L1 =

?Ven(r, R)
ou,(Dou, (1)

dr + J p(r,R) dr
OVan(r, R). R (4.146)
3w, (1)

The first two integrals are the contributions from the valence electrons, and last
term is from other nuclei in the crystal. The quantity dp(r, R)/du, (') indicates
the linear response to a distortion of the nuclear geometry.

It should be noted that the force constants are obtained without imposing any
analytical models for interatomic forces, which is necessary in traditional lattice
dynamics. With the above force constants, the sum of the first two integrals in
Eq. (4.146) and the dynamical matrix can be constructed. Its consequent diagonal-
ization will give the phonon frequencies.
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4.7.2
The Density-Functional Theory

The properties of a system of N interacting electrons can be obtained by solving a
set of Schrédinger equations

AW = [T + Ve + V¥ = E¥ (4.147)

where Te, Vee, and V are the kinetic energy, electron—electron interaction energy,
and the external potential operators, respectively, and ¥ is a wave function of N
electrons. This is a typical many-body problem. Using the density-functional
theory (DFT), this set of equations can be simplified and solved.

As shown in (4.146), the effect of electrons on lattice dynamics in a solid is
directly presented by its charge density and its linear response. It is a special
case within a much more general theoretical framework, known as the density-
functional theory [65], for which Walter Kohn won a Nobel prize in 1998. It is
such a theory that provides a radically different approach, using the electron
charge density as the central quantity describing electron interactions, thus avoid-
ing dealing with N-electron wave functions. Note that each N-electron wave func-
tion is a complex function of all 3N electron coordinates, while the corresponding
electron charge density is a simple function of three variables.

First, the DFT asserts that the external potential v(r) corresponding to the oper-
ator V, and hence the total energy Eq, is a unique functional of the electron den-
sity p(r). This predicts the existence of a one-to-one correspondence between the
external potential v(r) and the ground-state electron density p(r). In other words,
the electron density uniquely determines the potential acting on the electrons,
and vice versa. As V operator defines the Hamiltonian of the system, every ob-
servable quantity must also be determined by v(r) or p(r), i.e., it must also be a
functional of p(r).

The first two terms (Te + Vi) of the Hamiltonian (1.414) describe the electron
interactions only, and do not depend on the specific system, whether it is an
atom, a molecule, or a solid sample under consideration. Their combined expec-
tation value can then be expressed as a universal functional of p(r):

{Pol(Te + Vee)[Wo> = Flp(r)] (4.148)
where ¥ is the electron wave function in the ground state. The last two terms
Ven and Vy, represent the external potential operator V, which is not universal,

but system specific. Based on (4.147) an expression of the ground-state energy
can be obtained:

E[p(r)] = {¥o|(Te + Vee + V)|¥o)> = Flp(r)] + V[p(r)] (4.149)

where
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Vip(r)] = ol VIo> = [ 4 (0)p(r) dr (4.150)

is a functional of p(r), specific to the system under investigation.

Secondly, the DFT states that the ground state energy can be obtained using
the variational principle: the density that minimizes the total energy is the exact
ground state density. Therefore, the functional (4.149) is minimized by the
ground state electron density p,(r) corresponding to external potential v(r) and
the value of this minimum coincides with the true ground state energy E(p,(r)).
This statement may be formally written as

E(po(r)) = min Elp(r)]. (4.151)

DFT has now provided a variational methodology for obtaining p,(r) and
E(po(r)), but it does not specify those functionals F[p(r)] and V[p(r)] for carry-
ing out the calculations. To do this, some approximation approaches are neces-
sary. For F[p(r)], a non-interacting electron system is adopted for T.[p(r)] and
Vee|p(r)], with an added compensation term called the exchange-correlation en-
ergy. For V[p(r)], the actual potential is often substituted with a pseudopotential
that produces exactly the same behavior of the valence electrons as the original
potential. These approaches have proven quite successful when applied to a vari-
ety of solid and molecular systems.

4.7.3
Exchange-Correlation Energy and Local-Density Approximation

The DFT states that all physical properties of a system of interacting electrons are
uniquely determined by its ground state electron charge density. Such an asser-
tion remains valid independently of the precise form of the electron—electron in-
teraction. This fact was used by Kohn and Sham [66] to turn the problem of a
system of interacting electrons into an equivalent non-interacting problem. As de-
fined in Eq. (4.148), the functional F[p(r)] has contributions from T.[p(r)] and
Veelp(r)]. The first one is approximated by Ty[p(r)], the kinetic energy corre-
sponding to a non-interacting system of electrons. The second is usually approxi-
mated by the Hartree functional Ey[p(r)], which expresses the Coulomb mean-
field interaction among the electrons. To compensate the missing interactions in
this approximation, we add the so-called exchange-correlation functional Ey[p(r)]
[59]:

Flp()] = Tolp(r)] + Eulp(r)] + Ec[p(r)]. (4.152)

A practical calculation requires a specific, albeit approximate, expression for
exchange-correlation energy Ey[p(r)]. The most widely used is the local-density
approximation, which states that Ex[p(r)] can be given by assuming, for each
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infinitesimal element of density p(r) dr, the exchange-correlation energy is that of
a uniform electron gas of density p = p(r). Then

Blp(0)] = [oc(ppr) dr (4.153)

where & (p) is the exchange-correlation energy per electron in a uniform electron
gas of density p.

Using the variational principle, the energy functional (4.149) is minimized with
respect to all possible functions of p(r), with the constraint that the total number
of electrons should not change. Because of the non-interacting model for the
electron kinetic energy, this variational procedure leads to a set of self-consistent
equations:

—Zh—mv2 + Vsce () | 4(r) = ed(r), (4.154)

but the wave funtion ¢(r) and energy ¢ are only for one electron. Here Vscg(r) is
an effective potential, known as the self-consistent field (SCF) potential, in which
the electron seems to be immersed:

(SEH [/)(1’)] 6Ex6[p(r)} .

Veer D) =0 )

(4.155)

The Schrédinger-like equations in Eq. (4.155) are known as Kohn-Sham equa-
tions. A total of N/2 solutions (¢, (r), n =1,2,3,... N/2) can be obtained, called
the auxiliary Kohn—Sham orbitals. The ground state electron density and non-
interacting kinetic energy functional can be then given in terms of these auxiliary
orbitals, ¢,:

N/2
p(r) =2 Igu(r)], (4.156)
n=1
hz N/2
To[p(r)] = —Z%ZJﬁ(f)[VZ%(T)] dr, (4.157)
n=1

whereas the ground state energy is given in terms of the Kohn—Sham eigenvalues:

N/2

Blp(e)) = 2)_on ~ Bulp(o)] + Belp(o)] - [0 B ar aasy)

4.7.4
Plane Waves and Pseudopotentials

Up to now, most implementations of V(r) in the Kohn-Sham equations have
been based on the pseudopotential method in conjunction with plane-wave ex-
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pansion. The optimal choice of an orthonormal basis set to represent the electron
wave functions is dependent on the physical properties of a concrete system. For
solid-state calculations, the periodic character of wave functions naturally sug-
gests a plane-wave basis set, which has many attractive features [59]. We are
mainly interested in the valence electrons because they play a dominant role
in chemical bonding. This implies that we may replace the real electron—ion
interaction with a fictitious potential, acting on valence electrons only. Although
this pseudopotential is not required to produce any energy states for the core elec-
trons, it must satisfy the condition that it produces the same energy states of the
valence electrons as if they were in the original potential. Under the pseudopoten-
tial approximation the core electrons, which are supposed to be frozen, exert an
effective repulsion on the valence electrons due to mutual orthogonality of their
wave functions. As a result, this repulsion reduces to a large extent the attraction
from the atomic nuclei. In short, plane waves and pseudopotentials are a natural
combination and have become a quite useful method.

4.7.5
Calculation of DOS in Solids

Two approaches to calculating the phonon frequencies in solids are currently in
use: the linear response method and the direct method. In the first, the dynami-
cal matrix is obtained from the modification of electron charge density resulting
from the atomic displacements. The dynamical matrix can be determined at any
wave vector in the Brillouin zone using computational procedures similar to that
of a ground state optimization. However, this approach only allows studies of lin-
ear effects, such as harmonic phonons.

The direct approach is based on the solution of the Kohn—Sham equations and
allows one to study both linear and nonlinear effects. For phonons in a periodic
lattice, there exists a superlattice constructed from periodic arrangement of a
three-dimensional supercell. The motions of corresponding atoms in different
supercells are assumed to be identical. In this approach, therefore, a distorted
crystal due to atomic displacements is treated as a crystal in a new structure
with a lower symmetry than the undistorted one. We then treat the undistorted
and the distorted crystals separately but using exactly the same method. All of
the atoms (or ions) in both kinds of crystals are assumed to reside motionlessly
at their equilibrium positions; consequently the phonons are “frozen.” A com-
parison between the two crystals will provide the lattice dynamics information.
For a selected normal mode, the force constants can be calculated in two ways:
the second derivative of E(u) (per atom) with respect to the displacement u,

- T (4.159)

O = <62Et0t(u)) - ZAEtot(u)
0

or using the Hellmann—-Feynman force F(u)
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O =- (%) B ~ —%u) (4.160)
where
AEtot(u) = Etot(u) - Etot(o)- (4.161)

The first way involves the so-called frozen-phonon local density approximation
(LDA) calculations. The phonon frequency is then

@
w=1/—. (4.162)
M

The direct method is rather straightforward computationally and very accurate.
But the supercell may only contain a small number of unit cells.

After the phonon frequencies at selected high-symmetry points of BZs are cal-
culated, the dispersion curves and thus the phonon DOS are easily obtained. As
an example, we illustrate the calculated results of crystal CulnSe, by the direct
method [67]. The crystal structure of CulnSe;, has a D} symmetry. A total
of eight coordination shells were considered with 19 independent force con-
stants and 136 independent potential parameters. A 1 x 1 x 1 supercell (crystallo-
graphic unit cell) with 16 atoms was used in all calculations. The partial and total
phonon DOS presented in Fig. 4.27 were obtained by sampling the dynamical
matrix at 10000 randomly selected wave vectors. The total DOS (lower right in
Fig. 4.27) exhibits three well-separated bands: the acoustic region (0.0-2.5 THz),
the low optical region (3.0—4.5 THz), and the high optical region (5.5-6.8 THz).
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Fig. 4.27 Calculated atomic partial DOS and total phonon DOS for CulnSe; [67].
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5
Recoilless Fraction and Second-Order Doppler
Effect

As is well known, obtaining information on lattice dynamics of solids using
transmission Mdossbauer spectroscopy is mainly through the measurements of
the recoilless fraction f and the second-order Doppler shift dsop, from which
the atomic mean-square displacement {u?», the mean-square velocity {v?), the
anharmonic effect, Einstein temperature g or Debye temperature 0p, and the ef-
fective vibrating mass M.g are determined. All these quantities are discussed in
detail in the following chapters. On the one hand, f and dsop can be accurately
measured experimentally using the Méssbauer effect. On the other hand, (u?),
{v*», and 0p can be calculated through several models and methods, and can be
compared with the experimental results, allowing us to have a better understand-
ing of the dynamical properties of solids. Therefore, the Mossbauer effect can
play an important role in lattice dynamics research. Although <u?) may also be
measured using elastic scattering of neutrons or x-rays, the Mdssbauer method
yields better accuracy. In cases where information on the <(u?) of an impurity
atom is needed, the Mossbauer effect is the only method, provided that this im-
purity atom is a Mdssbauer isotope.

In this chapter, we focus on the common theoretical and experimental issues
concerning the recoilless fraction f and the second-order Doppler shift dsop,
such as how f depends on temperature and pressure, its anisotropy, its anhar-
monic effect, and how to measure f using absolute and relative methods.

5.1
Mean-Square Displacement {u?) and Mean-Square Velocity {v?)

Since we will frequently encounter these two quantities and they are also related
to each other, let us discuss their general expressions.

During the lifetime (usually 107 to 1071% 5) of the excited state of a Méssbauer
nucleus, an atom would have vibrated at least several hundred times around its
equilibrium position, and therefore (u) = 0 and {v)> = 0. However, <(u?)» and
{v?) are nonzero, and may have large magnitudes.
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178 | 5 Recoilless Fraction and Second-Order Doppler Effect

Calculating <u?) as a thermal average [1, 2] according to (4.49), we obtain
(uty = Cu-u'y *i‘.lcoth D heop \g(o) d (5.1)
= TVl b shop |g(w) do, .
and similarly
2 _LHJ 1
o)y = i coth Zhwﬁ g(w)wdw. (5.2)

In order to carry out the above integrals, concrete phonon DOS g(w) must be
specified. If the Debye distribution is used, the above expressions become, respec-
tively

3h? TN\ (/T x
2y il
{u >_4MkB0D [1+4(0D) Jo e"fldx , (5.3)
9%slp |1 (TN (P/T «?
2\ BYD |+ -
@ = M |:8+ (91)) Jo e¥ — 1dx . 54
At high temperatures (i.e., T > 0p/2), we have
3W°T Op\’
2y~ 1 —D> 5.5
WX g2 { +<6T : (5:5)
3kg T 1 /0p)\°
2 ~ — p—
oy v [1+20<T) . (5.6)
The expressions for low temperatures (T « 6p) are
3h° m? (TY
AP _
W [1+ ; <9D) } (5.7)
9%g0p (1 n* (T
2N\~ BYD (+ A [ 1
oy i |:8+15 <9D>:|. (5.8)

Another way to express {u?) and {v?) is using the frequency moment method,
the advantage of which is that the specific details of g(w) are not required. At
high temperatures (T > 0p/2), <u?) and (v can be written as [3]

kg T 1/ 1 /hY
<u2>:M{u<z>+12(kBT) i () @+

3T 1 Op(—2)\’
= Mk 03(-2) {H( 6T )} (59)




5.1 Mean-Square Displacement {u?» and Mean-Square Velocity {v?

and

kg T 1/ h\ 1 /Y
oy =2 [le(,ﬂ)mz)—m(M)umwm

~ 3’?; [1+210(9D,}2)) } (5.10)

In the limiting case of T — 0

N '
WO o Y = ke Op(—1)’ (>.11)
3h k0 (1
@ grun) =2, (5-12)

Comparing (5.5) and (5.9), one notices that the only difference is 0p and
0p(—2), the Debye temperature and the weighted Debye temperature (see Section
4.4), respectively. Other expressions also have similar patterns. It seems that
using the frequency moment method is closer to reality because it would give a
different Debye temperature value when the measurement is done in a different
temperature range.

If the Debye distribution is chosen for g(w) and various moments u(n) are cal-
culated according to (4.104), it is easy to verify that when the u(n) expressions are
used in (5.9) and (5.10), they indeed reduce to (5.5) and (5.6), as expected.

To show the magnitude of <u?) in a solid, Table 5.1 lists the {u?) values of Eu
atoms in the compound Euj 15Ba; gsCu3O7_s. It is easy to see that the amplitude
of Eu atomic vibration is of the order of 0.1 A, which is the typical u-value for
most solids at room temperature.

Table 5.1 Mean-square displacement {u?) of Eu atoms in Eu; 15Ba; g5Cu3zOy_s [4].

Temperature, T (K) f u?) (1073 A?)
25 0.518(7) 5.5(1)
40 0.522(7) 5.4(1)
60 0.509(7) 5.6(1)
90 0.495(7) 5.9(1)
200 0.411(6) 7.4(1)
300 0.305(5) 9.9(1)
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5.2
Temperature Dependence of the Recoilless Fraction f

Under the harmonic approximation, the recoilless fraction f in Eq. (1.71) can be
simplified to

f = [Keuy)? e—Clew?y _ kAU (5.13)

Therefore, the mean-square displacement {u?) along the direction of y-ray prop-
agation can be readily obtained by measuring the recoilless fraction f. The above
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Fig. 5.1 Recoilless fraction f as a function of temperature T for the
14.4 keV transition in *’Fe and the 93.3 keV transition in ¥Zn. 6 is
used as a parameter in calculating each curve, with the top curve
corresponding to 6p = 360 K and the lower curves corresponding to
decreasing Op-values with intervals of 20 K. Liquid helium and liquid
nitrogen temperatures are represented by the vertical dashed lines.
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expression is a general form, applicable to all Bravais crystals, and its strong de-
pendence on temperature is embedded in <u?). When the explicit expression for
(u*) in Eq. (5.3) is substituted into (5.13), the temperature dependence of f is
now through the two parameters Ex and 6p:

3Er TN (/T xdx
f_eXp{_Zka’D [l +4<%) Jo (e™ - 1)}}
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Fig. 5.2 Recoilless fraction f as a function of temperature T for the
23.9 keV transition in '"°Sn and the 77.3 keV transition in 7 Au. 0p is
used as a parameter in calculating each curve, with the top curve
corresponding to 6p = 360 K and the lower curves corresponding to
decreasing 0p-values with intervals of 20 K. Liquid helium and liquid
nitrogen temperatures are represented by the vertical dashed lines.
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which is Eq. (1.84). In Ref. [5], the temperature dependence of the recoilless frac-
tion f has been numerically calculated for 29 commonly used Méssbauer transi-
tions, among which four are shown in Figs. 5.1 and 5.2. In each graph, the first
curve from the top corresponds to fp = 360 K, the lower curves are drawn for de-
creasing temperatures with intervals of 20 K, and the liquid nitrogen (77 K) and
liquid helium (4.2 K) temperatures are indicated. Most Fe compounds and some
other compounds have their p above 300 K; therefore they have relatively large
f-values even at room temperature. For ¢ Zn, only at liquid nitrogen temperature
is f large enough for observation of its Méssbauer effect.

For the convenience of future reference, we substitute various forms of (u?)
into Eq. (5.13) to obtain explicit expressions for f in two difference temperature
regions. When T > 0p/2, we have

GERT 0o\ GEeT (913(—2))2
“Inf= 1+(2) | = 1 , 5.14
NS = [ * (GT) ] kp03(—2) [ T\ et (5:14)
and for the low-temperature limit (T — 0)
3K m? (TY

e (%(T—l)ﬂ ' 519
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The Anharmonic Effects

First, the Taylor series of the potential energy in Eq. (4.12) is represented by
V=Vo+Vi+ Vo + V34 Vi+---

The harmonic approximation ignores V3 and higher order terms, and V, is just
the nonzero term proportional to the square of the atomic displacement u? (i.e.,
the parabolic potential). This approximation fails to explain some phenomena
such as thermal expansion in solids, and the anharmonic terms V3 and V; need
to be included. These terms couple one phonon to another, i.e., phonon—phonon
interaction. For most solids, the potential energy curve has the parabolic shape
only in a very small region near the atom’s equilibrium position. As the tempera-
ture rises, the amplitude of atomic vibration increases, and the anharmonic effect
becomes appreciable. For any potential energy deviating from the parabolic
shape, the anharmonic effect should not be overlooked, even at very low temper-
atures.

The recoilless fraction f (or the second-order Doppler shift dsop) is closely re-
lated to the harmonicity or anharmonicity of the solid. Because the expression for
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£ has the atomic mean-square displacement {u?» on the exponent, the anharmo-
nicity of a solid can be sensitively detected by measuring the recoilless fraction f.
Using the Méssbauer effect, several frequency moments of the phonon, including
those moments directly related to the anharmonic effect, can be accurately mea-
sured.

5.3.1
The General Form of the Recoilless Fraction f

To study the size of the anharmonic effect, the usual procedure is to include Vj
and V, in the potential energy, calculate the corresponding (u?)», and compare
the results with experimental data. Over the years, many theoretical methods |3,
6-10] have been developed for calculating {u?). Here we describe a relatively
simple theory based on the work in Refs. [11-14]. The goal is to derive an expres-
sion for the recoilless fraction f that is explicitly dependent on anharmonic pa-
rameters.
For an anharmonic crystal, the recoilless fraction f can be written as

—In f = (k- u)*) —%«k )ty +%<(k cu)2)? + O(kS). (5.16)

For an fcc lattice, using the properties of the central forces between nearest
neighbors, the bracketed part in the second term can be shown to be approxi-
mately

(k-u)*y = 3¢(k-u)?y? (5.17)

which happens to make the second and the third terms cancel each other. This
means that for an anharmonic crystal, the recoilless fraction f can still be ade-
quately described by Eq. (5.13), except that u should be the actual atomic displace-
ment in the anharmonic vibration. We now focus on calculating u(l), based on
Eq. (4.49) and using the creation and annihilation operators 4" K and dy;:

(BN ) L aw
0= (o) 3 iy oo (5.18)

When (5.18) is substituted into the first term in (5.16),

h [k - e(kj)] [k - e(k'j")
2MN 2 ok (k)]
JiJ'

(k-u)?y =

] ei<k+k/)'I<Aij£/j,> (519)

where

Akj = dkj + dtkj' (520)
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The self-correlation function (Aij;,j,> can be expressed by the Green’s func-
tions (see Appendix F1). For a Bravais crystal, the anharmonic Hamiltonian is [11]

U 1
H = Xk: haj(k) (ajkjakj + 5)
g

+ Z @ (kyj1, kaj2, k3j3) Al jy Ak jy Al
ks
J1J2J3

+ Z * (kyjr, kajo, ksjs, kaja) Ak, j Aty jy Akyjy Akyjy + - (5.21)

where ®" (n > 3) represents the Fourier transform of the partial derivative of the
potential function. The self-correlation function <Aij;‘(,j,> can be expressed by
the retarded Green’s function

Gl () = - % 0(t)<[Aki(£), Arjr]>

which is similar to the definition (F.3). Using the two expressions

No(@) = —lim L/m"’i—l Im G} (0 + 18):| ,

e—0

. " . [ 2dw i’ ,
<Aijkri/> = J Iijl(,(w) dw = —lim 4[7\7‘ W Im G;(lk/ (CU + 18)7

—o
which are also analogous to (F.21) and (F.27), respectively, the explicit form of the
Green’s function was achieved as follows [11, 14]:

wj(k) Ok, 10y

T w— wjz(k) = 2wj(k)oij(w) 7

Gl () = (5.22)

where gy;(w) is the energy shift in phonon |kj) due to the anharmonic effect. It is
composed of the real part and the imaginary part:

oi(w +ie) = Ayj(w) — ilj(w). (5.23)

The real part Aj(w) is the actual shift in the phonon frequency w;(k), while 1/T;
is the average lifetime of the phonon.
Using the Green’s function, Eq. (5.19) becomes [14]

hn f =l = 2 STk el [ com (")
X 0

200j(k)Tj(w) /7

@ = 0 (k) = 20,00 + Rey(OT

X (5.24)
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Because this includes all anharmonic effects due to the third-order and higher
terms in the Hamiltonian (5.21), it is a general expression for the recoilless frac-
tion f, valid for all Bravais crystals.

However, the above integral can only be carried out after proper approxima-
tions have been taken for the phonon frequency shift. The usual methods of ap-
proximation include the quasiharmonic and pseudoharmonic methods. Under
the harmonic approximation, the third and higher terms in the potential energy
function are neglected; therefore, gy;(w) = 0 and there is no thermal expansion.
Under the quasiharmonic approximation, it is assumed that thermal expansion is
the only cause for the temperature-dependences of phonon frequency and force
constants. Based on this assumption, the frequency shift is directly proportional
to the relative change in volume V:

AP = eyl ) (5.25)
where y,; is known as the Griineisen constant. At room temperature, the quasi-
harmonic effect dominates and the resultant recoilless fraction f value agrees
with experimental data quite well. When the temperature is higher, the coupling
between phonons becomes significant and causes additional frequency shift dwg;,
which can only be analyzed by the pseudoharmonic method. Therefore, the total

frequency shift is the sum of the above two contributions:

AV

Ayj = dvj; — y1jo; (k) v = —epjwj(k)T (5.26)

where the superscript a stands for anharmonicity and ¢; is the anharmonic con-
stant, indicating the relative change in phonon frequency when temperature is
increased by 1 K. We will now convert (5.24) into a more practical form using
the pseudoharmonic approximation.

5.3.2
Calculating the Recoilless Fraction f Using the Pseudoharmonic Approximation

In the limit I'y; — 0, the new phonon frequency is

wy = oj(k) + Ay = (k)1 - e T). (5.27)

The integrand in (5.24) is the Breit—-Wigner type distribution, with a maximum at
@ = wj;. This distribution can be replaced by the following J-function:

1, 20;(k)Tj
7 =0 [0 — ()] + [20;(k)Ty)?

Slw” — (wf)*] = (5.28)

where (w;j)z ~ a)jz(k) + 2w;(k)Ayj. Substituting (5.28) into (5.24), we obtain the

following expression of the recoilless fraction f for cubic lattices:
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2 1 hw}ijﬁ
—In f = k*Cu? >_3—N h of oth( 3 > (5.29)
This has the same form as the harmonic result (1.81), except for wj; replacing
wj(k) due to anharmonicity. As long as the temperature is not near the melting
point and the potential function of atomic interaction is nearly a parabola, the re-
coilless fraction f values derived from the pseudoharmonic approximation are in
good agreement with experimental results.

Equation (5.29) can be further simplified using the concept of frequency mo-
ments. First we define the anharmonic frequency moment, analogous to that in
Eq. (4.105):

44 (n, T) = 31\12 )" 3NZw )" (5.30)

and the anharmonic characteristic temperature

1/n
©i(n, T)} . (5.31)

03 (n, T) = h {n+3

ks | 3

Unlike the corresponding harmonic approximation parameters x(n) and 0p(n),
these anharmonic parameters u*(n, T) and 03 (n, T) are temperature-dependent
and may be expanded into power series of T:

nn—1)

w(n, T) = pu(n) [1 —ner(n)T + o

e(n)T? + - ] (5.32)

and

(}E(n,T):0D(n){1f£1(n)T+nT_!1[82( ) —e2(n)] T2 + }, (5.33)

where &,(n) are the weighted anharmonic constants, defined as

o) = 30 () 0 (), (5.34)
i

These coefficients diminish rapidly with decreasing temperature, and as long as
the temperature is not too high, x?(n, T) is approximately a linear function of T.
Because & (n) x ¢2(n), 03 (n, T) also depends linearly on T. The following are two
special cases.
1. When T > 0}(—2)/(2x), the function coth(x) in (5.29) can
be expanded for small x

1 x
cothx=—4+=+---
x 3
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B ® “'Fein Cu
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Fig. 5.3
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Recoilless fraction f of 3’Fe in host materials Cu and Au as

functions of temperature. The dashed and solid lines represent results
using the harmonic and quasiharmonic approximations, respectively.

and (5.29) becomes

6ERr T

= a2

x {1 +261(-2)T + FDG(;Z)]Z +oe } (5.35)

This is a very practical formula, because it can be used to fit
the Méssbauer spectra for obtaining &;(—2) and 0p(—2),
which characterize the size of the anharmonic effect. Figure
5.3 shows such a fitting example [12].

. When T — 0, the recoilless fraction f can be written as [13]

3B 1

<(k'u)2>:mm~ (5.36)

Here the superscript a is the only difference between (5.36)
and the first term in (5.15). This result shows that f is
independent of T at low temperatures and the slope of the
mean-square displacement versus T curve is zero near T = 0
[3]. Therefore, the corresponding f-value should not be
exactly 1, and it is this deviation from 1 that provides a
measure of the zero-point mean-square displacement.
However, for intermediate temperatures, 5 K < T <
0p(—2)/(2r), the two formulas (5.35) and (5.36) are not
adequate.
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533
Low-Temperature Anharmonic Effect

For some solids, the potential energy curve is never parabolic. Even at T = 0,
<u?) is still much larger than predicted by (5.36). This phenomenon is known
as low-temperature anharmonicity, which was first observed [15] in light molecu-
lar solids such as Ne, D,, H,, “He, and He.

For these light molecular solids, the atomic interactions are relatively weak.
Since the cohesive energy is small, the zero-point energy becomes important,
causing the interatomic distance to increase. In this case, there is a relatively
large and force-free volume (a cavity), and the potential energy curve deviates sig-
nificantly from a parabola (Fig. 5.4), causing low-temperature anharmonicity.

Generally speaking, whenever a crystal structure has cavities or atoms that are
loosely bonded, low-temperature anharmonicity is likely to exist. Inclusion com-
pounds, such as hydroquinone, C¢H4(OH),, form regularly spaced cavities, capa-
ble of containing isolated foreign atoms or ions. lonic crystals (or solid solutions)
may also contain small impurity ions, such as Li* in PtCl, or PtB,, resulting in
several minima in the potential energy curve [15]. In these systems, the f-value is
relatively small and depends only weakly on temperature.

Measuring the recoilless fraction f to investigate low-temperature anharmonic-
ity is a straightforward method. In Fig. 5.5, curve (c) is a typical temperature de-
pendence of f. In the high-temperature region where thermal expansion can be

U
Fig. 5.4 Shape of potential energy between atoms is modified to wine-bottle-
like when the interatomic distance is increased.
,®
~Inf i
A
f
Fa
P
(c) 7 /
s
!

Fig. 5.5 Characteristic temperature dependences of
£+ (a) harmonic approximation, (b) high-temperature
anharmonicity present, and (c) low-temperature
Temperature anharmonicity present [17].
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neglected, the curve is fitted with a straight line, whose intercept with the vertical
axis is a measure of the size of the anharmonicity. The anharmonic effect causes
f to decrease from the harmonic predictions. Therefore, measuring f allows us
first to detect whether a solid is harmonic or anharmonic and then to study the
properties of the force constants and potential energy between the atoms.

Using such a method, low-temperature anharmonicity was detected in
many compounds, including FeCl, [16], superconducting Nbs;Sn [17] and
CuRh; 95Sng o5 Ses [18], and the high T, superconductor EuBa,CuzOy_; [19, 20]
discovered recently. Here we discuss some of the results from FeCl,, which has
a layered structure. The Cl~ ions form hexagonal layers, with Fe?* hexagonal
layers sandwiched between every two layers of chloride ions. The Fe?* ions are
located in the octohedral interstices of nearly perfect close-packed array of chlo-
ride ions. The radius of the octohedral interstices is larger than the radius of
Fe* by about 0.05 A, suggesting that Fe?* may be loosely bound. Another result
that supports this conclusion is that the stretching force constant in the molecule
is 2.23 x 107> mN A~', but the average force constant between Fe?* and the six
Cl~ ions measured by the Mossbauer effect is only 0.46 x 107> mN A~! [21].
Therefore, the size of the octahedron is determined not by the overlapping of
Fe—Cl electron clouds, but by that of the Cl-Cl electron clouds (covalent bonds).

Results for (u?) from Méssbauer effect measurements [16] are shown in Fig.
5.6, where the high-temperature data are fitted by the harmonic approximation
(solid curves). The slopes of the solid lines do not go through the origin, indicat-
ing the existence of low-temperature anharmonicity. When T < 120 K, the exper-
imental data points for FeCl, are gradually higher than the solid line, demonstrat-
ing that the anharmonic effect becomes more significant at lower temperatures.

2.50 T T T

2,00

FeCl, (6 = 107K)-

1.00

FeF, (6: = 159K)

0.50

Mean-square Displacement (#2) (10-2 A?)

0 1 1 L
0 100 200 300 400
Temperature 7" (K)

Fig. 5.6 Temperature dependences of mean-square displacement for FeCl, and FeF,.
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The radii of the Fe?" and Cl~ ions are approximately 0.74 and 1.81 A, respec-
tively. This difference is the key factor for FeCl, to exhibit low-temperature anhar-
monicity. In the case of F~ instead of Cl, because the radius of F~ is 25%
smaller than that of CI~, Fe?* can no longer enter the octahedron space in FeF,.
This is why FeCl, and FeF, are not isostructural, the former having the layered
CaCl,-type structure and the latter having the rutile SnO,-type structure. It is
easy to see from the FeF; data in Fig. 5.6 that FeF, has very little low-temperature
anharmonicity.

5.4
Pressure Dependence of the Recoilless Fraction f

Theoretical calculations [22] have predicted that the recoilless fraction f should
be affected significantly by an external pressure. This effect can be studied by
supposing that pressure causes a shift in each of the phonon frequencies from
w;(k) to wj(k) + dwyj, with dwy; > 0 in most cases. However, there is a simpler
way to treat the effect of pressure on lattice dynamics by a change in the volume
of the solid, instead of a change in the phonon DOS. Using the Debye model, vol-
ume change will result in a change in the Debye temperature 6p, and eventually
f can be expressed as a function of pressure [23-26].

The volume of a solid V and its Debye temperature 6p have the following sim-
ple relationship:

611’19])_
olnv

-y (5.37)

where 7 is the Griineisen constant, the average value of y,; for individual modes
in Eq. (5.25). For different solids, the y-values range from 1 to 3.
Assuming y itself is independent of volume, then (5.37) can be written as

0y 0p
v (5.38)

On the other hand, volume and pressure are related by the isothermal compressi-

bility

1[0V
v (@)T =5 (5.39)

The p-values are very small for most solids, generally no larger than 107! Pa~l.
For example, metallic Au has f ~ 5.5 x 10712 Pa~! [27].
Now we substitute (5.38) and (5.39) into

0o _ito 2v
dp AV dp
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and integrate to obtain

0p(p) = Op(0)e™? (5.40)
where 0p(p) and 0p(0) are the Debye temperatures when pressure is at p and 0,
respectively. Substituting this relation into Eq. (1.84), we arrive at an expression
for the recoilless fraction f as a function of pressure p, f(p), which can be used
for analyzing high-pressure Méssbauer spectra. Since f(p) is not a simple func-
tion, we will discuss the following limiting cases.

1. In the low-temperature case (T — 0), we have

3ER 1 3ER
In =—— - 1 —yfp). 5.41
0=~ i S g (LD (54D
2. In the high-temperature case (T » 0p(0)/2), we have
6ERT 1 6Er
In = — - 1-2 . 5.42
0= 2 = w2 69

In both of these limiting cases, In f is approximately a linear function of pres-
sure, except for different proportionality coefficients. However, the coefficients
are positive in both cases, indicating that f increases as pressure increases, as
shown by the examples in Fig. 5.7.

Recently, the phonon DOS of a-Fe and hcp-Fe have been observed by inelastic
neutron scattering and inelastic nuclear resonance scattering of synchrotron radi-

201 . 1 IR [N TN [ WY S W -

Pressure p (10% Pa)

Fig. 5.7 Relations between absorption area A and pressure p for (a)
7 Fe[(ethyl),dtc]s, (b) >’ Fe[(methyl),dtc]s, and (c) >’ Fe[(benzyl),dtc]s
complexes. The vertical separation between data sets is arbitrary [26].
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ation at high pressures up to 153 GPa [28, 29]. Both results show significant
changes in the phonon DOS shifting towards the high-frequency region. The De-
bye temperature 0p increases with pressure as described by Eq. (5.40), even
though the DOS curves at ultrahigh pressures deviate appreciably from the Debye
model. As for the recoilless fraction f, its dependence on pressure can be accu-
rately determined using the DOS g(w).

5.5
The Goldanskii-Karyagin Effect

When the bonding forces on a Méssbauer nucleus in a crystal do not possess
cubic symmetry, the vibration amplitudes and thus {u?) values in different direc-
tions are not the same, resulting in an anisotropic behavior of the recoilless frac-
tion f. This consequently leads to the relative absorption intensities in the sub-
spectra split by hyperfine interactions having a different ratio, which was first
observed by Goldanskii [30] in polycrystalline samples and was first explained
theoretically by Karyagin [31]. Hence this phenomenon is known as the
Goldanskii—Karyagin (G-K) effect.

Since Mossbauer spectroscopy is a unique method that can measure atomic
mean-square displacements <(u?> along different crystal axes, it is a method of
choice for investigating anisotropic lattice vibrations. A good example is the mea-
surement of the 81 keV 133Cs Méssbauer recoilless fraction f as a function of 0,
the angle between the y-ray wave vector k and the c-axis of the cesium—graphite
intercalation compound CgCs [32]. As shown in Fig. 5.8, f(0°) was found to be
astonishingly 20 times larger than f(90°).

0° 30° 60° 90°
2]

Fig. 5.8 '33Cs recoilless fraction f as a function of the angle between
y-ray direction k and the c-axis of the intercalation compound CgCs.
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Let us look at the influence of the G-K effect on the Méssbauer spectral inten-
sities from single-crystal and polycrystalline samples.

5.5.1
Single Crystals

Anisotropic recoilless fraction f has been studied, for example, using the 103.18
keV Méssbauer transition (3/2% — 5/2%, M1 type) of *3Eu in Eu,Ti,0; [33].
This crystal has a cubic structure of the pyrochlore type with a space group sym-
metry Fd3m. The Eu®* ions occupy positions with a three-fold symmetry (3m
point symmetry), where the electric field gradient is axially symmetric (7 = 0)
with its principal axis in the [111] direction. However, there are four equivalent
[111] directions, and the cosine of the angle between them is 1/3. In the Mdss-
bauer experiment, the single-crystal sample is oriented such that the incident
y-ray is parallel to a particular [111] direction (6 = 0) and consequently there are
two inequivalent Eu sites: one site with 1/4 of the population having § = 0 and
another site with 3/4 of the population having cos 0’ = 1/3.

According to Eq. (2.47), the angular distribution functions for a dipole radiation
are

F(0) = 0> =sin? 0 for Am =0,

and

FL0) = [z} == (1 + cos? ) for Am = +1.

N| =

For the first Eu site, § = 0, thus F?(0) = 0 and F}(0) = 1. For the other three sites
with cos @' =1/3, FY(0') =8/9 and Fl(0') =5/9. The intensities of Am =0
transitions, as determined by their respective Clebsch—Gordan (C-G) coefficients,
would be multiplied by a = 0f (0) + 3(8/9) f(¢’), and those of Am = +1 transi-
tions by b=1f(0)+ 3(5/9)f(0’). Therefore, the relative intensities of the
Am = 0 transitions, as determined by the appropriate C-G coefficients, would be
multiplied by

p=ft-_ %
~ b 5+3f(0)/F(0)

Suppose that the recoilless fraction f is axially symmetric and we use f| and f| to
represent f(0) and f(90°), respectively, then [34]

(5.43)

f0) = exp[fk2<x2> — ¢ cos? 0] = f1 exp(—¢ cos? 0), (5.44)

with

=k*[(z*> — (x*>] = —In ﬂ
£ = R[22 — () 1<ﬂ) (5.45)
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Fig. 5.9 ">*Eu Méssbauer spectrum of single-crystal Eu,Ti;Oy at T = 36 K.
where (z?) and (x?)» denote the mean-square displacements along directions

parallel and perpendicular to the k direction, respectively. Applying this to the
Eu,Ti, 05 single crystal:

jf(((())')) = 7 exp(ﬂ o5 0 = exp(—¢) exp(e cos? 0') = exp(—8¢/9),  (5.46)

and (5.43) becomes

8
B= 54 3 exp(—8¢/9) " (5.47)
The >3Eu spectrum at T = 36 K is shown in Fig. 5.9. The dashed line is the cal-
culated curve assuming an isotropic recoilless fraction f, and it obviously does
not fit the experimental data. Now the intensities of all Am = 0 transitions have
been multiplied by an attenuating factor to obtain the best fit (the solid line). Be-
cause this factor should be B in Eq. (5.47), the parameter ¢ can be easily calcu-
lated. A nonzero ¢-value indicates anisotropic lattice vibrations and the existence
of the G-K effect. Table 5.2 lists values of B for the single-crystal Eu,;Ti;O; and

Table 5.2 Parameters B and ¢ derived from the analysis of '>3Eu
Mossbauer spectra of single-crystal and polycrystalline samples of

EuzT1207.
T (K) B (single crystal) ¢ (single crystal) ¢ (polycrystal)
4.1 0.40(2) —1.81(5) —1.95(15)

36 0.27(5) —2.4(1) —2.6(2)
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values of ¢ for the single-crystal and polycrystalline samples [35]. From the data at
4.2 K, it has been derived that (z?)» — (x?> = —0.00226 A%. From both the single-
crystal and polycrystalline samples of Eu,Ti;O;, the measured G-K effect
amounts (e-values) are consistent with each other.

5.5.2
Polycrystals

At a first glance, the G-K effect might not be apparent in polycrystalline samples.
But in fact, measuring the intensities of the quadrupole splitting lines is quite
straightforward to detect this effect. This is because when the recoilless fraction
f is isotropic, the two spectral lines (e.g., 3/2 — 1/2 transition in %’ Fe) should
have equal intensities. But if f is anisotropic, the two lines would have different
intensities:

. 2 |
L _ .‘o (14 cos” 0) f(0) sin 0d0

. =175 #1 (5.48)
12 J (§ — cos? H)f(ﬁ) sin 0d0
0

which are independent of the particular orientation of the sample. If the probabil-
ity of the y-transition was 6-independent, the G-K effect would not be observed in
polycrystalline samples.

From Eq. (5.45), we know that ¢ is proportional to k2, which is equal to
E2/(h*c?). Because E, of *Cs is about 6 times that of *’Fe, the cesium recoilless
fraction f is much more sensitive to the changes in its mean-square displace-
ment than the iron recoilless fraction f. Therefore, high-energy Méssbauer tran-
sitions such as 2" — 0 (E2 transition) would be more advantageous for studying
the anisotropy in lattice vibrations [36]. In this case, the quadrupole split spec-
trum has simply three absorption lines. Such Méssbauer isotopes include *2Sm,
156Gd, 160Dy, 166Fr, 170Yb, and 74YD, all of which have relatively large E, values
and therefore any G-K effects can be sensitively detected. For example, the lattice
vibrational anisotropy detected by the 7°Yb Méssbauer effect is as high as 30
times that by 3’ Fe. In addition, E2-type radiation contains high-order harmonics,
which are more sensitive to the vibrational anisotropy [37].

Figure 5.10 shows 1°°Gd Méssbauer spectra from a polycrystalline Gd,Ti,O;
sample, which exhibits a relatively large G-K effect [38]. Analogous to the pre-
vious example, for Am = 0 and Am = +2 transitions, two attenuation factors By
and B, are used to fit the data. For each temperature, By and B, lead to ¢ and ¢,
values that are equal to each other, strongly supporting the G-K theory. The exper-
imental results show that at T = 4.2 K, (z?> — (x?> = —0.00076 A2.

There are two more points worth mentioning.

1. The G-K effect is sometimes very small and requires careful
experimental planning for its observation. An important
consideration is the saturation effect of the absorber [39]. To
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Fig. 5.10 "*Gd Méossbauer spectra of polycrystalline Gd,Ti,O7. The
solid lines are fits to the experimental spectra, taking into account the
anisotropic f. The dashed lines are theoretical spectra with an isotropic f.

reduce this effect, thin samples are preferred, but this results
in smaller Méssbauer effect absorption and the accompanied
large statistical errors. A better alternative is to use emission
Mossbauer spectroscopy for studying the G-K effect [40-42].

2. Some polycrystalline samples may contain texture due to
preferential orientation, which could affect the Mossbauer
spectrum in a manner similar to the G-K effect. But the
texture effect should be basically independent of temperature,
while lattice vibration is strongly dependent on temperature
and the G-K effect should be larger when the temperature is
higher (see Fig. 5.10). Analysis of Mdssbauer spectra from a
sample at different temperatures would allow us to
distinguish between these two effects.

5.6
Second-Order Doppler Shift

5.6.1
Transverse Doppler Effect

The second main methodology for obtaining information on lattice dynamics
through M6ssbauer spectroscopy is analysis of the shift of the entire spectrum
due to the second-order Doppler effect.



5.6 Second-Order Doppler Shift

Suppose we have two reference frames, one attached to the laboratory and the
other to the vibrating Méssbauer nucleus. When this nucleus emits or absorbs a
y-photon (E, = hay), according to the special theory of relativity, the photon’s an-
gular frequency w as observed in the laboratory reference frame is

PR Skl (5.49)

=7 i cos 0)c

where v is the speed of the nucleus and 6 is the angle between the photon direc-
tion and the velocity of the nucleus. When v « ¢, the above equation can be ex-
panded as

2
wzwo(1+§cosﬂ—zv—cz+~~>

or

2
A}Tf ’zgcosofzv—cz. (5.50)
The first term is the usual first-order Doppler effect, used for modulating the
photon energy in Mossbauer experiments. The next term, which does not exist
in the classical theory, is the second-order Doppler effect, as a consequence of
the time dilation phenomenon in relativity theory [13, 43]. When the nucleus
moves in a direction perpendicular to the photon direction, cos 0 = 0, the first-
order term vanishes and AE/E, = —v?/2c2. Therefore, the second-order Doppler
effect is also known as the transverse Doppler effect [44].
In a solid, the average atomic velocity is zero, <v) = 0, so Eq. (5.50) becomes

)

AE) = —E .
< > 0 262

Since the typical value of atomic mean-square velocity for metallic iron at room
temperature is {v?) ~ 6 x 10! mm? s72, the energy shift due to the second-
order Doppler effect is therefore (AEY = —Eo<v?>/(2c?) ~ —4.8 x 10™° V. Be-
fore the discovery of the Mdéssbauer effect, this small change in energy could not
be resolved by any other method.

Suppose that the source and the absorber are at different temperatures T and
T. The second-order Doppler shift as observed in the Mdssbauer spectrum (in
units of mm s™1) can be expressed as

g =Dy

- (5.51)

JsoD

If T; is fixed, the first term is a constant (¢;), and when the high- and low-
temperature expressions (Egs. (5.6) and (5.8)) for <v?) are used in the second
term, we have
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3k T 1 (0p\
650]:) =0 — 27]\40 |:1 +% <T) for T > 0[), (552)
9kB0D 1 7'[4 T 4
- Lo (EV] for T« 0p. .
dsop = €1 IMe |:8 + 15 \0p or T « Op (5 53)

The observed shift J of the entire Mdssbauer spectrum is called the center shift,
which is the sum of isomer shift d;s and the second-order Doppler shift dsop:

v? 2
5= bis + dsop = s + 2L ST
2c 2c

(5.54)
The second-order Doppler shift dsop strongly depends on temperature while the
isomer shift ;s is a measure of the s-electron density at the nucleus and thus is
approximately independent of temperature. The specific details of (v?) are deter-
mined by the model chosen for the lattice vibration.

In 1960, Pound and Rebka [45] first proved the existence of the second-order
Doppler effect using the Méssbauer effect. They measured the relation between
second-order Doppler shift and temperature in *’Fe y-ray resonance absorption,
and used the Debye model for the distribution function g(w) in Eq. (5.2) with
0p = 420 K. Their theoretical curve has an excellent agreement with the experi-
mental data (see Fig. 5.11). Since then, many studies on the temperature depen-
dence of dsop have been carried out to give lattice dynamics parameters such as
Op or Op(n), <v?), and the effective vibrating mass Mg [46—49].

In the meantime, Josephson [1] derived the second-order Doppler shift from
the mass—energy relation, a different aspect of the special theory of relativity.
This was based on the notion that the mass of the Mossbauer nucleus in the ex-
cited state is larger than that of the same nucleus in the ground state, and the en-
ergy of the emitted y-photon corresponds to the difference in the mass values,

51013 T T T
4x10-13 e
3x10°1% |- -

2x10-1 | e

AI/E

1x10-13 .

-1x10-3 -

100 200 300
T (K)

Fig. 5.11 Temperature dependence of second-order Doppler shift in the
14.4 keV y-ray resonance absorption.
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Ep = ¢20M. Now if the nucleus has kinetic energy, its expectation value would be
altered by the following amount:

sE— PO pH o pD oD

- E 5.55
2(M+oM) 2M 2M? 27 (5:55)

causing the photon energy reduction, which is identical to the second-order Dop-
pler shift. It should be noted that (1) these two apparently different origins of the
second-order Doppler shift can be shown to be equivalent, and (2) this kinetic en-
ergy difference before and after the y-emission is not to be confused with the re-
coil energy, which is an entirely separate quantity.

5.6.2
The Relation between f and dsop

The recoilless fraction f and the second-order Doppler shift dsop are related to
<(u?) and <v?), respectively. Once the phonon frequency distribution function
g(w) has been determined, both (u?) and {(v?) (thus f and Jsop) can be accu-
rately calculated. Experimentally, however, f and dsop are measured differently,
because f is related to the relative areas of the spectral lines and Jdsop is related
to the positions of the lines. For a spectrum without overlapping lines, the preci-
sion in measuring line positions is much higher than that in determining the
areas. For example, the precision in line positions in a room temperature sodium
nitroprusside spectrum is 0.2%, while that in the spectral areas is only 0.7%. This
does not mean that the lattice dynamics parameters based on dsop measurements
are more reliable. In fact, it is difficult to separate dsop from Jis. In most cases of
>’Fe work, the temperature variation of djs is neglected, which brings certain
amount of error to dsop. Also, it is not uncommon to find discrepancies between
the two Op-values from f and dsop for the same solid, the reason being that the
actual phonon distribution of most solids deviates significantly from the Debye
distribution.

As we know from Eq. (1.84), the f-value can be determined from the Debye
temperature and it is sensitive to any changes in this temperature [50]. Conse-
quently, extraction of the f-value from dsop data must be done with special care
[51]. In general, analysis of f and dsop data is not carried out by the Debye model
only, even in the high-temperature range.

If we use a shorthand notation

(o' = Jcoth (% hwﬁ)wlg(w) dw,
we can rewrite the definitions in Egs. (5.1) and (5.2) as follows:
h
PN
Wty =5 o,

@ = %<w>.
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Also, we will define a new quantity St in order to facilitate the discussion of the

relation between f and dsop:

hf_ G A1
T 0sop —<w2yj2c 3 Loy/{lw 1y’ (5.56)

where {w)/{w~ ') is known as the McMillan ratio. In the high-temperature limit,
experiments have shown that both (u?) and {v?) are nearly linear in tempera-
ture. Therefore, St or the McMillan ratio is approximately a constant [52]. How-
ever, St is not the same for different solids. Figure 5.12 shows the experimental

1.0

T
Rh

0.7

%Fe Recoilless Fraction f

5TFe Recoilless Fraction f

o

0] b1
0.60 0.40 0.20 0.30 0 -0.30

Center Shift & (mm/s)

Fig. 5.12 Plots of In f versus center shift ¢ for dilute >Fe in six
different hosts. “RT” indicates the room temperature data point(s). d is
measured with respect to the center shift of room temperature o-Fe [52].
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Fig. 5.13 Relations between the ''°Sn recoilless fraction f and center
shift 6 for (a) SnTe with a SnTe source at 19.4 K and (b) Nb3;Sn with a
Pd;Sn source at 19.4 K [52]. The temperature values next to the data
points are absorber temperatures.

results of >’ Fe impurities in six different fcc crystals, and it is convincing that In f
and dsop are linearly related in an extremely wide temperature range from 100 to
1020 K. Figure 5.13 shows the linear relations between In f and dsop for two
119Sn compounds.

The above mentioned linearity can be predicted by the Debye model. When the
absorber is at a high temperature, we can regard the source temperature Ty — 0
and obtain from Eq. (5.52)
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KD 3k
(SSOD— Tc— EMCT (5.57)

On the other hand, Eq. (5.14) gives

GERT
Inf=-—"—2".
k07
Therefore
S ZE}? 5.58
T — ma ( . )

which indicates that St or the McMillan ratio depends on two constants E, and
0p but not on temperature T. Because of this reason, studies of the second-order
Doppler effect are usually carried out in a relatively high-temperature region.

If the g(w) of a solid deviates substantially from the Debye model, the relation
between them could become very complicated [51].

5.7
Methods for Measuring the Recoilless Fraction f

Special attention has always been paid to the precise measurement of the recoil-
less fraction f. The precision has reached 1% when radioactive sources are used
and it can be better than 0.4% when synchrotron Mdossbauer radiation is em-
ployed.

There are two main difficulties in the transmission method. One is the compli-
cated background, which cannot be accurately calibrated as done in other radioac-
tivity experiments. This severely limits the precision in determining the baseline
counts I(o0), and has been regarded as the main source of error in measuring the
recoilless fraction f [53, 54]. The second difficulty is that the sample always has a
finite thickness, causing some amount of distortion in the spectral shape. Com-
pletely correcting the thickness effect is also very difficult. Fortunately, these lim-
itations can all be overcome by a radically different experimental method in syn-
chrotron Méssbauer spectroscopy (see Chapter 7).

There are many methods for measuring the recoilless fraction f, categorized
mainly into to two groups: absolute methods and relative methods. All of them
are based on the measurements of spectral intensities (areas or heights), shapes,
and widths. Detailed descriptions of these methods can be found in Ref. [13].

5.7.1
Absolute Methods

In an absolute method, we obtain the recoilless fraction f by measuring A(t,),
&(vr), and T,*P and utilizing their relations with ¢, (note that ¢, is proportional
to f because t, = n,food).
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The absorption area method is the most popular one, because the spectral area
A(t,) is approximately independent of the line shape of source emission and the
instrumental broadening [54]. When the sample thickness increases, A(t,) satu-
rates more slowly than the spectral height. Therefore, A(t,) is more sensitive to
the change in t,. For a single line absorption, the normalized area A(t,) can be
expressed as (see Appendix A):

Alty) = JOC o(v)dv = r w dv = ‘:C £[1 = T()] dv

- -0 I(Oo)f b

- fsl"an%a exp (f %) [10 (%) +1 <%)} (5.59)

where I, represents the background counts. If f; is known, we can calculate t,
from the measured absorption areas, thus obtaining the recoilless fraction f.
When t, < 1, Eq. (5.59) may be expanded into a polynomial series:

Aty) = gfsl“ata(l —0.25t, + 0.0625¢2 4 - -). (5.60)

In the first-order approximation, the spectral area A(t,) is directly proportional to

ty or f:
Alty) ~ g filat, = G fsl"anaaod) f. (5.61)

The accuracy of the absorption area method is limited by statistical errors in
counts I(o0) and I,,. A small error in the baseline counts I(o0) would cause a rel-
ative large uncertainty in the spectral area measurement. In addition, during the
measurement or fitting of the spectrum, the chosen velocity range +v; not being
large enough will also add more uncertainties in A(t,). As shown in Fig. 5.14, the
shaded area is equal to 2T',/(nv1), and an A(t,) accuracy better than 1% would
require v; & 641, [13].

The “white source” method can be used for accurate measurements of I(o0)
and A(t,) [55]. This method uses a separate counter recording the total transmit-
ted y-rays when the source executes a constant acceleration motion between —u;

Fig. 5.14 Shaded area indicates the error introduced in the area of an
absorption peak if the velocity range is not wide enough.
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and +wvq. This is equivalent to the average of the counts for all velocities. Accord-
ing to Eq. (1.23),

I(Tl):zivlj 1(6) do = I(o0) — I(00) — J £[1 - T(v)] do. (5.62)

—u 2 —vp

Obviously, when v; — o, the last integral in the above equation is the area A(t,),
and therefore

o) = 1(0) — 1) 522,

(5.63)

which shows a linear relation between I(v;) and 1/v;. Performing a linear regres-
sion on the experimental I(v;) versus 1/v; curve would then give I(c0) and A(t,),
whose uncertainties can be as good as 1 and 0.7%, respectively, based on experi-
ments using a °’Co/Pd source and an Fe/Rh absorber.

Another technique for eliminating the influence of background is the selective
modulation method [56]. Between the specimen absorber A and the source is in-
serted a so-called control absorber C (Fig. 5.15). For the sake of simplicity, sup-
pose that the control absorber’s isomer shift is the same as that of the source.
The control absorber is driven to move along the y-ray direction. When the con-
trol absorber is moving with a high speed, it will not resonantly absorb the inci-
dent y-rays. Under such a condition, what registers in the detector is I(00), which
includes both recoilless and recoiled y-rays as well as background. Next, when
the control absorber is at rest, the recoiled y-rays and the background in the de-
tected intensity I(0) should be identical to the previous case, but the recoilless
part will be reduced due to resonance absorption. The difference AI = I(c0) — I(0)
represents the “pure” recoilless radiation, equivalent to a source that emits only
Mossbauer radiation. Now the specimen absorber is driven with a constant ac-
celeration mode, synchronous with the control absorber motion. During the
increasing half of the triangular wave, the control absorber is moving with a
high speed, while during the decreasing half of the triangular wave, the control
absorber is at rest.

—]]

source

detector

F1A

C A

Fig. 5.15 Positions of the two absorbers in the selective modulation
method.
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Two different spectra are obtained in a single experiment, and the difference
between them is a “pure” Mossbauer spectrum (with f; = 1). The spectral area is

C[® AI(0) — AI(v)
w0 =]

— ran%‘ exp (— %) {10 (%) s (%)} (5.64)

where oo and v represent the “infinite” and “finite” velocity values of specimen
absorber. Drawbacks of this method include the requirement that the control ab-
sorber have the same isomer shift as the source and the inconvenience in high- or
low-temperature experiments. Of course, a serious drawback is the low activity of
such a “pure” recoilless y-source. A couple of improved setups have also been
developed [57, 58], and applied to the investigations of BaSnO; and
K4Fe(CN)g-3H,0, with room temperature results of f =0.57 +0.02 and
f =0.281 + 0.004, respectively. Figure 5.16 shows a comparison between M&ss-
bauer spectra obtained using different methods, and the results are also similar to
those obtained by means of a “resonance” detector [59].

If f; cannot be accurately known, a usual method to circumvent this difficulty
is to use a series of specimens of the same material but with different thicknesses
d. The spectra are fitted using f; as one of the parameters. Reference [60] presents
one such example, where five EuBa,;Cu30; samples were prepared with different
thicknesses d and after fitting all the spectra, f = 0.26 was obtained. A compila-
tion of f-values of various materials is given in Table 5.3.

Velocity v (mm/s)

Fig. 5.16 '"”Sn Mossbauer spectra of SnO obtained by (a) using no
control absorber and (b) using a control absorber of BaSnOs [56].
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Table 5.3 List of recoilless fraction f values of various materials.

Méssbauer nucleus Solid material f T (K) Ref.
2 o-Fe 0.93(3) 4.2 61
0.78 293 62
0.67 300 63
0.771(17) 298 64
0.688 293 65
o-Fe, 03 0.66 293 66
Naj[Fe(CN)sNOJ-2H,0 0.468(7) 67
0.359 68
0.43(3) 65
0.37 69
FE(CSHs)Z 0.169 70
0.08 295 69
K4Fe(CN)g-3H,0 0.281(4) 58
FeS, 0.20(2) 71
1198n Sno, 0.28(3) 72
BaSnO; 0.57(2) 56
0.52(2) 73
0.65(1) 74
151Ey EuBa,Cu;0; 0.26 60
19Th TbAl, 0.108(3) 115 75
Tb,0; 0.237(15) 81 75
183w Metallic tungsten 0.299(1) 297 76
P11y Metallic iridium 0.036(5) 80 76
5.7.2

Relative Methods

The absolute methods are suitable only under various restrictions on line shapes,

widths, and experimental arrangements [54, 55]. When a relative method is em-

ployed, most restrictions can be removed and, especially, several sources of errors
that occur in an absolute method may be avoided. Therefore, the accuracy in a
relative method is usually higher than that in an absolute one. In fact, we are
more interested in how f changes with temperature or pressure in lattice dynam-
ics than its absolute value.
If the sample is very thin, Eq. (5.61) is valid, and the relation between spectral
area and temperature T is essentially the same as the relation between f and T:
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AT) =[5 £TITmaod | £(T) = (T) (5.65)

where T is the temperature of the source, which is usually kept constant during
experiments, and hence c is a constant. If the A(T) values are divided by the area
A(Tp) deduced from a spectrum at a particular temperature Ty,

A(T) _ f(T)
A(To)  f(To)’

(5.66)

the other factors cancel out and we obtain the relative change in the recoilless
fraction f. Using this for fitting the spectral areas as a function of temperature
will allow us to extract lattice dynamics parameters such as 0p(—2), 0p, and

207

&(—2).
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6
Mossbauer Scattering Methods

So far, we have been using Mdssbauer spectroscopy in transmission geometry.
The scattering of Méssbauer radiation is another method, but based on a differ-
ent principle. Compared with neutron and x-ray scattering methods, the develop-
ment of Mossbauer scattering has been slow and incomplete, mainly limited by
the lack of strong Mdssbauer radioactive sources in the early days. Since synchro-
tron Mossbauer sources became available in the mid-1980s, research on Moss-
bauer scattering has been substantially reinvigorated.

In this chapter, we describe the basic principles of scattering methods and
some early experimental results using Mossbauer radioactive sources. It is shown
that the coherence phenomenon can play a crucial role in the nuclear resonance
scattering of Mossbauer radiation. Such scattering experiments can be imple-
mented using synchrotron radiation, which is discussed in detail in Chapter 7.

6.1
The Characteristics and Types of Méssbauer y-ray Scattering

6.1.1
The Main Characteristics

Generally speaking, compared with the transmission method, the scattering
method is much more complex, both conceptually and experimentally, but it can
provide more information. There are many excellent monographs and articles
available [1-4]. Figure 6.1 shows several arrangements for scattering experiments
[5, 6]. In Fig. 6.1(a), the scatterer does not contain the Mossbauer isotope, but in
Figs 6.1(b)—(d), the Mossbauer isotope must be present. For Figs 6.1(a) and (c), a
resonant absorber A in front of the detector serves as the energy analyzer by us-
ing the Mdssbauer effect. In all of these arrangements, the source may be station-
ary or be driven to constant velocity or constant acceleration.

In order to reduce background counts in scattering experiments, shielding in
different parts of the apparatus is extremely important (not shown in Fig. 6.1).
For *’Fe, shielding may attenuate background counts to as few as 0.05 per min-
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(a) A (b)

Fig. 6.1 Schematic diagrams of various Méssbauer scattering
experiments: (a) Rayleigh scattering, (b) nuclear resonance scattering
(NRS), (c) selective excitation double Mdssbauer (SEDM) spectroscopy,
where the source S undergoes constant-velocity motion and the
absorber A undergoes constant-acceleration motion, and (d) nuclear
forward scattering (NFS). R represents a Rayleigh scatterer, N
represents a nuclear scatterer, and D represents the detector.

ute. In addition, good collimators are required in order to ensure low dispersion
(within several arc seconds). In diffraction experiments, especially, the angular
measurements must be precise, within +0.1” [7]. For *’Fe, the source activity
usually falls between 3.7 x 10° and 9.25 x 10° Bq. It may take at least 100 hours,
and sometimes as many as 600 hours, to obtain a scattering spectrum.

In scattering experiments, several different types of scattered particles can be
detected. The most usual are the y-rays re-emitted by the Mssbauer nuclei after
resonance absorption. But if the excited state of the Mdssbauer nucleus has a
large internal conversion coefficient, the instrument will also detect the conver-
sion electrons (an incoherent process) and accompanying products (see Chapter
3, Fig. 3.6), e.g., K-fluorescence photons.

In addition, there may be some interference phenomena between different
scattering processes, such as the interference between Méssbauer resonance scat-
tering and Rayleigh scattering, and the interference between conversion electrons
and photoelectrons. These constitute another characteristic of the Mdéssbauer
scattering method.

It is because of the complexity associated with the scattering method that more
information can be gathered by this method than by the emission or absorption
method. Méssbauer scattering has distinctive features in comparison with neu-
tron or x-ray diffraction. It can overcome the difficulties encountered by neutron
or x-ray diffraction to determine the phase in structure factors. Mssbauer scatter-
ing is capable of clearly resolving hyperfine interactions for elucidating magnetic
structures of crystals, which can provide important complementary information
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to neutron diffraction results (whereas x-ray diffraction detects no magnetic struc-
ture). Although most Mdssbauer radiations share the same part of the electro-
magnetic radiation with x-rays (wavelengths between 0.1 and 1 A), their scattering
behaviors are very different, chiefly due to the fact that the Mossbauer radiation
linewidth is about 8 orders of magnitude narrower than that of x-rays. As a con-
sequence, conventional x-ray diffraction can only provide spatial information due
to its lack of energy resolution.

In some Mossbauer scattering experiments (e.g., Rayleigh scattering), the scat-
terer does not necessarily contain the Mossbauer nucleus and is not limited to
solids either, so long as there is an additional resonance absorber (A). Therefore,
the scattering method can make use of the advantages of the Méssbauer effect,
and in principle extend the applications of Mdssbauer spectroscopy. Because of
the ingenious method of Rayleigh scattering, which separates the elastic and
inelastic y-ray scattering components, it has become an important technique in
studying dynamics in solids and liquids.

In nuclear resonance scattering (NRS) the y-ray is first recoillessly absorbed,
then re-emitted by a nucleus in its exited state with a half-life of the order of
1077 s. This is much longer than w, ! & 107*-10"13 s, where w,, is the maxi-
mum vibration frequency of the nucleus about its equilibrium position. Thus,
NRS is often regarded as a “slow” process. In contrast, Rayleigh scattering, a
non-resonance scattering by bound electrons, takes place in a time interval of
1071°-107" s < 0,y ! and it is regarded as a “fast” process.

6.1.2
Types of Scattering Processes

In general, the scattering of Mdssbauer y-rays with energies E, < 200 keV may be
mainly categorized into three groups of processes, each being coherent or inco-
herent, elastic or inelastic [6]:

Elastic nuclear and Rayleigh Coherent:  recoilless (elastic)
with recoil (inelastic or quasi-elastic)

Incoherent: recoilless (elastic)
with recoil (inelastic or quasi-elastic)

Inelastic nuclear Incoherent: recoilless (energy shifted)
with recoil (inelastic)
Compton scattering Incoherent: recoilless (inelastic)

We are familiar with the concepts of elastic and inelastic scattering. As to coher-
ent and incoherent scattering, they are discussed in Section 4.6.1. Essentially, co-
herence is the result of periodic arrangement of those scattering centers (atoms
or nuclei) that have the same scattering properties. Any crystal imperfections,
such as random distribution of the Mossbauer isotope >’Fe amongst natural
iron, or spin effects, would result in an incoherent component contributing to a
diffused background between the Bragg peaks.
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Fig. 6.2 When there is a magnetic hyperfine field in the scatterer, there
are two possible de-excitation modes after a resonance absorption with
a transition from my = +1/2 to me = —1/2. Mode a-b is an elastic
coherent process, while mode a—c is an inelastic incoherent one.

Figure 6.2 illustrates how inelastic and incoherent nuclear resonance scattering
can occur due to magnetic hyperfine splittings in *’Fe scatterers. During the
scattering process, a *’Fe nucleus in the ground state (mg = +1/2) makes a
transition to the excited state (m. = —1/2), followed by emission of a y-photon
and returning to the mg = 41/2 state (transitions a and b). This is obviously
an elastic process. If the process follows transitions a and c instead, the scatter-
ing is clearly inelastic and leads to a change in the nuclear spin state
(mg = +1/2 — mg = —1/2). Since Rayleigh scattering does not change nuclear
spin, the fact that the scattering process with transitions a and ¢ cannot have in-
terference with Rayleigh scattering indicates that it is incoherent.

Méssbauer diffraction, as an alternative method, has been chosen to verify the
above coherent and incoherent nuclear resonance scatterings [8]. In Fig. 6.3, a
7Co/Cr source is attached to the first vibrator (vb;) and the scatterer is an
a-Fe,0; single crystal with an 85% >’ Fe enrichment. A weak magnetic field is ap-
plied perpendicular to the scattering plane. When the scattering is chosen to be
from the (8 8 8) plane, the Bragg angle is 05 = 49°. The absorber A is a stainless
steel foil of thickness 10 um, with *”Fe enriched to more than 20%, and is used as
an analyzer for energies of the diffracted rays. During the first part of the experi-
ment, the analyzer A is removed, vb; works in the constant-acceleration mode,
and the detector measures the diffraction intensity as a function of the source ve-
locity. This gives the resonance scattering Mossbauer spectrum under the Bragg
condition, as shown in Fig. 6.4(a). From this spectrum, the source velocity re-
quired to cause transition a can be precisely determined to be —0.60 mm s~!.
The slight asymmetry in the spectral lines is due to the interference between res-
onance scattering and Rayleigh scattering processes. Now the second part of the
experiment is performed, where vb; works in the constant-velocity mode with a
speed of —0.60 mm s~!. The absorber A is installed on the second vibrator (vb;)



6.1 The Characteristics and Types of Méssbauer y-ray Scattering | 217
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Fig. 6.3 Schematic diagram of a Mdssbauer diffraction experiment.
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which works in the constant-acceleration mode and scans the velocity range of
+13 mm s~ L. The resultant spectrum is a single line shown in Fig. 6.4(b), which
convincingly verifies that only y-rays associated with transition b are coherent
while those associated with transition ¢ are incoherent. The coherently diffracted
y-rays are diffracted at the Bragg angle. As for the incoherently diffracted y-rays,
the change in energy is extremely small, AE/E = A/ ~ 2 x 10712, and thus the
Bragg condition is still satisfied. However, to a first approximation, these incoher-
ent diffracted y-rays have an isotropic distribution so that very little enters the
detector.

It should be noted that an experiment of this type is impossible with neutrons
or x-rays.

As the classical theory has pointed out [9], when the frequency of the incident
radiation w is much lower than the characteristic frequency w,, v <« w,, Rayleigh
scattering is predominant. In the other extreme, i.e., w > wy, the process is known
as Thomson scattering. For most Mdssbauer transition energies, the latter can
be neglected and is not included in the above categorization. When the incident
y-rays are exactly at resonance for a single “unsplit” > Fe nucleus, the differential
scattering cross-sections of nuclear resonant scattering, Rayleigh scattering,
and Compton scattering are, respectively, about 1072°, 10724, and 1072* cm? [6].
The exact values depend on scattering angle, polarization, recoil effects, and the
abundance of the Méssbauer isotope. In the case of Fe, for instance, with the
natural abundance of *’Fe taken into consideration, the resonance scattering
cross-section will be effectively reduced to 1/45 of that if all Fe atoms were >’ Fe
[1].

In Compton scattering, the photons are scattered by those electrons that are in-
dependent and loosely bound. Therefore, the scattering process is incoherent and
inelastic. This contributes to the background counts in various scattering experi-
ments. When E, < 200 keV, the cross-sections of both Compton scattering and
Rayleigh scattering depend on the scattering angle 0, as shown in Fig. 6.5 [10].
For PD, o¢ and oy are equal when 0 ~ 11°, and or dominates at smaller scattering
angles. For Cu, similar behavior has been observed. For *’Fe, ac is smaller than
or by a factor of about 8 [1].

At small scattering angles, Rayleigh scattering is predominant and Compton
scattering comes next. It has been pointed out [11] that more than three-quarters
of Rayleigh scattering is concentrated between 0 = 0 and 6 = 6, where

0y =2 sin”!
)

2
0.02621/3 mEC] . (6.1)

For a Pb scatter with E, = 410 keV, we have 6y = 14°, consistent with the re-
sults shown in Fig. 6.5. Since 0, can be calculated by Eq. (6.1) only if the quantity
in the brackets is less than 1, this formula may not be used for the majority of
Mossbauer radiation energies. In those cases, the largest portion of Rayleigh scat-
tering is no longer limited to the small scattering angle region [1].
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Fig. 6.5 Cross-sections per unit solid angle for Rayleigh scattering (R)
and Compton scattering (C) of 410 keV y-rays by lead and copper, as
functions of the scattering angle. R+C represents the respective total
cross-section.

6.2
Interference and Diffraction

Interference and diffraction are the main characteristics of waves. Classical theory
can successfully describe the interference and diffraction phenomena of visible
light waves and electromagnetic waves (x-rays). Two interfering light sources
must satisfy coherent conditions, which require that they have not only the same
wavelength, but also a fixed phase difference. After the verification of the wave
nature of particles such as electrons and neutrons, quantum theory also has a
similar definition for coherence. At a point r in space, if the probability of finding
N c )2
a photon from one source is |a|° and from a second source is |b|”, then when
both sources radiate, the probability of finding a photon at that point is not
2 2
|a|” + |b|” but

la]® + |b|* + 2 Re(a - b*) (6.2)

where the last term represents interference, indicating that the two waves have
some degree of coherence. This concept is not as simple as it looks, and confu-
sion may arise in its applications. Unless one is very clear about the concept of
coherence and its physical requirements, one could be mislead to erroneous con-
clusions [12, 13].

In 1960, Black and Moon [14] demonstrated the Bragg reflection of the 14.4 keV
Mébssbauer radiation from an enriched > Fe crystal, the main j-ray scattering
being nuclear resonance scattering. A maximum intensity recorded at the Bragg
angle shows that the scattering is coherent. This is Mdssbauer diffraction, which
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is also called nuclear Bragg scattering (NBS). As will be shown, nuclear forward
scattering (NFS) is also elastic and coherent.

But such a diffraction is much more complex than optical diffraction, due to
the fact that recoilless resonance scattering is a “slow” process. As a result, the
spontaneous character of the nuclear decay becomes so marked that it is not
easy to decide theoretically whether the scattered y-rays due to transition b (Fig.
6.2) are coherent. But experimental facts have provided an affirmative answer.
Thus, we will begin with a description of some experimental results.

6.2.1
Interference between Nuclear Resonance Scattering and Rayleigh Scattering

Let fR(hho) and fN(hho) be the coherent Rayleigh and nuclear resonance scatter-
ing amplitudes, respectively, for incident radiation of polarization hy and scat-
tered radiation of polarization h (where both h¢ and h are +1 for right- and —1
for left-circular polarizations). Also, assume that the scatterer is a single crystal
composed entirely of Méssbauer atoms. The scattering intensity for an unpolar-
ized beam can be written as [15]

1 N R
I'=2> 1 fN(ho) + f* (ho)

[

= 2SI o) + |FR o) + 26 Re(fN(hho) - f¥ (ho))]  (63)
hho

where a factor ¢ is used to represent the degree of coherence between the two
scattered rays. The amplitude of Rayleigh scattering is [6]

fR=—r.F(0)e - e (6.4)

where r. is the classical radius of the electron, F(6;) is the atomic scattering
factor, ¢; is the incident angle, and ey and e are the polarization unit vectors of
the incident photon and the scattered photon, respectively. In order to calculate
fR(hhy), it is necessary to use circular polarizations. The above expression can
be written as [15, 16]

FR(Rho) = fRdi (0) (65)
where d;lh)o (0), the reduced rotation matrix elements, take the followings values:
he ko dy)(0)
1—cos0

1+ cos 6

( )
( )
(1 —cos 0)
( )

—_
—_
Nl—= NR N= N

1+ cos 6
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As will be shown in Eq. (6.14), the amplitude for nuclear resonance scattering
can also be similarly written as
FN(hho) = hho fNdi}) (0). (6.7)

Here fR and fiN are independent of polarization. Substituting Eqs. (6.5) and (6.7)
into Eq. (6.3), we obtain

1 1 .
I= i|fo“|2(1 + cos? 0) +§|foN|2(1 +cos? 0) +2cRe(fN - iR ) cos 0 (6.8)

where 0 = (k’, ko) is the scattering angle. For M1 type transitions (e.g., >’ Fe), the
angular dependences for both resonance scattering and Rayleigh scattering are in
the form of cos 6, and thus the interference term vanishes when 6 = 90°.

The coherent nature of nuclear resonance scattering is also demonstrated by
its ability to interfere with Rayleigh scattering. In the experiment by Black and
Moon mentioned above [14], the range of source velocity was less than the sepa-
ration between lines 3 and 4 in the sextet, and the observed diffraction maximum
indeed presented an asymmetric profile, as shown in Fig. 6.6(b). Such an asym-
metric resonance peak can only be explained by the interference between nuclear
resonance scattering and Rayleigh scattering by the same >’ Fe atom, i.e., an intra-
atomic interference. These two scattering processes are in phase above resonance
and are antiphase below resonance, resulting in constructive and destructive inter-
ference, respectively. Since Rayleigh scattering is coherent, this experiment again
provides evidence that nuclear resonance scattering is also coherent.
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Fig. 6.6 Third Mossbauer absorption line (a), and the corresponding
scattering spectrum (b). The source is °’Co/Fe and the scatterer is an
Fe foil with 3”Fe enriched to 56%.
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Soon after, Bernstein and Campbell [17] obtained total reflection of the 14.4 keV
y-rays with a glancing angle of 2 mrad by an optically flat >’ Fe mirror and then
proved the interference between nuclear resonance scattering and Rayleigh scatter-
ing. In this case, the interference took place between different atoms, indicating
spatial coherence of the nuclear resonance scattering for an ensemble of nuclei.

Using various reflection planes of an iron single crystal of natural abundance
in a diffraction experiment [18, 19], one can also clearly see the interference effect
between nuclear resonance scattering and Rayleigh scattering processes (Fig. 6.7).
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Fig. 6.7 >’Fe Mdssbauer scattering spectra (14.4 keV y-rays) of metallic
Fe at three scattering angles corresponding to Bragg reflections from
(a) the (3 3 2) plane, (b) the (3 2 1) plane, and (c) the (2 1 1) plane.
The 6 values are scattering angles, 0 = 0g.
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For the (3 3 2) plane, 0 = 90°, the spectrum is symmetric, indicating absence of
interference. At lower angles, as shown in Figs. 6.7(b) and (c), the spectral shapes
are more asymmetric.

Using the 23.8 keV ?Sn Méssbauer radiation, the y-rays scattered from the
(0 2 0) plane (0p = 5° 7’) of a single-crystal tin foil (88% !'°Sn) produce a typical
interference pattern [20, 21]. The shape of the spectrum depends on the ratio
&= fN/fR One method to vary ¢ is to lower the scatterer temperature; for exam-
ple, at T = 110 K, the recoilless fraction fN increases drastically from its room
temperature value, causing a 7-fold increase in the &-value. Another method
for varying ¢ is to use second- or third-order reflections, so that the correspond-
ing fR-value is lower. In addition, the spectral shape also depends on the ratio
{ = u,/u,. Figure 6.8 shows spectra obtained with several different £-values. As
the fN-value increases, the curves sharpen and the peak positions shift leftward
gradually.

When there exists a magnetic hyperfine field, the spectral shape becomes very
complex. This can be illustrated using an a-Fe,0; single crystal [22], by applying

Relative Units

4.1

29

0.45

=5.1 0 5.1 10.2
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Fig. 6.8 Normalized Méssbauer diffraction spectra of 23.8 keV y-rays by
the (0 2 0) plane of a single-crystal ''9Sn foil (thickness 2 pm) [20].
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Fig. 6.9 Bragg diffraction spectra of 14.4 keV M&ssbauer y-rays
scattered from the (6 6 6) plane of single-crystal a-Fe;Os.

a magnetic field B = 0.1 T along the (1 1 1) plane, either parallel or perpendicular
to the scattering plane (k'ko). Interference between resonance scattering and
Rayleigh scattering exists in even-order Bragg reflections (2n 2n 2n). Figure 6.9
shows the curves of the dispersion type in two spectra from the (6 6 6) reflections,
where the dashed lines indicate the positions of absorption lines in transmission
geometry for the same sample and the solid curves are fitted results. The spectra
from the (4 4 4) reflections also show asymmetric dips, and those from the (8 8 8)
and (10 10 10) reflections show complex asymmetric peaks.

The main reason for such a complexity is that the scattering polarization factor
is no longer simply (1 + cos? 6) as in Eq. (6.8), but depends on the type of transi-
tion Am and the direction of the hyperfine field as well as on the scattering angle
0.

It is quite clear that the coherence phenomenon can play a crucial role in
the nuclear resonance scattering of Mgssbauer or synchrotron radiation by an en-
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semble of Méssbauer nuclei. In addition to what has been described so far, other
interesting phenomena also occur, such as interference effects in the presence of
quadrupole splitting, interference between photoelectrons and internal conver-
sion electrons, anomalies in the width of resonance peak in dynamic Méssbauer
diffraction, and suppression of inelastic channels. The reader may find details in
Refs. [23-30].

It is often necessary to separate nuclear resonance scattering from Rayleigh
scattering, to avoid possible complications caused by the interference between
them. In the following sections, we discuss each of the two scattering processes
in detail.

6.2.2
Observation of Méssbauer Diffraction

The chief interest in Mossbauer diffraction comes from the usually large cross-
section attainable at resonance. In order to observe pure Méssbauer y-ray diffrac-
tion, the amplitude of Rayleigh scattering should be reduced to a negligibly small
amount or completely eliminated. Mossbauer diffraction was first observed
in K4Fe(CN)s-3H,0 (90% >’Fe) [31]. Using the (0 6 0) reflection and an off-
resonance source velocity v # v,, the angular dependence of scattered intensity
has been measured and is shown in Fig. 6.10(a). Because in this case there is no
nuclear Bragg scattering, the relatively large diffraction peak at g = 8° 50’ is due
to Rayleigh scattering. When the (0 8 0) reflection is chosen to repeat the above
measurements, the detected counts are very low and independent of the scatter-
ing angle, as in Fig. 6.10(b). This indicates that Rayleigh scattering of the >'Fe
atoms is canceled by Rayleigh scattering of the other atoms in the unit cell [31].
When the source velocity is on-resonance v = v, the nuclear Bragg scattering, by
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Fig. 6.10 Scattering intensity versus scattering angle for 14.4 keV *’Fe
y-rays from the (0 6 0) and (0 8 0) planes of single-crystal
K4Fe(CN)g-3H,0.
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contrast, is not canceled and gives a diffraction peak as in Fig. 6.10(c), which is
pure Mdossbauer diffraction, centered at 0 = 11° 50.

The above example of separating Méssbauer diffraction from Rayleigh scatter-
ing is a rare, fortuitous case. A more systematic method is based on the relation
between the resonance scattering amplitude and orientation of nuclear spins. For
an antiferromagnetic o-Fe;0; single crystal [32, 33], it is known that for an odd-
order Bragg reflection from the (1 1 1) plane, there should be no Rayleigh scatter-
ing due to extinction. This is verified by the (1 1 1) reflection result for an off-
resonance radiation (v # v,) in Fig. 6.11(a), which is similar to that in Fig.
6.10(b). When the source velocity is v = v, = 8.6 mm s~!, the resonance absorp-
tion of —1/2 — —3/2 takes place, and a pure nuclear diffraction peak appears at
0 = 5° 20’, as shown in Fig. 6.11(b). The corresponding Mgssbauer spectrum in
Fig. 6.11(c) is obtained at the fixed Bragg angle of 0g = 5° 20’. The fact that the
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Fig. 6.11 14.4 keV y-ray Bragg reflections from the (11 1) and (2 2 2)
planes of single-crystal o-Fe; O3 (enriched to 85% >’Fe): (a) v # v;, (b)
v =y, and (c) the corresponding Méssbauer spectra for fixed Bragg
angles.
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peak is symmetric indicates that this diffraction peak is solely due to the radiation
from the —3/2 — —1/2 transition, with no Rayleigh scattering. The right-hand
side of Fig. 6.11 shows the results from the (2 2 2) reflections as a comparison.
In this case, Rayleigh scattering occurs, the amplitude of which can be seen in
Fig. 6.11(a) and whose interference with Mdéssbauer diffraction results in the
asymmetric peak in Fig. 6.11(c).

Mossbauer diffraction has attracted a great deal of attention, and it may be used
to obtain unique results not available from any other diffraction methods for
studying crystalline and magnetic structures of solids. For example, x-ray diffrac-
tion cannot provide information related to magnetic hyperfine interactions. At the
present time, this technique relies on the availability of synchrotron Mdéssbauer
radiation, and there have been many reports of interesting applications, such as
the measurements of the magnetic structures and the phase of structure factors.

The use of Mossbauer diffraction for determining the magnetic structures in
Fe3;BOg is given here as an example. By the magnetic structure of a magnetically
ordered crystal, we mean how the magnetic moments of magnetic atoms (ions)
are periodically arranged. The intensity and shape of the Méssbauer diffraction
spectrum are closely related to the orientations of the magnetic hyperfine fields
at the nuclear position. The hyperfine fields are in turn related to the atomic mag-
netic moments; thus information on the magnetic structure can be extracted from
a diffraction spectrum. Let us look at how this method is applied to Fe3BOg [34],
an antiferromagnet below its Néel temperature of Ty = 508 K. Fe3BOg has an
orthorhombic unit cell with a =10.5A, b =8.55A, c = 4.47A, and belongs to
the space group D} (Puma). The Fe atoms (ions) are located at two nonequivalent
crystallographic sites 4c and 8d. Two different magnetic structures (Fig. 6.12)
were proposed after bulk magnetization measurements. Neutron diffraction by a
polycrystalline sample indicated that structure I is likely to be the correct one [35].
In structure I, the moments are ferromagnetically coupled within each of the two
planes, and they are antiferromagnetically coupled between the planes. If the mo-
ments of the 4c¢ sites are inverted, structure I becomes structure II.

A7 | s

[010]
A4 Ao

Fig. 6.12 Two possible magnetic structures allowed by the symmetry of
the Fe3BOg crystal. Black circles represent Fe ions in 84 sites and white
circles represent Fe ions in 4c sites.
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Fig. 6.13 Experimental and theoretical nuclear Bragg diffraction spectra
of (7 0 0) reflection from a Fe3BOg single crystal using 14.4 keV y-rays.
The solid curves in (a) and (b) are calculated based on magnetic
structures | and Il, respectively. Arrows show where the resonance
absorptions are expected for >’ Fe nuclei in 4c and 8d positions.

In the diffraction experiment, the 14.4 keV y-rays were allowed to diffract from
the (7 0 0) plane of a ’Fe3BOg single crystal, with the antiferromagnetic axis in
the scattering plane (k'ko). The diffraction spectrum is shown in Fig. 6.13(a). The
solid curves in Figs. 6.13(a) and (b) represent theoretically calculated results based
on structures I and II, respectively. It is obvious that structure I agrees with the
experimental result whereas structure II is in conflict. Therefore, nuclear reso-
nance diffraction unequivocally verified the correctness of structure I, achieving
what neutron diffraction was not able to do. Also, for neutron diffraction, it was
necessary to use a ''B-enriched sample of Fe3BOs to reduce the absorption by 1°B.

This example illustrates that Mdssbauer diffraction is extremely sensitive to the
magnetic structure of the material, an important characteristic of this method.
Between the two possible magnetic structures, the only difference is the magnetic
moment reversal of the 4c¢ Fe ions, which amount to only 1/3 of the total, but the
difference causes substantial changes in the spectral shape.
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6.3
Coherent Elastic Scattering by Bound Nuclei

In studying either nuclear Bragg scattering (NBS), or nuclear forward scattering
(NFS) of Mossbauer y-rays, it is necessary to consider carefully the scattering
amplitude, scattering cross-section, Lamb-Maéssbauer factor fiy and the Debye—
Waller factor fp. We now discuss each of these quantities in detail. Incoherent in-
elastic nuclear resonance scattering, an equally important topic, is considered in
Chapter 7.

6.3.1
Nuclear Resonance Scattering Amplitude

Suppose there is a magnetic hyperfine field (or an electric field) at a Méssbauer
nucleus in the scatterer. The amplitude of the y-ray scattered by this nucleus for
a given incident radiation is [36]

2m Crle™™ Ry ole™ R o
k() E/ — E()(}’I’Le7 mg) + LF/Z

fN (1(,1(0, eeo) =

XN Igml LM | Ieme Y Igmg LM|Ieme)
L' Li

x e YU (k') - Yoy (ko)eo[T, (L'2")T, (LAY 2

x expli(yL"” —nL")] (6.9)

where |y,> and |x) represent the wave functions of initial and final states of the
crystal, 2 =1 and 0 in (L) represent electric and magnetic multipole radiations,
and T, (L7) is the y-radiation linewidth for the 2%-order multipole radiation (pro-
portional to the emission probability of this radiation). The ratio of the linewidths
is equal to the mixing parameter 9> of the multipole radiations, ie., 6% =
[,(E2)/T,(M1). If the invariance of time T is correct, L’ — yL” should be equal
to either 0 or 7. When the problem depends on angular momentum, it would be
more convenient to transform Eq. (6.9) using the circular polarization unit vec-
tors (e41 and e_) as defined in Eq. (2.75) and the D function to replace e, ey,
and Y&BI, respectively, and hence

e Y (k') - Y (ko)eo

_1

- WL+ 1)(2L + 1)) D), (k') DY), (koz). (6.10)

The Mossbauer isotopes currently used for diffraction experiments, such as
>’Fe(M1), 19Sn(E1), P Te(M1), *'Pr(M1), and #3Ta(M1), all have pure dipole
transitions, thus 62 = 0. For Fe, L' = L =1, and 4/ = A/ = 0. The elastic scatter-
ing amplitude per nucleus in the |mg) state can be then calculated using Eqs.
(6.9) and (6.10) [37, 38]:
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3 qay 1 2
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2ko Ey — E()(Wle7 mg) =+ 1F/2 ( )

where fiv is discussed in Section 6.3.3, and hg, h = +1 denote right and left cir-
cular polarizations. The elements of the rotation matrix D are

Dip (4,0, y) = e ™di}) ()™ (6.12)

where the values of d;ll\),j are given in Eq. (6.6). The summation in Eq. (6.11) over
M means adding up contributions from all m. — my transitions.

6.3.2
Coherent Elastic Nuclear Scattering

6.3.2.1 Scattering Amplitude

Suppose the solid scatterer is a perfect crystal composed entirely of Mossbauer
atoms, the ground state nuclear spin of the Méssbauer isotope is zero, and the
scatterer is very thin. In this case, the elastic scattering amplitude (6.11) is also
the elastic coherent scattering amplitude.

When the above conditions are not satisfied, the process contains a certain de-
gree of incoherence. As has been mentioned before, there are mainly two reasons
for the incoherence. The first reason is due to the presence of different isotopes,
even though the crystal is perfect. For example, the random distribution of >Fe in
a perfect bee Fe metal does not give a fixed phase for the scattered waves. The re-
sult in Eq. (6.11) should be multiplied by the Méssbauer isotope abundance a,, to
take the isotope incoherence into account. The second reason is due to spin inco-
herence, because the elastic scattering amplitude depends on the mg-component
of the nuclear ground state spin I,. If I; # 0, we need to average Eq. (6.11) over
different m, states to obtain the coherent elastic scattering amplitude [4]:

foh = am > P, [N (hho) (6.13)

where p,,, is the relative occupation of the sublevel myg. If the nuclear spins in the
solid are randomly oriented, p,, = (2I; + 1)L

When the magnetic splittings (AE) of the energy level are either very large or
negligibly small compared to I', Eq. (6.13) can be simplified. In the first case
(AE >»T), the amplitude f} has only one term due to a particular transition be-

tween the excited and the ground sublevels. In the second case (AE « I'), we can
sum over my, replace all Ey(me., mg) by Eo, and obtain [36]
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Iy Jim
2ko E, — Eo +iL/2

(2L + 1)ay,

N 3
con (k'ko, o) = 2 3(2I+1)

dyy) (k'ko) (6.14)

where the values of d(hlh)o are given in Eq. (6.6).

6.3.2.2 Nuclear Bragg Scattering (NBS)

When ko — k' = 7, coherent elastic nuclear scattering becomes Bragg scattering.
If the incident radiation is unpolarized, the differential cross-section of the
scattered radiation by a unit cell is

3
%}Jﬁfwyamfyfﬂ (6.15)

where V, is the unit cell volume, 7 is a reciprocal lattice vector, and
F, = chfjh(k’ko, hho) expli(ko — k') - Ry). (6.16)
]

The summation in (6.16) is for all Méssbauer nuclei, and |F,|” represents the av-
erage over photon polarization. Based on Eq. (6.8), we obtain

,1+cos? 0

f& 2:: f&
R = |2 S

(6.17)

6.3.2.3 Nuclear Forward Scattering (NFS)
In forward scattering k' = ko, and, according to (6.6), d(hlh)o (0) = Opy,- The four
amplitudes for forward scattering are given by Eq. (6.14):

cyh(ov 11) - c})\lh(07 -1- 1) # 0,

Jaon(0,1=1) = f5,(0,-11) = 0. (6.18)

These indicate that the circular polarization of incident radiation is not changed
after forward scattering. This is true even when the condition AE « T is not sat-
isfied [39]. The forward coherent scattering amplitude calculated according to Eq.
(6.14) is

r
E,— B +il/2’

kOam
8n

won (0, hho) = diy) (0)00 fim (6.19)

Forward scattering experiments using isotopic Mdssbauer sources are very diffi-
cult, and they should be performed using synchrotron Méssbauer radiation.

6.3.2.4 Scattering Cross-Sections
If we integrate the square of Eq. (6.14) and sum over the h-values, we obtain the
coherent elastic scattering cross-section for that nucleus:
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2 2 2
2nal (20 + 1V T, fim | . (6.20)
3 \2Ig+1) |2ko(E, — Eo +i/2)

Ocoh =

Furthermore, according to an optical theorem, we can calculate the total cross-
section o1 = (—4n/ko) Im[f(0)] by using Eq. (6.19):

2l +1T,T fim
2Ig+1 4k§ (E, — Ep)> +T2/4

o1 = 270y (6.21)

For comparing cross-section values, the numerical results for o-Fe at resonance
are calculated according to Egs. (6.20) and (6.21):

Geoh & 80> x 10°b,

o1 ~ 4a,, x 10%h

where I' =T,(1 + o), fim(T = 300 K) = 0.67, and o = 8.20 were used. It is obvi-
ous that the coherent scattering cross-section is smaller than the total cross-
section by 2 or 3 orders of magnitude.

6.3.3
Lamb—Méssbauer Factor and Debye—Waller Factor

As we know, in a scattering process the Lamb—Md&ssbauer factor fiy very closely
resembles the Debye—Waller factor fp. In fact, they originate from the same ex-
pression under the condition of either the “slow” or the “fast” scattering process.
This expression is (xle™*"R|y, > yole® @ Ri|y,> as in Eq. (6.9). In order to illus-
trate the differences between the two factors fim and fp, it is better to transform
the resonance elastic scattering amplitude fN into a time-dependent representa-
tion [40]:

fN _ %Jm dtei(w—“’O)te_<r/2h)t<e_ik,'R’(t>eik“'R’(O)>. (6.22)
0

Due to the long lifetime of its excited state, MGssbauer resonance scattering is a
“slow” process. Typical scattering times are /T x~ 107°~107° s > w,, "}, where
o is the maximum vibration frequency of the nucleus about its equilibrium po-
sition and is of the order of 103 rad s~!. Therefore, for all practical purposes
t — oo and the correlation positions R;(t — c0) and R;(t = 0) can be neglected.
This permits one to carry out the thermal average of the y-ray absorption and re-
emission processes separately. As a result, the Lamb—Madssbauer factor can be re-
duced to

fin = Cexpl—ik - Ry(t — )] expliko - Ri(t = 0)])>

—exp( 5 (K - R)* ) exp(3 ko R ) = /S K) ) (6.23)



6.4 Rayleigh Scattering of Mossbauer Radiation (RSMR) | 233

where f(ko) and f(k') are the recoilless fractions of y-ray absorption and emis-
sion in the directions ko and k', respectively. In nuclear resonance scattering the
above expression is usually called the Lamb—Méssbauer factor. If the motion of
scattering nuclei is isotropic, then

fiu = [f(K)]* = [f(ko))* = f. (6.24)

On the other hand, for non-resonance Rayleigh scattering and x-ray scattering,
the characteristic scattering times are /i/T" ~ 1071°~107" s and hence these pro-
cesses are fast compared to wy, . In this case, we have effectively t ~ 0, which
gives the Debye—Waller factor:

fo = {exp[—ik" - R(t ~ 0)] expliko - Ri(t = 0)]>
~ <exp[—i(k’ — ko) - R}]. (6.25)

Therefore, the two factors are not identical but provide the same information con-
cerning the dynamics of a given crystal, because they contain the following com-
mon factor due to the same thermal averaging:

1 1
J; coth <E ﬁwﬂ) g(w)dw.

For a harmonic lattice, the Lamb—Mo6ssbauer factor fiy in forward scattering or
in transmission geometry is simply related to the Debye—Waller factor fp by

2
In fiy = % In fi (6.26)

where vectors ko and Q are in the same direction.

6.4
Rayleigh Scattering of Méssbauer Radiation (RSMR)

6.4.1
Basic Properties of RSMR

Rayleigh scattering is an elastic scattering of electromagnetic waves, and it occurs
widely in light, x-ray and y-ray scatterings by electron shells of atoms in a variety
of condensed matter materials. Its scattering cross-section, proportional 1/4*, is
considered as a characteristic feature. In RSMR experiments, the scattered y-ray
is analyzed by a resonant absorber inserted between the scatterer and the detec-
tor. In other words, RSMR can detect an energy change comparable to the typical
width of a Méssbauer line (~10~° eV for 3’Fe). So, RSMR may be regarded as x-
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ray spectroscopy with high energy resolution. Therefore, the elastic and inelastic
scatterings can be separated with a high precision. As a result, this method has
been used widely for studying liquids as well as solids, not containing the Mdss-
bauer isotope. As discussed above, RSMR is not only elastic, but also coherent.

There have been published a special monograph [41] and several review articles
[6, 42—45] on this new methodology. A disadvantage of this technique is its very
low count rate when a radioactive Méssbauer source is used, but this has been
recently overcome by using high-intensity synchrotron radiation sources.

The general theory of Rayleigh scattering is essentially the same as that of con-
ventional x-ray scattering. The scattering differential cross-section is written in a
form similar to Eq. (4.120):

2
1Q.0) = 3 7= NIF(QIS(Q.0) (6.27

where N is the number of atoms in the crystal, the factor F(Q) is given by the
Thomas—Rayleigh formula, and S(Q, ) is the scattering function. We are mostly
interested in S(Q, w), which describes the dynamic properties of the scatterer, as
has been introduced earlier in Eq. (4.121). Unlike neutron scattering, the energy
transferred in x-ray (and jp-ray) scattering (i.e., the phonon energy) is much
smaller than the incident energy. Therefore, S(Q, ) is difficult to measure, and
one usually obtains the total integrated function instead:

5(Q) = J S(Q,w)dw. (6.28)

Accordingly, integrating Eq. (6.27) gives

do

1o N|F(Q)I*S(Q) (6.29)

To find an explicit expression for S(Q), we substitute (4.124) into (6.28) and get

1 - oul! 0)«ioI
S(@ =5 3 (e iQuitOiQuit 0y eiQ I~ (6.30)
nw

If we take the harmonic approximation again by expanding Eq. (6.30) according
to Eq. (4.128):

S(Q) = 5(Q) + $1(Q) + 52(Q) + - (6.31)

where the first term corresponds to elastic scattering, S¢(Q) = So(Q), while the
other terms involve one or more phonons and correspond to inelastic scattering
processes, Sin(Q) = S1(Q) + S2(Q) + - -
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The scattering function Si(Q) can be derived directly from (6.30) for the zero-
phonon process:

e—ZW

Sa(Q) = ——>_e . (6.32)
w

For a single crystal, S.i(Q) is nonzero only when Q = t, which predicts a diffrac-
tion peak at the Bragg angle.

Inelastic scattering is basically the familiar thermal diffuse scattering (TDS)
caused by lattice vibrations. Because TDS overlaps with the Bragg diffraction
peak and is not easy to separate, it is difficult to extract the lattice dynamics infor-
mation contained in it. Fortunately, RSMR provides a means to separate inelasti-
cally scattered radiation from elastically scattered radiation, and this has re-
kindled research interest in TDS.

It can be shown that the scattering function Si,(Q) takes the following form:

Sm(Q) =1—e2V 4 %e*zw > e ul _ qjei@ -l (6.33)
1#1

For a perfect crystal, we may use the general expression for u(l) to show how
photons are scattered by phonons. If we consider only the single-phonon process:

$1(Q) = e 7 3" <Q- u)Q- ull')ye 1@ (634
I#£l

and after substituting for u(l), it becomes [41]

5(Q) = 57¢ ™ YIQ- el LI (6.35
J

Now we will be able to calculate the scattered y-ray intensity in the single-phonon
process. If we first assume T = 0, then according to Egs. (6.27) and (6.35) we
obtain

1 _ 1 w a2 1
L, = N|F(Q)|2me ;[Q " e(kJ)]Zm- (6.36)

When the temperature is raised such that kgT > hwj(k), which means

(mi(k)> +1/2 ~ ks T/hesj(k), then

Ih = NIF(Q)%e 2 A0S el o (637)

J J
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The above two intensity expressions describe TDS in the reciprocal space, and
both intensity distributions are relatively flat. But for small k-values and when Q
falls near a reciprocal lattice vector 7, TDS increases drastically. This indicates that
the TDS contribution originates mainly from the phonons in the acoustic branch
(w oc k); thus the intensity is proportional to 1/k. An important conclusion is that
the maxima of TDS occur at the reciprocal lattice points, which correspond to the
Bragg diffraction positions. In most cases, the relation between TDS and temper-
ature can be expressed as

I~ Te ™V, (6.38)

Regarding deriving the Debye—Waller factor fp = e 2V from TDS, it is exactly
the same as that in neutron scattering. The y-photon energy change is usually
less than 1073 eV in TDS. The energy resolution of ordinary x-ray spectroscopy
is very poor, not enough to separate the small TDS from elastic scattering, both
of which contribute to the same Bragg peak. Consequently, using Eq. (6.32) to
analyze x-ray diffraction intensity will not give an accurate result for the Debye—
Waller factor e72¥, and for the subsequent determination of the mean-square
displacement (u?» and the Debye temperature 0p. Furthermore, because of the
incomplete separation, the phonon information contained in TDS is also very
difficult to extract. But these two scattering components can be separated by the
RSMR method.

6.4.2
Separation of Elastic and Inelastic Scatterings

An experimental method for separating the Bragg peak and TDS was developed
in 1963 [46], and its main principle is indicated in Fig. 6.1(a) where the analyzer
A is at rest. The source velocity is adjusted to v, so that after the incident y-ray is
scattered from the single crystal it may be resonantly absorbed by the analyzer A.
If the y-ray is inelastically scattered and loses or gains an amount of energy larger
than 1072 eV (for > Fe), the energy will not be resonantly absorbed, but transmit-
ted through the analyzer A. Therefore, this method cleanly separates the elastic
and inelastic scattering components. Also, the probability for a non-resonant inci-
dent y-photon having the resonance energy after inelastic scattering is extremely
small.

First, let I, (0) and I,(0) be the counts of scattered photons at angle 0 for off-
and on-resonance between the source and analyzer, respectively. The scattering
angle 0 is related to the Bragg angle 0 by 0 = 205. The following ratio is pro-
portional to the fraction of recoilless y-rays which are scattered elastically by the
crystal:

I (0) = 1:(0)

ST Lo

(6.39)
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Next, the scatterer is removed, and the analyzer A together with the detector is
rotated counterclockwise by an angle 6. The counts of transmitted photons are
then recorded as I(o0) and I(v), from which the parameter &(v,) is evaluated ac-
cording to Eq. (1.24):

oy 12) = 1)

' I(0) -

It is easy to see that the elastically scattered fraction of incident radiation is
&/e(vy), and the inelastically scattered fraction is 1 — &/g(v,). Therefore, the re-
spective scattered intensities are

= 10) 5 = %‘)I(") (6.40)

P

S

&(vr)

Iin = L, (0) {1 - } =1,,(0) — L. (6.41)

When using these two expressions, one must pay attention to the following two
points. (1) The accurate measurement of ¢(v;) may be complicated by background
counts. A 122 keV photon from a >’Co source after Compton scattering may
cause background counts. Although background in the numerator of the ¢(v;) ex-
pression is canceled, the one in the denominator remains. It has been pointed
out [49] that ¢(v;) = 0.39 and 0.47 for without and with background correction,
respectively. Therefore, background correction must be included or the resultant
I value would be overestimated. (2) Even when the background in a scattering
experiment is very small, it may still be significant when the inelastic portion is
to be evaluated, because the fraction of inelastic Rayleigh scattering is also very
small.

In order to circumvent the difficulties of measuring background, an approach
using four measurements was developed [41, 47], and it is briefly described be-
low.

When the source velocity is large so that no resonant absorption takes place in
the analyzer A placed between the scatterer and the detector, the photon count is

I,(0) = 1(0)Pe #® + I (6.42)

where g, is the atomic mass absorption coefficient, d is the thickness of analyzer
A, I is the background count, I(0) is the total number of photons from the
source due to all Mossbauer transitions, and

Im({)) Iel+Iin
p=—2l_dTWm_po4p, 4
(o)~ 1(w) Tt (643)

is the total scattering probability of the incident y-rays being scattered in the 0
direction.
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The second measurement is carried out after the source velocity is adjusted to a
resonant energy, and the photon count is

L(0) = I(0) f; Pge~ a4 L [(0) fi Ppe ™5 4+ 1(0)(1 — fi)Pe "% + I,  (6.44)

where the first and second terms correspond to the intensities of elastic and in-
elastic scatterings of the recoilless radiation, and the third term is the scattered
intensity of the non-recoilless radiation. Comparing this with Eq. (1.17), we see
that the energy distribution of the incident radiation has not been taken into
consideration.

We then move the analyzer so that it is now between the source and the scat-
terer, and carry out the third and fourth measurements, obtaining

I’ (0) = 1(0)e 4P + I (6.45)

and

/() = 1(0) fie™ = +4)4p 4 [(0)(1 — fi)e ™ 4P + 1. (6.46)

T

To facilitate the understanding of each term, we have written the factors in each
of the terms in Egs. (6.42), (6.44), (6.45), and (6.46) in the same order as the se-
quence of events in each process. For example, I(0)e #?P indicates that the radi-
ation is first absorbed then scattered, while I(0)Pe*¢ indicates the reverse order.
Also, the detector is assumed to have a 100% efficiency.

According to the results of these four measurements

Al =1, — I, = I(0) Py fie #44(1 — e7#4), (6.47)
Al' =1, — 1! = I(0)Pfie #4(1 — e ). (6.48)

Therefore, the final results are

Ia Pqg Al
_Pa_ A 6.49
Ig + Iin P Al ( )
L Al
=1-—. 6.50
Iq + Lin Al ( )

Because measuring background is not required in this method and parameters
such as u,, p,, f, and I(0) do not appear in (6.49) and (6.50), the separation of
elastic and inelastic scatterings is much more accurate. Strictly speaking, if the
energy distribution of the incident radiation is considered, I should be propor-
tional to the area under the Mossbauer spectrum. If the scattering spectrum
does not change its shape, then the above separation method is still valid except
that the intensity should be understood as the integrated intensity.
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The experimental procedure of the four-measurement method is very tedious.
A well-planned two-measurement experiment has been reported [48], and a sepa-
ration accuracy was achieved of better than 1% with >’Co/Rh as the source and
>’Fe/Rh as the analyzer. The source and the scatterer could be rotated in two mu-
tually perpendicular planes, with accurate goniometers. Shielding was by multi-
layers of lead, brass, and aluminum, and the collimator was made of pure alumi-
num (99.999%). The background count rate was reduced to 0.02 per second. The
output of a high energy-resolution Si(Li) detector was processed by two multi-
channel analyzers, one in multichannel scaling (MCS) mode and the other in
pulse-height analysis (PHA) mode, the latter used for background determination.
The distance between source and scatterer was 15.5 cm, and that between scat-
terer and detector was 9.5 cm. The divergence of the scattered beam was 0.65° in
the horizontal direction and 1.4° in the vertical direction. Figure 6.14 shows the
Rayleigh scattering results from the single-crystal Si(4 0 0) plane, and Table 6.1
lists the elastic fractions and their accuracies for four different scattering angles.

From the above example, we see that the Mossbauer effect can be used to iso-
late the elastic scattering, accurately measure the Bragg peak intensity, and there-
fore provide more reliable values of the Debye—Waller factor, <u?», and the Debye
temperature 0p, all very useful parameters in structural analysis and lattice dy-
namics studies.

Now the inelastic portion of the scattering has been separated from the total
scattering. Although the phonon spectrum still cannot be deduced, other dy-

0.7
o total
x elastic
061 a inelastic
+ background
05 |
> 04 |
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Fig. 6.14 RSMR intensity as a function of scattering angle near the
Bragg angle for reflection from the single-crystal Si (4 0 0) plane.
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Table 6.1 Elastically scattered fraction &/&(v,) near the (4 0 0) Bragg reflection.

0(°) ¢/e(vr)
17.97 0.79(1)
18.30 0.898(9)
18.48 0.888(9)
18.64 0.916(8)
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Fig. 6.15 Inelastic scattering intensity i, as a function of temperature
for y-rays scattered from (a) the (4 4 4) plane of single-crystal Si and
(b) the (10 0 0) plane of single-crystal KCl. In (b), assuming only the
single-phonon process produced the dashed line, and multiple-phonon
processes were required to yield a satisfactory fit (solid curve).

namic information can be extracted. Figure 6.15 shows inelastic scattering in-
tensity Ii, as a function of temperature for single-crystal Si and KCl [49, 50]. For
the Si(4 4 4) reflection, the line in Fig. 6.15(a) is the calculated result using the
single-phonon approximation, which agrees with the experiment. However, for
the KCI(10 0 0) reflection, the single-phonon approximation produced a poor
agreement as shown by the dashed line in Fig. 6.15(b), and only when multiple-
phonon processes were included did the calculated result (solid line) yield a good
fit. Figure 6.16 shows similar results, but the inelastic scattering intensity is plot-
ted against the scan angle near 6g. The solid lines in Fig. 6.16 were calculated us-
ing the single-phonon approximation. For the Si(8 0 0) reflection, when the scan
angle is larger than 2.5°, the discrepancy grows, indicating that the single-phonon
process is mainly concentrated near 6.

Other RSMR experimental methods have also been developed, e.g., using
the transmission Laue method instead of Bragg scattering, and using amorphous
solids or viscous liquids instead of single crystals or polycrystals. Rayleigh scatter-
ing of Mdssbauer radiation has been recognized as a valuable method, especially
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Fig. 6.16 Dependence of the ratio of the inelastic scattering intensity /i,

to the Bragg intensity Ig;agg ON the scan angle for reflections from (a)
the (4 0 0) plane and (b) the (8 0 0) plane of single-crystal Si [48].

in surface sciences and for studying the structures and dynamics of large biolog-

ical molecules.

6.4.3
Measuring Dynamic Parameters Using RSMR

For Rayleigh scattering, the Debye—Waller factor is
fo= e 2V — e QW

For a Bragg reflection (Q = k' — ko = 7), we have

sin Og 2
W =B ] (6.51)

where B = 1672¢(u?) and 1 = 0.8602 A (for E, = 14.4 keV).

The following two experimental approaches can be used to obtain dynamic pa-
rameters. In the first approach, at a fixed temperature, W is measured for differ-
ent values of sin 0 /4, which will give <u?)» and thus the Debye temperature p.
In the second approach, the scatterer temperature is changed and <u?) is ob-
tained as a function of temperature, which will also give 0p.
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6.4.3.1 The Fixed Temperature Approach

The incident y-ray beam is not completely parallel but has a certain divergence.
Also, the scatterer is not an ideal crystal, but may contain some defects. These
imperfections cause the diffracted rays to be not completely concentrated at the
Bragg angle 0g, but having an angular distribution. Therefore, to calculate the
actual diffraction intensity, we need to integrate Eq. (6.32) over a region within
0p + Afg. The integrated diffraction intensity is proportional to the elastic scatter-
ing intensity recorded by the detector within a specific time period, and it is given
by [51]

w14 cos? 20
La(0g) = C|F(0g)| e ZWTOBB (6.52)

where C is a constant. With the definition

Ie](gB) sin 203
|F(05)|*(1 4 cos? 20)

E(0s)

and combining Eqs. (6.51) and (6.52), we get

Py

. 2
In E(0g) = In(Ce2¥) =1n C — ZB(SmAHB) . (6.53)

The scattering form factor F(0g) has been tabulated and is readily available. From
the experimental [, data, the quantity E(0g) can be calculated, and when its log-
arithm is graphed against (sin 6g/2)?, a linear relation is expected and the slope
is just —2B.

This method has been used to study the Rayleigh scatterings from single-
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Fig. 6.17 Total scattering intensity (filled circles) and elastic scattering
intensity (open circles) as functions of scattering angle for single-crystal KCI.
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Table 6.2 Results of Debye temperature 0p (K) for Al and KCl at room
temperature. Under the RSMR method, values in column a were
obtained from the total scattered intensities while those in b were
obtained from the elastically scattered intensities.

X-ray diffraction RSMR method [51] Neutron scattering
method [52] method [53]
a b
Al 390 + 10 400 + 14 387 + 14 386 + 10
410+ 9
397
389 +2
KCl 240 213+ 5 202 +5 -

crystal Al(1 1 1) and KCI(2 0 0) reflections (Fig. 6.17) [51]. The Debye tempera-
tures 0p derived from these experiments are listed in Table 6.2, where in column
a under the RSMR method are the 0p-values calculated from total scattered inten-
sities and in column b are the Op-values from the elastically scattered intensities.
One important observation is that the 0 results from the elastically scattered in-
tensities are always somewhat lower than the corresponding results from the total
scattered intensities (which include inelastic scattering). The Debye temperature
for aluminum has been measured by several authors using x-ray diffraction, and
their results are slightly higher than the RSMR result. The x-ray data contained
relatively large errors because of small number of experimental data points.

At each fixed temperature, a B-value can be measured, which leads to {u?) and
fo- Therefore, this approach allows absolute measurements of these parameters,
and is a very useful method.

6.4.3.2 The Variable Temperature Approach
The scattering angle is now fixed at the Bragg angle 0g. The elastically scattered
intensity is measured as a function of temperature, and an experimental fp(T)
curve is obtained. Using the explicit expression for {u?) based on the Debye
model, Eq. (6.51) can be used to fit the experimental data. In this approach,
more data points may be measured to reduce experimental uncertainty. Debye
temperature values have been obtained using this approach of the RSMR method
from the Al(1 1 1) and KCl(4 0 0) reflections as well as from a Ni crystal. The
Op-values for Al and KCl using this approach are 387 and 202 K, respectively.
Table 6.3 lists the Op-value for Ni from this method, along with the results from
other methods. Note that the Ni 0p-value from the RSMR method is smaller than
that from the x-ray diffraction method.

Unfortunately, it is very difficult to obtain the phonon spectrum from the
isolated inelastic portion of Rayleigh scattering. The Mossbauer effect does not
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Table 6.3 Results of Debye temperature 0p (K) for Ni at room temperature.

X-ray diffraction Specific heat RSMR Méssbauer absorption
method [54] method [54] method [54] method [55]
Ni 417 441 406 413-437

seem to have any advantage, and there have been no reports of measurements of
phonon spectra using RSMR.

6.4.4
RSMR and Anharmonic Effect

6.4.4.1 Using Strong Mdssbauer Isotope Sources

In principle, RSMR is a very accurate method for studying the Debye—Waller fac-
tor fp, but its application has been limited because the Méssbauer isotope sources
are not strong enough. For the most common *’Co source, its activity is seldom
higher than 9.25 x 10? Bq (250 mCi) due to reasons such as self-absorption. Even
when such a strong source is used, it would still take several months to complete
the measurements for a sample [48]. There had been no reports of drastic im-
provement of accuracy in measuring fp before the 1980s, when a strong #3Ta
source was successfully produced (~2.6 x 1012 Bq) by placing a thin ¥1Ta foil
irradiated under a flux of 4 x 10 neutrons cm~2 s~! for a week [56]. A ®3Ta
source has E, = 46.48 keV and a halflife of 5.1 days. Although ¥*Ta has a short
lifetime and a small maximum resonance cross-section gy, the estimated Mdssba-
uer intensity of the 2.6 x 102 Bq ®*Ta source is higher than a 3.7 x 10° Bq >’ Co
source by a factor of 500. In addition, the self-absorption in the 33Ta source is
negligibly small. The natural linewidth of the 46.48 keV Méssbauer radiation is
2.5 x 107 eV, which is about four orders of magnitude smaller than the typical
phonon energy and is suitable for separating the elastic and inelastic components
in RSMR. Using such a strong source, the absorption spectrum and recoilless
fraction f of metallic tungsten have been extensively studied [57], and the f-
values are listed in Table 6.4. It can be seen that the accuracy of the f-values
is better than 1%, a significant improvement over previous results. Fitting the
experimental data using the Debye model gave 6p = 336.5 K. Also, the internal
conversion coefficient was determined to be o = 8.76. The first Méssbauer study
of metallic W using the 46.48 keV radiation was in 1962 [58], in which
Op = 320ﬂg K and o = 11.0 were deduced. The internal conversion coefficient in
that study was obviously too high.

A special instrument known as QUEGS (quasi-elastic gamma-ray scattering)
was designed [56] to be used for scattering experiments including RSMR. In
addition to using a strong Mossbauer source, this instrument also has better
specifications, such as angular resolution Af improved from 2.4° to 0.08° and mo-
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Table 6.4 The f-values of metallic W at various temperatures (not
corrected for thermal expansion).

Temperature (K) f(m

80 0.634(2)
297 0.299(1)
373 0.229(1)
469 0.155(1)
572 0.104(1)
621 0.0847(3)
663 0.0696(4)
770 0.0460(2)
869 0.0298(2)

mentum resolution from 0.340 to 0.011 A~!. Also, between the source and the
scatterer is inserted a LiF(2 0 0) monochromator, which elastically scatters the
46.48 keV Mossbauer radiation with an almost 100% efficiency while greatly re-
ducing other radiations.

6.4.4.2 Using Higher Temperature Measurements
The anharmonic effect is usually studied by accurate measurements of the
Debye—Waller factor, as discussed in Chapter 5. However, this effect becomes sig-
nificant only when higher order Bragg reflections are measured at high enough
temperatures. Under such experimental conditions, the thermal diffuse scatter-
ing component is also very large. Therefore, neutron or x-ray scattering experi-
ments give poor results for the anharmonic effect. The ability to separate differ-
ent scattering components in RSMR therefore becomes very advantageous [59,
60].

When the anharmonic effect exists, fp is the same as Eq. (5.16), except for scat-
tering vector Q replacing the wave vector k:

Q4

e —ep{ -y - L - ] + 00} (654)

where <u2Q> is the atomic mean-square displacement in the Q direction and the
quantity in brackets is known as the non-Gaussian term. The above expression
has been discussed in detail in the literature [61, 62]. For cubic crystals at high
temperatures (T > 0p), we have [63]

2

3k
2 _ 2 3

and
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3ud>? = (uhy = T (6.56)
Because V3 # 0 and V4 # 0 in Eq. (4.12), y, and y; represent contributions from
the isotropic anharmonic effect (including thermal expansion) and y, represents
the anisotropic anharmonic contribution depending on Miller indices. These an-
harmonic effect coefficients can be obtained by fitting the experimental data of

Debye-Waller factor fp as functions of Q and T. This is because the elastically
scattered intensity is

[4(Q, T) = Ce 2V(@D
or
In14(Q,T) = —2W(Q,T) + C
Using Egs. (6.54), (6.55), and (6.56), we obtain

—ln I4(Q,T) =2W(Q,T) —

3p? 4
=Q’ Miey 0 T+ szzT2+Q2y3T3+g/4 —C. (657)

Consider the Cu(2 0 0) and Cu(4 0 0) reflections, with the corresponding scatter-
ing vectors Q; and Q,. Suppose we now measure the Bragg scattering intensities
at two temperatures Tp and T from these two reflections: I4(Qy, To), la(Qq, T),
11(Q,, To), Ia(Q,, T). Let the non-Gaussian terms be

7Te = D(Tp) and y,T® = D(T).
Substitute these into Eq. (6.57) and after simple rearrangements, we obtain

D(T) = D(Ty) = 2 | 2 falQuTo) 1 LalQ To)] - ¢ oo

Q% - sz le Iel(le T) Q% Iel(Qz: T)

On the other hand, from the definitions of D(T,) and D(T), we get
D(T) = D(To) = 74(T° = T7)). (6.59)

Suppose we measure [4(Qq, To) and I4(Q,, To) at Tp = 300 K, and measure
I4(Qy, T) and I4(Q,, T) at various higher temperatures T. Using the measured
intensity values in Eq. (6.58), we can calculate D(T) — D(Tj) and plot this quan-
tity as a linear function of T® — T¢, whose slope is 7,. The experimental results
for Al [42], NaCl [59], and Zn [60] are shown in Fig. 6.18. Similar linear relations
are also found for Cu [63, 64] and KCI [65]. For metallic Zn, the straight line does
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Fig. 6.18 Plots of the non-Gaussian term [D(T) — D(To)] versus [T? — T3] for To = 300 K.

not go through origin, indicating that the anharmonic effect is only appreciable at
room temperature.

Based on the Rayleigh scattering data from a fixed plane at different tempera-
tures, quantities related to the Debye—Waller factor e 2% can be deduced. Figure
6.19 shows the results for Cu scatterers using different radiation sources. In Fig.
6.19(a), the calculated curves using the harmonic approximation and Morse an-
harmonic potential are included for the (2 0 0) reflection. The anharmonic coeffi-
cients derived from the fittings are listed in Table 6.5 and dynamic parameters
for Cu obtained from different Mossbauer sources are listed in Table 6.6. It can
be seen from Fig. 6.19 that the fitted curves agree with experiments very well, in-
dicating that the measurements were made quite accurately.

However, discrepancies are often found among results reported by different au-
thors, due to the fact that the anharmonic effect is relatively small and due to dif-
ferences in experimental conditions and in single-crystal sample qualities. For ex-
ample, the y, values for NaCl reported by different authors show a considerable
disagreement.
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Table 6.5 Dynamics parameters of Cu, Ag, and Pb [63].

Crystal 6o (K) 7 (A2 K2 73 (A2 K73 74 (A*K73)

Cu 312(3) 4.3(8) x 107° —2(8) x 10713 6.0(8) x 1074
Ag 214(4) 2(1) x 107° 7.7(9) x 10712 4.2(7) x 1071
Pb 83(10) —~7(2) x 1078 2.0(3) x 10710 8(1) x 10712
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Table 6.6 The coefficient y, and Debye temperature 6p for Cu.

74 (A* K73) O (K)
RSMR using *Ta source [63] 6.0(8) x 1071* 312
RSMR using >’ Co source [64] 1.2(4) x 10713 320
Specific heat method [66] - 315
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7
Synchrotron Mossbauer Spectroscopy

It was in 1974 that the possibility of using synchrotron radiation (SR) as a source
for Mgssbauer measurements was proposed [1], but not until 1985 did a break-
through take place when SR with an energy width of 1072 eV at 14.413 keV was
obtained and used to observe the transmission spectrum of stainless steel [2]. SR
provides polarized pulsed radiation of high intensity, high collimation, and nar-
row beam. The only drawback is that SR is far from monochromatic. However,
its energy can be adjusted and it can cover an energy range for a majority of
Mossbauer transitions. Initially, the high intensity of the SR source was exploited
for scattering experiments where conventional radiation sources could not pro-
vide adequate results. Soon after, it was realized that the pulsed nature of SR is
most suitable for measuring time spectra — using a short SR pulse (<1071° 5) to
excite a nuclear ensemble to form a so-called exciton and observing its coherent
decay at different time intervals. The third-generation synchrotron storage rings
can give a pulse of 100 ps every 2-3 ns. Therefore, the method measuring time
spectra is called time domain Mdéssbauer spectroscopy whereas the transmission
method is referred to as energy domain Méssbauer spectroscopy. In the past two
decades, significant progress has been made in synchrotron Mdssbauer spectros-
copy, especially in the time domain method, providing a direct and efficient
approach to the study of the Mossbauer effect and hyperfine fields. There have
emerged several new research areas which are not accessible with the conven-
tional radiation sources. One of the exciting advances was the phonon DOS mea-
sured by SR sources in 1995. It had been known as soon as the Mossbauer effect
was discovered that a phonon DOS could be measured by this effect, but because
of technical difficulties it was not realized until SR became available.

At the present time, third-generation SR sources are in operation, such as those
at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), the
Advanced Photon Source (APS) in Argonne (USA), and the Super Photon ring
(SPring-8) in Hyogo (Japan). The most distinct advantage of SR is its high bril-
liance (measured in photons s~! eV~ sr™! mm™2). The brilliance of a third-
generation SR source is about 9 to 10 orders of magnitude higher than that of a
rotating target x-ray generator, and about 12 orders of magnitude higher than that
of a ¥Co source of 3.7 x 10 Bq. However, SR sources require an enormously
large and costly facility, and will not be available in ordinary Mossbauer laborato-
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ries. The time spectra are usually quite complicated. Therefore, the SR sources
will not replace the conventional radiation sources. The fact that transmission
Moéssbauer spectroscopy is regarded as a “classical” method by some authors im-
plies that synchrotron Mdéssbauer spectroscopy has opened a modern era of this
research field. In this chapter, we briefly describe synchrotron Méssbauer spec-
troscopy and its possible applications in lattice dynamics. The reader may find
more in a specialized volume devoted to the theory and experiments of this sub-
ject [3].

7.1
Synchrotron Radiation and Its Properties

When a charged particle undergoes a circular motion in a magnetic field, it radi-
ates electromagnetic waves because of its large centripetal acceleration. It was dis-
covered in 1948 that the radiation from electrons in a synchrotron accelerator is
very unique (known as synchrotron radiation), having high intensity, narrow
beam width, adjustable energy, and a broad energy spectrum. It was soon recog-
nized that SR can serve as ideal radiation sources in the energy range of 10 eV to
100 keV for applications in all scientific research. High-energy electron synchro-
trons for producing SR have been constructed in many countries around the
world. Both classical and quantum mechanical theories of SR have been success-
fully developed and described in detail in textbooks [4, 5]. Here, we will simply
quote the results to discuss some of the properties of SR.

7.1.1
The Angular Distribution of Radiation

If we consider the electron motion as nonrelativistic, the radiation has the dipole
pattern, and its power distribution is

2
%:m;wmz sin? y (7.1)
where y is the angle between the radiation direction unit vector n and the accel-
eration vector v. It is easy to see that the power is maximum in the directions per-
pendicular to acceleration, and it is zero along the acceleration. When the elec-
tron energy is very high, the motion must be treated as relativistic (f =v/c ~ 1),
and after Lorentz transformation the dipole radiation in the rest frame of the elec-
tron is now concentrated in the direction of the electron velocity. Let x, y, and z be
the axes of the laboratory reference frame, and the electron’s orbit be in the y—z
plane. When its velocity v and acceleration v are in the z and y directions (Fig.
7.1), respectively, the angular distribution of radiation in terms of the observer’s
spherical coordinates ¢ and ¢ is
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Fig. 7.1 Radiation distribution for an electron for (a) nonrelativistic
motion and (b) relativistic motion in a circular orbit. (c) The laboratory
frame.

dP(0,4)  Polv|? 17(1—ﬁ2) sin? 0 sin? ¢ 7.2)
dQ  (1-pcos0)’ (1 — B cos 0)* '

where Py = ¢2/(16n%¢oc®). Now we analyze this angular distribution in two spe-
cial planes, one horizontal (yz plane) and one vertical (xz plane) with respect to
the electron orbit, and the angle 0 will be written as 0}, and 0, in these two respec-
tive planes.
1. If the observer is in the yz plane, ¢ = +#/2, and Eq. (7.2) becomes
12
Pol¥] 3 = o0, when 60, =0
=4 (1=5) (7.3)
0, when 0y, = +cos™! §.

dP(0y, ¢)
dQ

Therefore, when observed in the direction of the instantaneous velocity v, the SR
is limited within an angle of Af}, centered at v, which can be approximately ex-
pressed as

A0y =2 cos ' a2yt (7.4)

where y = (1 — [fz)*]/ > = E/(moc?). For an orbiting electron with an energy of
E = 2 GeV, this angle is very small, A0y, = 1.7'. As the f-value approaches 1, A0y,
becomes smaller, so the radiation along the v direction intensifies whereas the ra-
diation in the opposite direction (—z) diminishes.

(2) If the observer is in the xz plane, ¢ = 0 or x, and Eq. (7.2) becomes

Po|v|®
dP(6V7¢) :(1,ﬁ)37 when 0\,:0
dQ

(7.5)

:POMZ, when Hvzg.
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Although there does not exist a critical value of 6, above which the radiation ap-
proaches zero, the ratio of the intensity at 6, =0 to that at 0, ==/2 is
1/(1 — p?)’. When f — 1, this ratio is extremely large, and the majority of radia-
tion can still be considered [5] as distributed within the angle of

A0, = 2yt (7.6)

In summary, SR is concentrated in a narrow cone in the z-direction, similar to a
beam from a searchlight.

7.1.2
The Total Power of Radiation

Integrating Eq. (7.2) over all angles, we obtain the total power radiated by the
electron:

=I5 (7.7)

As mentioned earlier, y ~ 10*; therefore, the radiation power from a relativistic
electron is about 10'° times higher than that of a nonrelativistic electron as de-
scribed in Eq. (7.1). With such a high power confined in a small cone of radiation,
we can see why the photon density could be extremely high, reaching 10%° to 10%°
photons s™! mm~2 mrad=2 (0.1% bw)~!.

7.1.3
The Frequency Distribution of Radiation

Synchrotron radiation is composed of pulses of duration < 1071° s with a period
in the microsecond range or less. As we know, such a pulsed radiation series con-
tain a wide spectrum of frequency components. When the electron velocity ap-
proaches the speed of light, the fundamental frequency wq (orbiting frequency)
is no longer the major frequency component, but its high-order harmonics nw,.
Let the pulse duration of the electron beam be 7’. The pulse duration as observed
in the laboratory reference frame is then

’ ’ - R _
t=(1-8 n)t zryzzzy 3 (7.8)

This pulse duration 7 determines the maximum frequency of the radiation:
c
Omax X §y3. (7.9)

When E = 3 GeV and B = 0.8 T, wmax can be calculated to be 4.9 x 108 rad s 1,
corresponding to a wavelength of 3.9 A. Therefore, SR covers a wide range from
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Fig. 7.2 Typical synchrotron radiation spectrum as a function of w/wq.

radio frequency to very hard x-rays, as shown in a typical spectrum in Fig. 7.2. In
reality, an electron beam in the synchrotron has a certain physical size and con-
tains many electrons, which would make 7 significantly larger and the resultant
radiation is the superposition of the contributions from all the electrons in the
beam.

7.1.4
Polarization

At a location far from the electron orbit, the electric field vector E is always in the
direction determined by n x (n x v). Within the orbit plane, the vector E is collin-
ear with v, and the radiation observed in this plane will be completely linearly
g-polarized. Above or below the orbit plane, the radiation contains elliptically po-
larized components. In general, the observed radiation intensity can be consid-

(a) (b)
1(6y) 1.0 18,)
1(0) Pe(6) 1(0)
1,(8,)
o @)
05} 1(0) 0.5
1,(6,)
1(0) PU(6) 1,(6,)
1(0)
) ) ) 1 | 1] I 1 ) I I
4 2 0 2 4 2 0 2
bt bt

Fig. 7.3 Relative intensities (I, 15, 1;), linear polarization Py, and circular
polarization P. as functions of the angle 6, in the plane perpendicular
to the orbit: (a) 2 =104 and (b) A2 = A, where A. is the wavelength
corresponding to the maximum P, in Fig. 7.2 and y = E/mqc?.
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ered as the sum of I, and I,. We may define a degree of linear polarization P; and
a degree of circular polarization P [6]:

Pl = (Iﬂ — Iﬂ) )
(Io + I)
(7.10)
2\/1,1,
Po=4Yorr
(I + I)

Figure 7.3 shows the quantities P} and P. as functions of the angle 0, and the
wavelength. Within the plane of the orbit, the radiation is 100% linearly polarized
(P =1 and P. = 0). Deviating from this plane, both P; and I decrease, whereas
P. increases slightly. When very far from this plane, the radiation is largely char-
acterized by elliptical polarization (P; = 0 and P. = 1). When averaged over all an-
gles, one finds that 75% of the radiation is linearly polarized.

7.2
Synchrotron Méssbauer Sources

The bandwidth of SR beams is too large for nuclear resonant scattering experi-
ments. Even after going through a double-crystal pre-monochromator Si(1 1 1),
its bandwidth can only be reduced to the order of eV. The nuclear resonant width
is 4.66 x 107 eV in *’Fe, so only about one part in a 10® of the incident SR is
useful. This implies a serious problem of signal-to-noise ratio. Fortunately, ultra-
high collimation of SR can be achieved, and provides monochromatic SR beams
of bandwidth of meV, sub-meV, or peV.

If a perfectly collimated and monochromatic SR beam is incident on a perfect
crystal at a Bragg angle, the probability of reflection can be very large, close to
unity. In practice, highly effective monochromators have been designed and
good signal-to-noise ratios of 10 or better have been achieved [7].

To date, SR can be tuned to the Méssbauer transition energies not only for the
most common isotope *’Fe but also for others such as #Kr, > Eu, 1?Sn, 11Dy,
and 2'Hg.

7.2.1
The meV Bandwidth Sources

The desired bandwidth of a monochromator for nuclear resonant scattering ex-
periments is within several peV. This is broad enough to cover all hyperfine tran-
sitions of each Mossbauer nucleus in a sample, while the prompt background
may be reduced to a manageable level. There are two types of monochromators,
one based on the scattering by electrons and the other on resonant scattering by
nuclei. The first type can offer a bandwidth within a few meV, and is described in
this section. The second type can provide the desired bandwidth of a few peV, and
is discussed in the next section.
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Fig. 7.4 Schematic representation of the geometry in nuclear Bragg
scattering (NBS) and nuclear forward scattering (NFS) experiments
using an SR source [11].

In combination with modern detectors, monochromators based on electron
scattering have been improved so that the prompt rate can be reduced to a level
that allows nuclear resonant scattering experiments to be successfully carried out.
Using such SR sources, many recent lattice dynamics experiments as well as nu-
clear forward scattering experiments have been performed with acceptable signal-
to-noise ratios. Therefore, SR with a few meV has become an important photon
source for nuclear resonant scattering work.

The experimental setup of nuclear resonant scattering is shown Fig. 7.4.
A beam of SR from an undulator is incident on a high-heatload pre-
monochromator, which consists of two symmetric Si(1 1 1) reflectors, narrowing
the bandwidth to about 1-2 eV. The further reduction of the bandwidth to meV
can be achieved by a high-resolution monochromator (HRM) [8]. Here an ioniza-
tion chamber as the beam intensity monitor and some slits are also placed. Up to
now, HRMs have been constructed by using two particular reflections. (1) A re-
flection with a Bragg angle near 90° [9]. Under this reflection the angular accep-
tance can be maximized for a given energy bandwidth. Several allowed reflections
at 14.413 keV in Si are off the (10 6 4), (12 2 2), and (9 7 5) planes with Bragg
angles of 90°, 77.5° and 80.4°, respectively. Figure 7.5(a) shows a pair of
channel-cut Si(10 6 4) crystals arranged in a dispersive geometry. This HRM pro-
vides highly monochromatic, highly collimated, and high energy-resolution
beams but with a low transmission. (2) An asymmetric Bragg reflection [10].
This also appreciably increases the angular acceptance. Asymmetric reflection
means that the reflecting planes are not parallel to the physical surface of the
crystal. In Fig. 7.4, the HRM using an asymmetric channel-cut Si(12 2 2) crystal
nested within an asymmetric channel-cut Si(4 2 2) crystal provides a beam of a
6.7 meV bandwidth at 14.413 keV nuclear resonance for > Fe. With such a radia-
tion source, the phonon DOS of o-Fe has been observed for the first time [7]. Fig-
ure 7.5(b) shows a modern HRM using extremely asymmetric angles on high-
order reflections, for instance the Si(9 7 5) reflection [12, 13], which can reduce
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Fig. 7.5 Three versions of HRM with meV bandwidths. (a) Two pairs of
symmetric channel-cut Si(10 6 4) high-order reflections in a dispersive
geometry [9]. (b) An HRM optimized for energy resolution: two
asymmetrically cut, high-order crystal reflections in Si(9 7 5) [13].

(c) A four-reflection version, similar to (b) [14].

the bandwidth to 0.8 meV with an efficiency of about 50%. To study lattice dy-
namics, the HRM must be tunable over a region sufficiently large for measuring
phonon energies, i.e., a few hundred meV. This is achieved by mounting the crys-
tal assembly on high-precision angular encoders (made by Kohzu Precision Co.
Ltd), which can provide a minimum rotating step size of ~0.012 prad. This corre-
sponds an energy step of 15 peV. Temperature stability and monitoring are other
important aspects; e.g., a change of 13 mK on both crystals will produce an energy
shift of about 1 meV [12].

Generally speaking, a meV bandwidth is about 10 times wider than the reso-
nance linewidth of 3’ Fe. A scatterer contains a large number of electrons in addi-
tion to the resonant nuclei, and those electrons will non-resonantly scatter all the
SR in the meV band. Therefore, only 107° of the detected photon count is due to
nuclear resonant scattering. The electron scattering process is prompt, whereas
the nuclear resonant scattering is a time-delayed process since the typical lifetime
of the nuclear isomeric state is long compared to the incident SR pulse (for *’Fe,
79 &~ 141 ns). Using this time difference, photons from non-resonant electron
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scattering can be in principle discriminated. Of course this requires a detector of
good time response, with rise and fall times shorter than a nanosecond. This cri-
terion is satisfied by the recently developed fast avalanche photodiode detectors
(APD) with time resolutions of 0.1 to 1 ns, which can sustain an intense prompt
scattering (~10° photons s~!) during the flash of SR and several nanoseconds
later are able to detect a single delayed photon of nuclear scattering [15]. For a
multi-element scatterer, a very good method is to find special reflections that the
electronic Bragg reflections from different atoms may be cancelled, or even for-
bidden, such as the (2n 4+ 1 2n+ 1 2n + 1) plane in «-Fe,0s.

7.2.2
The peV Bandwidth Sources

For producing a peV bandwidth source, the first stage monochromator is also
Si(1 1 1), followed by a HRM, usually making use of nuclear Bragg scattering.
This combination reduces the bandwidth to within 107° to 108 eV, approaching
the nuclear energy level's natural width. A single crystal of o->’Fe,03 or ' FeBO;
can be used for such a monochromator [16, 17]. A film of hundreds of artificially
structured nuclear multilayers can produce very strong Bragg scattering, while
the electron Bragg scattering is relatively weak. For example, the nuclear periods
of 25 x [*’Fe(22A)/Sc(11A)/>°Fe(22A)/Sc(11A)] [18] and 25 x [*’Fe(17A)/
Cr(10 A)] [19] multilayers have been designed. Structurally, the nuclear interpla-
nar distance is twice the electronic interplanar distance, making the electron
Bragg scattering much weaker than the nuclear Bragg scattering. Another type
of monochromator is the grazing incident antireflection film (GIAR film) [20],
for example, consisting of an >’ FesB,C layer on a Ta backing. Because of the graz-
ing incident angle, the radiation’s path in the coating is relatively long, resulting
in a total reflection. This can be considered as an extreme case of interference.
Using this method, the electronic reflectivity is reduced to 0.04 and the band-
width of the source is reduced to 0.5 x 1076 eV.

In order to protect the detectors from very intense prompt radiation, a new
technique was developed, in which the ratio of prompt to delayed radiations is
reduced before detection by polarization-selective optics [21, 22]. It has been
pointed out that when x-rays undergo a 45° Bragg reflection, the n-polarized com-
ponent is almost entirely eliminated [23]. When the 14.413 keV SR from the
Si(1 1 1) monochromator is subjected to a 45° Bragg reflection from a Si(8 4 0)
polarizer, the radiation has only the g-polarized component remaining (Fig. 7.6).
The beam is then directed perpendicularly to an Fe foil of 10.5 um thickness
(95% >’Fe enrichment). An external magnetic field B is applied in the plane of
the foil but making a 45° with the horizontal (i.e., the orbital plane of the elec-
trons where the vector E lies). As has been shown for optics, when an optically
active material is inserted between polarizer and analyzer crystals, part of the
incident g-polarized radiation is converted to a z-polarization component [24].
Here an Fe foil with an external magnetic field B acts like this material.
There will be six allowed transitions in the foil (Am = 0 and Am = +1), produc-

261



262

7 Synchrotron Mossbauer Spectroscopy

T

Si(8 4 0) IT\ y Si(8 4 0)

F
Tom olarizer analyzer APD
Si111) iron fm] detector

(95% *"Fe)

Fig. 7.6 Experimental setup of a polarizer, an Fe foil with magnetic field
B, an analyzer, and a detector, for suppressing radiation from non-
resonant scattering.

ing ¢- and z-polarization mixed components of the nuclear forward scattering
with comparable intensities. Behind the Fe foil is an analyzer which is exactly
the same as the polarizer except for a 90° rotation. In this orientation, the o-com-
ponent (instead of the z-component) and the prompt radiation caused by electron
scattering can be almost completely suppressed, while the z-component is trans-
mitted. To a very good approximation, only the resonant part of the radiation
transmitted from the polarizer can have its polarization state modified. This is
the principle of this assembly, converting g-polarization to z-polarization and pro-
ducing a 14.413 keV SR Méssbauer source of bandwidth 1077 eV, with the elec-
tron scattering radiation suppressed to a fraction of 5.4 x 1077.

Now we discuss how to obtain a single-line source from the incident SR. Using
pure Bragg scattering for making SR monochromatic usually involves hyperfine
interactions, and as a result the spectrum of the “filtered” radiation contains sev-
eral spectral components. If this radiation is used for recording a time spectrum,
these components interfere with one another and produce “quantum beats.” If a
single-line monochromatic source is desired, an additional absorber may be
added to filter out the unwanted spectral components. But because of the dy-
namic diffraction effect, the width of the resultant single line is several times
wider than the absorber natural width. Also, this method causes significant inten-
sity loss.

To circumvent these difficulties, studies have shown that when single-crystal
>7FeBOj in an external magnetic field is heated to higher than its Neél tempera-
ture Ty to eliminate magnetic hyperfine interaction, the Bragg reflection from its
(3 3 3) plane will result in a single-line source of nearly the natural linewidth [25].
FeBOs is antiferromagnetic and the principal axis of its EFG is perpendicular to
the hyperfine magnetic field. When the temperature approaches Ty, the magnetic
hyperfine interaction becomes weaker and eventually disappears. As shown in
Fig. 7.7, the low-energy line of the quadrupole doublet gradually loses its inten-
sities due to destructive interference. When T = 75.9 °C, a single-line source of
width 2.9T,, can be obtained in the Bragg angle direction.

An experimental setup using this method is shown in Fig. 7.8. A double-crystal
Si(1 1 1) monochromator reduces the radiation bandwidth to 2.8 eV. A channel-
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Fig. 7.7 Mdssbauer diffraction spectra from a 3’FeBOj; crystal at
different temperatures, using resonant y-radiation from a 3’Co(Cr)
source.

cut Si(8 4 0) polarizer reduces the n-polarized component from 1% to less than
107*% and the bandwidth to meV. Single-crystal >’ FeBOs3, placed in an oven, has
its (3 3 3) plane in the vertical orientation and an external magnetic field of 10 mT
is also applied so that the crystal is magnetized in the vertical direction. The out-
come is an extremely narrow (10 x 35 prad?), linearly polarized (electric field vec-
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Fig. 7.8 Experimental setup for obtaining monochromization and
polarization of 3’ Fe Mossbauer synchrotron radiation. The h vectors
represent the polarization directions, and the k vectors represent the
propagation directions. The absorber A is an iron foil (95% >’Fe) and D
is an avalanche photodiode detector.

tor E in the vertical plane), completely recoilless, and highly intense Mdssbauer
source. The electron-scattered component is reduced to 1071 of the original level.
According to estimates, when the integrated current in the storage ring is 130
mA, the radiation within the above solid angle is equivalent to a >’Co source of
an enormous activity of 3.7 x 10!* Bq.

1.0+

Transmission
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Fig. 7.9 Mdssbauer transmission spectra of an >’ Fe foil of 1.3 pm

thickness measured with SR Mossbauer source: (a) zero external
magnetic field, (b) Bex L k' and Be L h’, and (c) Bex: || h'.
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The Méssbauer source discudded above has been tested using stainless steel
and o-Fe absorbers (all with 95% ’Fe enrichment). For stainless steel foils of 1
and 10 um thicknesses, the resonance efficiencies are ¢ = 70 and 86%, respec-
tively (¢ is defined in Eq. (1.24)), which means that the radiation corresponds to
a completely recoilless Mossbauer radiation, or f; = 1. In order to verify its polar-
ization state, the radiation is used to measure transmission spectra of an o-Fe foil
of 1.3 pm thickness (Fig. 7.9). The spectrum in Fig. 7.9(a) is a sextet as expected
from a nonmagnetized sample. When an external magnetic field of Beyy = 10 mT
is applied in two different directions, the spectra in Figs. 7.9(b) and (c) show four
and two lines, respectively, corresponding to the Am = +1 and Am = 0 transi-
tions. These results clearly confirm that this Mossbauer source is linearly polar-
ized. It is also easy to see that the spectra in Figs. 7.9(b) and (c) resemble those
in Fig. 2.24.

7.3
Time Domain Méssbauer Spectroscopy

The initial inception of time domain Méssbauer spectroscopy was in 1960, and it
was called “time filtering” at that time. Although some interesting results were
reported, research effort using this approach soon faced many difficulties. After
SR became available, the excellent pulsed and periodic properties of SR revital-
ized this area of research, and the development in the last two decades has also
warranted it a proper name: time domain Mdossbauer spectroscopy (TDMS). Ex-
perimentally, the methodology uses nuclear Bragg scattering or forward scatter-
ing to observe the coherent decay at different times after the nuclear system has
been excited. Méssbauer parameters (such as fim and dsop) and hyperfine inter-
actions can also be studied by TDMS, through the analysis of new phenomena
such as speed-up effect of initial decay, dynamical beats, quantum beats, etc. We
describe these phenomena in this section. The theoretical aspects of TDMS were
derived from classical optics for isotopic radiation sources by Lynch et al. [26],
and for SR by Kagan et al. [27] and Hannon and Trammell [28-30].

7.3.1
Nuclear Exciton

Most results of elastic nuclear resonant experiments, where the coherent effects
are clearly revealed, can be easily understood if we assume that the Mossbauer
nuclei in a sample are excited as a whole and consequently decay freely. The
y-ray emitted by an excited nucleus may be re-absorbed or scattered by other nu-
clei that are identical to the emitting nucleus. So, it is possible for a nuclear exci-
tation to propagate elastically throughout the entire ensemble of nuclei. Each nu-
cleus is no longer isolated, but interacts with others. Without this interaction, an
excited nucleus would decay with the natural lifetime. But an interacting ensem-
ble of nuclei behaves differently. Such a collective nuclear excitation phased in
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time by Mossbauer radiation or SR pulses is known as a nuclear exciton [27, 29],
which is a spatial superposition of various excited hyperfine levels of all nuclei in
the sample. The elastic decay of this exciton is characterized by speed-up and beat
modulations of intensity, and exhibits a peculiar property, namely the emitted
y-rays exist predominantly in spatially coherent channels, i.e., mostly oriented in
the forward or the Bragg direction.

On the other hand, inelastic decay of an exciton does not differ from the decay
of an excited individual nucleus.

7.3.2
Enhancement of Coherent Channel

In the kinematical approximation, the resonant scattering amplitude of Moss-
bauer radiation by n nuclei in a sample can be expressed by a phased sum as

Y=Y N (koy K ) (7.11)
I=1

where s = k' — ko, f}N is just the scattering amplitude of an incident photon of
energy hiw by an atom I, and ko and k’ are wave vectors before and after scatter-
ing. If all nuclei in the sample are equivalent, we can factor f;N out of the sum-
mation. To find the scattering intensity, which is proportional to |f; N2 we must
calculate the product of the double sum in ! and I'. It is convenient to calculate
first the terms with | = I’, whose sum equals n, then those with [ # I’. Therefore,
one gets [31]

n 2

§ :ezs-rl

I

I(w,s) = (7.12a)

=n-+ (i e_is'”> (i e‘””) . (7.12b)
1

Ir#l

The double sum accounts for interference contributions from all pairs of nuclei
and I’. If there is no spatial correlation between atoms in the sample and s # 0,
the relative phases s - r; are uniformly distributed over the interval 0-2z. It can be
proved that the double sum in Eq. (7.12b) approaches zero provided that the
number n is large enough. Hence, the scattering intensity will be proportional to
n, and applies to all incoherent processes, such as internal conversion.

If we have s = 0 or 7 (where 7 is a reciprocal-lattice vector), Eq. (7.12a) gives n?,
typical for spatially coherent scattering. Therefore the coherent radiative channel
(NFS or NBS) is immensely enhanced relative to incoherent channels. An esti-
mate shows that for the 14.4 keV resonance in >'Fe the enhancement can be as
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high as 1000 [32]. The coherent constructive interference during the decay of a
nuclear exciton determinates the physical origin of a strong enhancement in the
radiative channel. This interesting effect has been considered by many re-
searchers [27, 29-31, 33-36].

Note that in most nuclear scattering experiments, multiple scattering processes
cannot be neglected, but must be treated by the dynamical theory. In such a case,
the enhancement is often accompanied by a broadening of the frequency distri-
bution of the scattered radiation.

733
Speed-Up of Initial Decay

We begin with some early results from nuclear forward scattering in conventional
Méssbauer spectroscopy. Figure 7.10 shows a block diagram of a circuit for mea-
suring the Mdossbauer effect as a function of time (i.e., a time spectrum) using a
>7Co isotope source. It is a typical delay coincidence circuit. First, suppose the ab-
sorber A is temporarily removed from the apparatus. The 123 keV y,; signal sets
the zero time at the formation of the Mdssbauer energy levels, and this signal is
used as the “start” pulse for the time-amplitude converter (TAC). After the decay
process, the 14.4 keV y,, is used as the “stop” pulse. The TAC output, a pulse
whose amplitude is proportional to the delay between the y; and yy signals, is to

fi‘.l'C0

?’ -

A
14.4 keV

SCA coincidence SCA

TAC
start stop

- MCA

Fig. 7.10 Block diagram of the prompt delay coincidence detection circuit.
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be stored in the multichannel analyzer (MCA). One single-channel analyzer
(SCA), connected to each of the two detectors, is used for energy discrimination.
The signal from the coincidence output is utilized as a gate pulse for the MCA.
With no absorber, the standard circuit measures the lifetime, so the output
should follow a simple exponential law:

I(t) = Le "™, (7.13)

Now the absorber A containing *’Fe is inserted and driven to oscillate. When
its velocity is high, the radiation is slightly absorbed but the exponential time de-
pendence in Eq. (7.13) is hardly affected. When the velocity of the absorber is
such that it allows a resonance absorption, we observe immediately after t =0 a
higher decay rate than predicted by Eq. (7.13). This phenomenon is known as the
speed-up of initial decay. At a later time, the decay rate is partially restored, result-
ing in the ringing pattern in an overall time spectrum, similar to the theoretical
curves in Fig. 7.11.

Before describing this effect, we will start with a simpler situation, under which
the emitted y-spectrum presents an exact Lorentzian distribution. Considering
the Mossbauer nucleus as a damped oscillator, we describe its radiation by an
electromagnetic wave with an angular frequency wo, a speed ¢ = w/k propagating
in the z-direction, and an exponentially decaying amplitude. The electric field of
this wave is expressed as

E(z,t) = Ey exp {i(wot —kz) — gt} (7.14)

Neglecting the kz term for the moment and Fourier transforming this function
into the frequency domain, we obtain

E(w) = - r Eo exp ot — —t et dp — Eo (7.15)
w_Zn_, 0 P Fok T " 270 (0 — wg) —iC/2° '

o0

The frequency dependence of the relative intensity is

E2 1

f(w) o 4n2 (0 —wo)* +T?%/4

(7.16)

which is the familiar Lorentzian distribution with a maximum intensity at w = wo
and a FWHM of T.

If we detect photons in the time interval from 0 to t,, only, the upper limit in
the above integral would be t,,, and the relative intensity would be [36]

1+e T —2e /2 cos[(w — wo)tm]

(o0 + T4 7

I(w, ty) oc
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When t,, « 1/T, the above simplifies to

2~ 2 cos[(@ — @o)tm] _ , [sin(e — wo)tm/2] 2‘

(@ — wo)* (@ — o)

I(w, bty ) oC (7.18)

This frequency distribution has a half-width of approximately 1/t.,. Therefore, if
tm is much smaller than 1/T, the spectral width of the emitted line will increase
from the natural width T to a much larger value of 1/t,,. The above also shows
that an exponential decay corresponds to the Lorentzian frequency distribution.
On the other hand, if the frequency distribution is no longer Lorentzian but like
that in Eq. (7.18), the decay is also expected to deviate from the exponential decay
with the natural lifetime 7.

In order to describe the speed-up effect, Lynch et al. [26] have applied classical
optics theory to the transmission of radiation through a dispersive medium of an
assembly of resonant atoms. First, the incident radiation is decomposed into fre-
quency components, each of which gets absorbed and phase-shifted differently
during propagation. Then, the time evolution of the outgoing radiation is ob-
tained by Fourier transformation. They arrived at the following result for the rel-
ative intensity of the transmitted radiation:

—T

I'(w,7) = e (7.19)

S (it () |

n=0

where t, is the effective absorber thickness, t = ti /70, 7o = 141 ns is the average
lifetime of the excited state in *’Fe, and J, represents the Bessel function of the
nth order. Not only does this formula correctly describe the experimental results
of time dependence of resonantly transmitted y-rays, it also marks the beginning
of time domain Moéssbauer spectroscopy. When o = wy, this reduces to

I'(wo,7) = e " [Jo(VE1)]*. (7.20)

Figure 7.11 shows some of the graphs based on Eq. (7.20) which describes the
main features of the experimental results. To observe significant effects of the
speed-up of initial decay, the effective thickness t, should be larger than 1. If we
limit our attention to the region near t,, ~ 0 in Eq. (7.20), the high-order terms in
the Taylor expansion of J, may be neglected and Eq. (7.20) becomes

(o, 7) ~ e [1 — (vVEz/2)Y? ~ exp {71(1 + %)} . (7.21)

In this case, it is again approximately an exponential decay, except for the addi-
tional term t,/2, which causes a faster decay process. When t, = 2, the decaying
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Fig. 7.11 Time dependence of radiation after transmission through a
resonant filter, calculated according to Eq. (7.20), assuming that the
radiation is 75 or 100% recoilless. The straight line represents an
exponential decay for comparison. All curves are normalized to 1 at
t=0.

process would appear to be twice as fast. Since t, = ayn, food, the speed-up ef-
fect clearly depends on the physical thickness of the absorber, the abundance of
the resonance isotope (an,), and the recoilless fraction. For example, if the num-
ber of resonance isotopes is decreased, the decay tends to have less ringing; if the
medium does not contain the resonance isotope at all, the time spectrum curve
becomes a straight line (Fig. 7.11). This interesting phenomenon was first exper-
imentally observed by Lynch et al. in 1960.

The amount of broadening in the frequency distribution in Eq. (7.17) is dic-
tated by how much shorter the measurement time t,,, is compared with the aver-
age lifetime 7¢. The frequency distribution broadening can be quantitatively mea-
sured by transmission Mdssbauer spectra [36], as shown in Fig. 7.12(a). In the
experiment, both the source and absorber were stainless steel. Each spectrum
was collected from the formation of the 14.4 keV state to a time t,,. As can be
seen, the spectral line clearly becomes broader as t,, decreases. When t,, = 150
ns (tm having the same value as 7o, or 7 = 1.00), the half-width of the spectral
line is about 0.5 mm s~!, which is still about twice the width of a typical absorp-
tion line. The curves in Fig. 7.12(b) are calculated based on Eq. (7.18), and they
agree with the experimental data quite well. Incidentally, the speed-up in decay
and the broadening of spectral line are related by the time—energy uncertainty
principle, i.e., AtAE ~ F.
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Fig. 7.12 (a) Md&ssbauer spectra of a stainless steel absorber observed
at various delay times 7 (relative to the lifetime 7o) after the formation
of the 14.4 keV excited state. (b) Theoretical curves calculated using
t, = 2 and the corresponding t values.

73.4
Nuclear Forward Scattering of SR

Synchrotron radiation consists a series of sharp pulses, with a duration of about
10710 s for each pulse and a separation of about 107% s between pulses. The dura-
tion time is very small compared to the lifetime of the Méssbauer level in °’Fe
(~1077 s). Therefore, such a coherent SR flash causes a simultaneous excitation
of nuclear ensemble in the sample. There also exists a time correlation. Due to
the long lifetime of the excited states, the prompt radiation scattered by electrons
(as a background) and the delayed radiation of nuclear resonant scattering are
separated in time.

Nuclear forward scattering (NFS) experiments may be considering the time do-
main analog of conventional Méssbauer experiments. In the latter case, the re-
corded signal presents an incoherent sum of the spectral components of the
transmitted radiation. By contract, in NFS the time response is a coherent sum
of spectral components of the scattered radiation. In NFS there is only one coher-
ent decay channel, and the nuclear exciton involves only one wave propagating in
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the sample, and hence no suppression of absorption is possible. The dynamical
theory of scattering under these conditions is a familiar one in optics and leads
to the concept of refractive index. The nuclear “refractive index” is usually repre-
sented by a 2 x 2 matrix. Its imaginary components are related to the absorption
cross-section and its real components describe dispersion of the y-radiation. If the
incident beam is purely g-polarized, the refractive index can be written as a com-
plex scalar [37]

r
(o) =1+ 42

4ko W(wo — w) +il/2 (7.22)

where g, is defined in (1.16). Comparing this with Eq. (6.19), we find that the re-
fractive index is connected to the forward scattering amplitude fN by

n(w) =1+ %fw”ﬂ (7.23)
0

where n is the number density of resonance nuclei per unit volume. When two or
more hyperfine lines are excited, the refractive index must be written as

n
Uy r

n(w) =1+ (7.24)

In principle, the scattering problem should be solved by a quantum mechanical
method. For the sake of a semiquantitative discussion, we adopt a classical pic-
ture and introduce the electric field amplitude A¢(w). The amplitude of the wave
transmitted by a medium with a thickness d is then

A(w) = Ao(w) exp[—in(w)kod], (7.25)
and the transmission is
T'(w) = exp[—in(w)kod]. (7.26)

Assuming that the system under investigation is linear and time-invariant, for
a given frequency response of the system, we can calculate the time response by a
Fourier transform. Because we are only interested in the nuclear resonant part,
only the second term in Eq. (7.22) is needed for inserting n(w) into Eq. (7.26),
and we have

ity /2

2h(w — wo) /T +1i]” (7.:27)

T'(w) = exp|—
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Therefore, the time response function R(t) of the sample is obtained by the re-

verse Fourier transform:

T2

R(t) =< r T'(w)e ™" do

— 0

(7.28)

where ¢ is a frequency-independent constant. After the integration is carried out

[27], we obtain

R(t)=c [6(t) — e it/ (2%) %H(t)}

where

t
G(t):{l P20 nd o=t
0 t<O0 70

The time-domain intensity for NFS is given by

Ig(t > 0) = [R(t > 0)|* = |c|%e " (Zt;)z {IE/TX/TT
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Fig. 7.13 Time response of *’Fe/Sc/>¢Fe/Sc nuclear multilayer at the
nuclear Bragg angle. The solid line is a dynamical diffraction theory fit
and the dashed line indicates the initial decay with a lifetime of 4 ns.

(7.29)

(7.30)
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The quantity |¢|® includes the incident intensity I, of SR and an attenuating fac-
tor due to photoelectric absorption.

This result can be similarly simplified near r ~ 0 by taking the appropriate ap-
proximations, and it becomes

Tnps (1) o¢ £, exp {—1(1 + %)} . (7.31)

Comparing this with Eq. (7.21), we see that for the same t,, the rate of decay
using SR is slower than that using a radiation source. Figure 7.13 shows the
time spectra from a nuclear multilayer film at the Bragg reflection [18]. The spec-
trum reveals the remarkable decay speed-up, with an initial decay equivalent to a
lifetime of only 4 ns (the dashed line).

7.3.5
Dynamical Beat (DB)

In the previous section, we were only concerned with the decay characteristics
during a short duration before the first zero of the Bessel function ], or J;. Now
we want to observe a complete time spectrum where the Bessel function Jo or J;
passes through zero several times. This requires a longer measurement time de-
pending on the particular value of t,. Such spectra exhibit the “ringing” pattern
[38] as shown in Fig. 7.14. This type of intensity modulation is called dynamical
beat (DB). Both decay speed-up and ringing are results of the coherent decay of a
nuclear exciton. It can also be understood as an interference effect in coherent
nuclear forward scattering or nuclear resonant scattering at the Bragg angle. Un-
like the radiation source, the SR produces nuclear forward scattering with almost
no background counts. The quality of a time domain spectrum depends only on
the intensity of SR and the size of the time window.

In order to investigate a pure DB without disturbance by a quantum beat, ma-
terials with single-line absorption should be used. The time spectra of NFS from
(NH,),Mg>’Fe(CN)s powder samples of different ¢, are shown in Fig. 7.14 where
it can be seen that (1) the DB is aperiodic and the apparent periods increase with
time and (2) the apparent periods decrease with increasing effective thickness t,.
These two characteristic features of DB are determined basically by the Bessel
function J; with the argument /f,7. Note also that the spectra in the first 10 to
20 ns cannot be resolved because of detector overload and veto in the electronic
circuit temporarily.

7.3.6
Quantum Beat (QB)

Beats can be easily observed in sound waves and radio waves, but they appear in
optical waves, x-rays, or y-rays only under certain particular conditions. Quantum
effects may be completely ignored in long-wavelength cases, but must be consid-
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Fig. 7.14 Time evolution of NFS SR through (NH4);Mg>"Fe(CN)s
powder samples of different effective thicknesses t,. The aperiodic
modulation is the DB. The solid lines are fits using the NFS theory [38].
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Fig. 7.15 Transitions involved in the phenomenon of quantum beats.

ered in the latter group, which may be the reason why quantum beat (QB) was so
named. Quantum beats in optics were first observed in 1964. We now discuss the
QB in y-rays.

Suppose that SR pulses coherently excite an ensemble of > Fe nuclei in a sam-
ple from their ground state to quadrupole split energy levels E; and E, (Fig. 7.15).
Two nuclear excitons with energies E; and E, are created by the above process. Of
cause, they are also coherent and will interfere with each other. It can be shown
[39] that the intensity of NFS is given by

I () o [Nye BY? 1 Nye Bt/ 2t/

E, — E
= (N2 4 N2)e /™ 4 2N; Nye */® cos (%) t. (7.32)

In our case, Ny = N, = N is proportional to the concentration of Mdssbauer nu-
clei in the sample. Therefore, expression (7.32) becomes

I (£) oc N2e /™ cos?(Qt/2) (7.33)

with Q = (E, — E;)/h. This indicates a periodic decay, known as QBs, an interfer-
ence phenomenon in the time domain. As in the analysis of any other interfer-
ence phenomenon, we have added the two amplitudes in Eq. (7.32) before taking
the square to calculate the intensity, but the most important condition here is the
simultaneous and instantaneous excitation of the nuclei in the absorber.

With the QB included, Egs. (7.30) and (7.33) can be combined to give the total
intensity of nuclear forward scattering

I () oc t2e /™ {M#} 2 cos?(Qt/2), (7.34)

which indicates that QB is periodic. By appropriate choice of the direction of a
weak external magnetic field, only the two Am = 0 transitions in >’ Fe metal foils
are excited, and time spectra from such samples [37] are shown in Fig. 7.16,
where the time windows are open before the first zero of J;. Since both Am =0
transitions have the same partial effective thickness, the dynamical beats due to
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Fig. 7.16 Time evolution of NFS through 3’ Fe metal foils of different
effective thicknesses in a vertical magnetic field. Only the two Am =0
transitions were excited. The solid lines are computations based on Eq.
(7.30). The dashed lines indicate the exponential decay of the envelope
as calculated using Eq. (7.31).
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Fig. 7.17 Time evolution of NFS through a >’Fe metal foil (~9 pm) at
4 K in a vertical magnetic field of 1 T [38]. Only the two Am =0
transitions were excited, with effective thickness t, ~ 75 each. The DB
is seen as an envelope modulation over the fast QB. The solid lines are
fits using the NFS theory.

these transitions coincide. The fact that intensities of NFS increase with ¢, is re-
flected in this figure. Increasing the time window or the effective thickness t,, the
DB and QB melt into hybrid forms of beating (Fig. 7.17).

If SR simultaneously excites more than two transitions, the interference pat-
tern between the spectral lines of resonant scattering will be very complex. The
nuclear Bragg scattering (NBS) of FeBO; can provide such an example [16, 41,
42]. A magnetic field is applied to the FeBOs crystal perpendicular to its scatter-
ing plane (ko, k') so that an internal magnetic field is parallel to ko + k', result-
ing in only four Am = +1 transitions (Fig. 7.18).

The phase and intensities of these transitions are +1, —1/3, +1/3, and —1, re-
spectively. Note that only transitions of the same polarization state interfere;
hence we get the following simple time spectrum modulated by QBs:

2

I(t) oce7t/® (7.35)

1 1, 1
sin {59(17 6)t} - ge*“m)t sin {59(3, 4)t}

where the first term describes the main features in the spectrum because it has a
higher beat frequency corresponding to a period of 8.1 ns at room temperature.
From this beat frequency, we calculate transition energy AQ(1,6) = 5.156 x 1077
eV, and therefore the magnetic hyperfine field B.g = 33.35 + 0.02 T. Using QBs
to deduce the hyperfine field value is a very accurate method, because we often
observe more than one or two periods. As shown in Fig. 7.19, the first eight oscil-
lations are very definite and the period can be precisely determined.
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Fig. 7.18 Four Am = +1 spectral lines in >’ FeBO; due to hyperfine
splittings with a magnetic field B and an electric field gradient, where
the ¢ shifts of the full Hamiltonian are added. The transitions are (1)
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Fig. 7.19 Time spectrum (quantum beat) measured at the Bragg angle 0p of ’FeBO3(1 1 1).

Usually, the frequencies of minor QBs are smaller and their intensities are also
weaker, causing only small-amplitude modulations in the main oscillation. As a
consequence, the overall spectrum seems somewhat ragged, but the hyperfine
field measurement is not compromised.

Isomer shifts can also be measured with the forward scattering approach. To
do this, a reference sample with a known isomer shift is attached to the sample
under investigation. In such an experiment, one exciton can extend over these
two samples. Two time spectra (with and without reference sample) are needed.
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The isomer shift of the sample with respect to the reference sample is then ob-
tained from a beat pattern of time spectra [43].

7.3.7
Distinctions between Time Domain and Energy Domain Methods

Energy domain Mdssbauer spectroscopy is based on the method of resonance ab-
sorption. The transmitted counts of photons are measured as functions of their
energies, i.e., an energy spectrum, which represents an incoherent sum of the
spectral components of the transmitted radiation. In other words, the transmitted
spectrum reflects the incoherent process of nuclear resonance absorption by indi-
vidual nuclei.

By contrast, TDMS belongs to the scattering method. A scattering spectrum
measured as a function of time is a coherent sum of the spectral components of
the scattered radiation from nuclei collectively excited by an SR pulse. This leads
to important interference effects in TDMS.

This is the fundamental distinction between these two methods, and conse-
quently there are many theoretical and experimental differences between time do-
main and energy domain Mdéssbauer spectroscopies. The different characteristic
features of time domain and energy domain spectra are demonstrated in Figs.
7.20 and 7.21 [31].

Mossbauer Forward Scattering Forward Scattering

Transmission Spectra Energy Spectra Time Spectra
Log

Thin
Target

40 —20 0 20 40 —40 —20 O 20 40 0 100 200 300 400
Energy (I') Energy (I') Time (ns)
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Thick line profile beats
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40 20 0 20 40 —40 20 0 20 0 100 200 300 400
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Fig. 7.20 M&ssbauer transmission spectra (left column), and
synchrotron radiation scattering spectra in the energy domain (middle
column) and in the time domain (right column) for the case of a single
resonance in °’Fe-enriched stainless steel. Upper row: a thin target of
0.2 um; lower row: a thick target of 3 pm.
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Fig. 7.21 Méssbauer transmission spectra (left column), and
synchrotron radiation scattering spectra in the energy domain (middle
column) and in the time domain (right column) for the case of a
resonance doublet in 3’ Fe-enriched stainless steel. Upper row: a thin
target of 0.2 pm; lower row: a thick target of 3 um.

738
Measurement of the Lamb—Méssbauer Factor

In the time domain, it is also through measuring ¢, that the Lamb-Méssbauer
factor fiy is determined. Using nuclear forward scattering (NFS), ¢, may be mea-
sured by the speed-up effect of coherent decay or the minimum positions of dy-
namical beats. We now look at each of these two methods.

1. The first example is single-crystal guanidinium nitroprusside (GNP),
(CN3Hg),[Fe(CN)sNO] [44]. With a relatively thin scatterer and the time window
open before the first zero of J; function, the resultant NFS spectra are shown in
Fig. 7.22. The values of t, are deduced by fitting the experimental data with Eq.
(7.30) or (7.31). If the number of Méssbauer nuclei per unit area is known, fim
can be easily calculated. The experimental results are fL(S[) =0.122 £+ 0.010 and
f&) = 0.206 £ 0.010 for the orientations with the crystal a-axis and c-axis parallel
to the incident SR beam, respectively. The corresponding Debye temperatures are
140 and 160 K. The difference in fiy values along different crystal directions is
due to the G-K effect. This method is applicable in either single-line resonant
scattering or quadrupole doublet resonant scattering.

2. In the second example, a larger time window is open to observe as many pe-
riods of DB as possible so that t, and fi can be deduced more accurately. Since
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Fig. 7.22 NFS spectra of guanidinium nitroprusside single crystals
recorded at room temperature with single-crystal orientations and
thicknesses as indicated. The solid lines result from a least-squares fit.

ta = 0o fumnad, if the scatterer is kept at the same temperature, the thickness d is
the only variable in t,. In this case the DB patterns have already been demon-
strated in Fig. 7.15. On the contrary, suppose now we keep d constant but make
the scatterer temperature the only variable, then the Lamb—M®éssbauer factor fiy
and the magnetic hyperfine field (or Q) will both change accordingly. The method
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involves measurements of a series of time spectra at different temperatures and
the determination of the temperature dependence of both the magnetic hyperfine
field from the QB periods and the Lamb—Maéssbauer factor fiy from the DB “pe-
riods.” Considering only DB and using t, o fim, Eq. (7.34) gives the relationship
between the relative intensity I(t) and the Lamb—Maéssbauer factor fiy as follows:

1(t, fus) oc €™ fisJF (ev/fimt) (7.36)

where ¢ is a constant. The intensity minima are just the zeroes of J;, and by locat-
ing these minima the Lamb—Madssbauer factor fiy can be determined. An excel-
lent set of experiments has been carried out using a polycrystalline o-Fe foil of
thickness (10.57 4+ 0.13) pm and a 95% *’Fe enrichment [45]. A magnetic field
of 0.6 T was applied in the plane of the foil so that only the Am = 0 transitions
were allowed. Time spectra at many different temperatures were obtained using
SR of bandwidth 10 meV. The fim-values at those temperatures are listed in Table
7.1, and selected spectra are shown in Fig. 7.23.

The first zero of J; occurs when cy/fimt = 3.83. When temperature T in-
creases, causing fim to decrease, the first intensity minimum in the time spec-

Table 7.1 The Lamb—M@&ssbauer factor f,, and the splitting /i(dw) of an
Fe foil in the temperature range 9.7-1048 K, obtained from the 3’ Fe
NFS time spectra.

Temperature (K) fim fim h(ow) (x107° eV)
fim (9.7 K)
9.7 0.890 £ 0.020 1 297.42 + 0.31
50 0.886 + 0.020 0.996 + 0.003 297.24 + 0.31
100 0.868 + 0.019 0.976 £ 0.003 296.13 + 0.31
150 0.850 + 0.019 0.955 + 0.003 295.44 + 0.31
200 0.823 + 0.018 0.925 + 0.003 294.31 + 0.31
250 0.796 + 0.018 0.895 + 0.003 292.71 + 0.30
298 0.771 4+ 0.017 0.866 + 0.003 290.60 + 0.30
348 0.739 4 0.016 0.831 + 0.003 287.40 + 0.30
513 0.649 4+ 0.015 0.730 + 0.003 274.44 + 0.32
693 0.526 + 0.014 0.591 + 0.004 252.33 + 0.38
773 0.492 4+ 0.012 0.553 =+ 0.002 236.36 + 0.31
873 0.430 £ 0.010 0.483 £ 0.002 209.67 + 0.29
973 0.359 4 0.010 0.403 + 0.003 152.95 + 0.34
1008 0.336 £+ 0.012 0.377 £ 0.006 119.20 + 0.46
1023 0.316 + 0.012 0.355 + 0.006 89.02 £ 0.67
1031 0.298 + 0.009 0.335 + 0.004 60.76 + 0.50
1033 0.286 + 0.008 0.322 4 0.003 50.97 £ 0.57
1042 0.295 + 0.010 0.332 4 0.005 19.49 + 1.4

1048 0.285 + 0.008 0.321 + 0.003 6.97 £+ 0.60
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Fig. 7.23 Forward scattering time spectra of an >’Fe foil at temperatures from 9.7 to 1048 K.

trum must then be shifted towards a later time, as seen in the experimental spec-
tra. This fact can also be seen in Fig. 7.14, where the first minimum shifts to a
later time as t, decreases.

In Fig. 7.23, as the temperature increases, the QB frequency first decreases
gradually, but when T is higher than 773 K the QB frequency decreases at a
much faster rate, which reflects the temperature dependence of the magnetic hy-
perfine field B. When T approaches Tc, the magnetic hyperfine field decreases
drastically and eventually disappears. For T > T, only DB remains. Comparing
the two spectra at 693 and 1048 K, it is easy to see that the latter’s fiy-value is
only one half of that of the former, but they have almost the same DB pattern.
The reason is that the two Am = 0 transitions become one after the magnetic hy-
perfine field breaks down, and the scattering intensity is therefore doubled, which
happens to compensate the intensity loss due to the smaller f;y. The relation be-
tween the magnetic hyperfine field B and temperature T is given in Fig. 7.24,
which agrees well with previous results using other methods.

In either of the above two methods, measuring fim is not based on the height
or area of the absorption spectral lines, therefore avoiding problems such as the
saturation effect. In addition, since the samples are relatively thick compared to
that in the transmission method, the error in the number of Mdéssbauer nuclei
per unit area is also smaller. These factors improve the accuracy of the determina-
tion of fium. As listed in Table 7.1, the error in the absolute fjy-value at room tem-
perature is 2% and that in the relative fiy-value is 0.4% (the relative fiy-value
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Fig. 7.24 Temperature dependence of effective internal magnetic field
Besr in o-Fe, normalized to the room temperature value. The results
from nuclear forward scattering using SR (circles) are compared with
transmission Mdssbauer effect results (crosses and stars).

was at best given with an error of 1% in transmission Mdssbauer spectroscopy
with a radiation source).

7.4
Phonon Density of States

Soon after the Mdssbauer effect was discovered, attempts were made to use it to
measure the atomic vibration frequency distribution — phonon density of states
(DOS). But it was not very successful for a long time because of several experi-
mental difficulties; e.g., typical phonon energy transfers could not be reached
with the conventional Doppler technique, the radiation sources were too weak to
provide satisfactory statistical errors, etc. It was in 1995 that the phonon DOS
g(w) of a-Fe was first measured by incoherent inelastic nuclear resonant scatter-
ing using SR [7, 46, 47]. The experiments were performed at high-brilliance un-
dulator sources with energy resolutions in the range of 6 meV. Since then the
technique has made appreciable progress and nowadays phonon DOS are rou-
tinely recorded with sub-meV resolution.

This is a new technology and has several advantages. First, the cross-section of
resonant scattering is usually large, which guarantees high counting rates. In ad-
dition, SR has high brilliance and narrow beams, especially suitable for studying
those thin films and biological samples which may be of a small size or with a
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low content of the Mdssbauer isotope. Second, when the lifetime of the excited
nucleus is much longer than the SR pulse duration (~50 ps), the nuclear reso-
nant scattering process can be separated from electronic scattering by counting
only the delayed products such as atomic K-fluorescence photons after the disap-
pearance of the prompt radiation and electronic scattering [48]. This leads to ex-
cellent signal-to-noise ratios (S/N & 103) [46]. The noise level is basically deter-
mined by the detector and by the associated electronics. The high S/N ratio
allows one to discriminate the multi-phonon contributions against the measured
data. Third, incoherent inelastic nuclear resonant scattering directly offers the
phonon/vibrational DOS regardless whether the material is single crystal, poly-
crystalline, or amorphous. However, such scattering is only sensitive to the vibra-
tions of Mossbauer atoms; i.e., this technique provides a partial density of
states. In addition, high precision and short experimental time are also important
advantages.

7.4.1
Inelastic Nuclear Resonant Scattering

The theoretical basis for extracting lattice dynamics from Méssbauer measure-
ments was given at the beginning of the 1960s by Singwi and Sj6lander [49] and
by Visscher [50].

A nucleus excited by resonance absorption of y-rays may decay via one of the
two mechanisms: radioactive decay or internal conversion with its subsequent
fluorescence radiation. The relative probabilities of the two mechanisms are
1/(1+4 ) and o/(1 + a), respectively, where « is the internal conversion coeffi-
cient. For most Méssbauer isotopes, o > 1 and the dominating mechanism is in-
ternal conversion, an incoherent decay process. Thus, the total yield of the
delayed K-fluorescence photons is given by

o
I(E) = Io”é’?km”(E) (7.37)

where I is the incident photon flux, n/, the effective area density of the nuclei, 7,
the K-fluorescence yield, and o, the partial internal conversion coefficient. Also in
Eq. (7.37), o(E) is the cross-section for nuclear resonant absorption of a photon
with energy E:

o(E) = gaoFS(E — Ey) (7.38)

where g is given by Eq. (1.12), and S(E) is the normalized absorption probability
per unit energy interval due to phonons. S(E) is also k-dependent in the general
case of an anisotropic lattice. According to Singwi and Sjélander [49], it can be
represented by

S(ko, E) = zi Re J | dee E T2 B (ko 7) (7.39)

T 0
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with
F(ko, ) = (e @ttty (7.40)

where Re indicates the real part of the integral, ko is the wave vector of the inci-
dent y-ray, E is the difference between the energy of the y-ray and the resonance
energy of the nucleus, r = t/h, t is the time, I is the natural width of the excited
nuclear state, and F is the time-dependent correlation function, which describes
the correlation between the displacements u of the same nucleus at different mo-
ments of time. Using displacement u in Eq. (5.18), it can be proved that

F(ko,7) = fim(ko) exp o

Z (h es) (<ns + 1>elu)sr + <n >ef”"57) (741)

where

fim(ko) = e

E h-e)?
_WRZ:( h(js) Qng+ 1), (7.42)

where h = ko /k, and fiy (ko) is the angular dependent Lamb—Madssbauer factor.
When the sample is a cubic Bravais crystal, Eq. (4.130) gives (h-e) =1/3.
When this is substituted into (7.42), it becomes identical to (1.81) and the
Lamb-Mossbauer factor fim(ko) is identical to the recoilless fraction f. If the har-
monic lattice model is valid, we can treat the time-dependent correlation function
F(ko, ) for small displacements u as done in Section 4.6.1, namely to expand the
exponent of (7.40) in a power series. As a consequence, the phonon absorption
probability is written as a sum of the elastic and inelastic components:

S(ko, E) = fum(ko) [50 (ko, E) + ZS (ko, E (7.43)

The n = 0 term describes elastic nuclear absorption without phonon creation or
annihilation, and it can be written as

1

dr . r

where #(E) is a Lorentzian centered at zero energy, i.e., E— Ey =0 (see Eq.
(1.13)). The first term S; describes a single-phonon nuclear inelastic absorption.
By analogy, the n = 1 term can be calculated:

S1(ko, E)
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Since the width T, being orders of magnitude smaller than typical phonon ener-
gies, can be neglected in Egs. (7.43) and (7.44), then

lim S (ko. E) = (E) (7.46)
}}E(l) Sl(k7 E)

N (hh )" |+ 150(E — ) + Cmed(E + o) (7.47)
where 6(E) is the Dirac §-function. As can be seen, the part after the summation
sign in formula (7.47) is identical to that in (4.137) for inelastic neutron scatter-
ing.

In our discussion the energy scale is chosen relative to the resonant nuclear
transition energy E,. Hence, SR with energy larger (E > 0) or smaller (E < 0)
than E, will be inelastically absorbed by creation or annihilation of phonons.
The ko-dependence of S(ko, E) can be dropped if a cubic crystal or a polycrystal-
line sample is used and, for E > 0, the second term in Eq. (7.47) is zero, so

ERZ<”S+1> S(E — hay). (7.48)

hag

The higher order S,(E) terms are given by successive convolutions with the
single-phonon term:

1
Sw(E) =~ S11(E) @ S1(E). (7.49)
According to the definition of phonon DOS in Eq. (4.95), Eq. (7.48) becomes

S1(E) :%:f—zg( )coth(ﬁE—b—l) (7.50)

where we have used the fact that the mean value of (h - e;)* over all the modes in
a cubic lattice is 1/3. The energy spectrum of inelastic nuclear absorption satisfies
the detailed balance condition, which means that for any particular energy the
ratio of phonon creation and phonon annihilation probabilities is given by a fac-
tor e#IFl. So

S (E) = e”ES1(—E). (7.51)

Because this is independent of the material, one can use both wings of the pho-
non spectrum to get the partial phonon DOS, g(E). The result is

BE

g(E) = EER(sl(E) £ S~ tanh 2 with £ 20 (7.52)
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where S;(—E) has a similar expression to (7.50) (see Eq. 4.139). In general, g(E)
is ko-dependent and takes the following form [51, 52]:

gh.5) = .3 [ 95005~ hola)lb-e(a)” 7.5
J

where V, is the volume of the unit cell.

7.4.2
Measurement of DOS in Solids

A typical experimental setup for incoherent inelastic nuclear resonant scattering
is shown in Fig. 7.25. The incident SR beam, reduced down to the meV band-
width, is energy-tunable within a range to cover a particular phonon spectrum.
For the resonance nucleus *’Fe, it is favorable to record the K-fluorescence
photons of 6.4 keV following internal conversion as a product of incoherent
absorption. However, if the nuclear transition energy is below the K-edge, K-
fluorescence is not possible, as in the case of ?Sn. Since the L-fluorescence pho-
tons have energies often too low to be efficiently detected, nuclear resonant fluo-
rescence has to be used then. The product of incoherent absorption does not
form a collimated beam, but rather is emitted isotropically. In order to collect suf-
ficient number of counts, the first detector is situated at a distance of about 1 mm
from the sample, covering about a quarter of a complete sphere [53]. The second
detector records the nuclear forward scattering, and is situated far away from the
sample to reduce the contribution from incoherent scattering. A sharp peak will
be recorded by the second detector, which gives the instrumental function of the
high-resolution monochromator and precisely determines the energy position of
nuclear resonance. This function is necessary for subsequent data processing.
Resonant nuclei in a sample provide a very accurate energy reference with nat-
ural width resolution of the nuclear level (~neV). The energy transfer is deter-
mined as a difference between the incident energy and the nuclear transition en-
ergy. Experimentally, this difference is between the elastic peak in the incoherent
spectrum and the peak in the forward scattering spectrum. Therefore, the ana-

storage ring

resonant
sample

e, high-heat-loaded

monochromator [
undulator 1onization i 55
etector
mamas high resolution chamber /l\
monochromator ~__7
Detector #1

Fig. 7.25 Experimental setup for measurements of inelastic nuclear scattering with SR.
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Fig. 7.26 Energy spectra of inelastic nuclear absorption of synchrotron
radiation by «->"Fe at various temperatures [53, 54]. Solid lines are
calculations according to Egs. (7.43), (7.48), and (7.49), based on the
results of neutron scattering at room temperature and convoluted with
the instrumental function of the monochromator.
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lyzer part of the traditional inelastic scattering setup is omitted. If the incident
energy is off-resonance, excitation of nuclei may be assisted by creation (E > 0)
or annihilation (E < 0) of phonons in the sample. In other words, resonance ex-
citation takes place if the incident energy plus the energy exchanged with a par-
ticular vibrational mode equals the resonance energy.

As mentioned in Eq. (7.45), the phonon annihilation probability is proportional
to <{nsy, the Bose occupation number, while the phonon creation probability is
proportional to {ns; 4+ 1). This means that the incident photon may gain energy
only from an existing phonon, whereas it may lose energy to an existing phonon
or for the creation of a new phonon. Hence, the total yield of the delayed fluores-
cence photons gives a direct measure of the phonon DOS. As an example of ex-
perimental results, the temperature dependence of nuclear inelastic absorption in
a-Fe is shown in Fig. 7.26.

At high temperatures {n;) &~ {n;+ 1), so the spectra of inelastic absorption
are somewhat symmetric. At low temperatures many low-energy phonons are
suppressed, {n,» approaches zero, and {n; + 1) approaches unity. Therefore, the
spectra become very asymmetric. When T = 400 K, the thermal energy kg T = 34
meV, the occupation is relatively high for all phonon states, and the energy spec-
trum is only slightly asymmetric. At T =24 K, kgT = 2 meV, the low-energy
phonon states (e.g., below 10 meV) are mostly unoccupied. However, inelastic ab-
sorption with an energy transfer is still possible, because the recoil may excite
phonons even in a “frozen” crystal.

It should be noted that the instrumental resolution is constant and determined
with high precision, which allows one to extract the phonon DOS with an accu-
racy within a few percent.

743
Extraction of Lamb—Méssbauer Factor, SOD Shift, and Force Constant

The phonon DOS, Lamb—Méssbauer factor fiy, second-order Doppler shift dsop,
and force constant @ are all obtainable only after tedious data analysis. First, we
discuss Lipkin’s sum rules [55], which give various moments of the measured
spectra. As has already been proved, the sum rules provide a very useful tool to
treat the inelastic nuclear absorption data, because they simplify the normaliza-
tion of the spectra by decomposing S(E) into the multi-phonon contributions,
and their various moments provide model-independent information on lattice dy-
namics (a similar case is in Section 4.4.3). The first three moments are

ES(ko, E) dE = Eg, (7.54)

(E — Er)?S(ko, E) dE = 4Ex Ty, (7.55)

Er. o<
=—h°D .
i k (7.56)

(E — Er)’S(ko, E) dE
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where T}, is the mean kinetic energy in the ko-direction, and @y, is the mean force
constant experienced by the resonant nuclei in the ko-direction. The details of Eq.
(7.54) are elaborated in Chapter 1.

The central task in data analysis is to separate precisely the elastic part from the
inelastic part in the measured spectrum. Only after this can we get S(E), S1(E),
and S,(E) necessary to calculate lattice dynamics parameters. However, here one
faces some serious problems. Due to the saturation effect, the area of the elastic
peak is not proportional to the Lamb-Méssbauer factor fim. Another problem
arises from the energy dependence of extinction of the incident radiation in a
thick sample. Off nuclear resonance, the incident beam is only slightly weakened
by electronic absorption. At resonance (E = 0), an additional strong Méssbauer
absorption takes place. As a result, the elastically scattered intensity is reduced
in height by an essentially unknown factor. In contrast, the nuclear forward scat-
tered radiation at E = 0 may be scattered by the electrons into the detector and
increase the elastic scattering intensity. After the elastic scattering is removed, a
procedure to normalize the measured energy spectrum may be used [46], which
provides an accurate determination of fjy and partial DOS.

There are several approaches to the removal of the measured elastic peak.
In Ref. [54] the inelastic scattering spectrum is separated through interpolat-
ing the experimental data in elastic peak region of about +8 meV using
S(E) oc E(1 — e #F)™" which results from the relation g(|E|) oc E2, valid for small
energies.

We discuss in detail the following alternative approach [56]. The experimentally
measured intensity spectrum is not I(E), but rather a convolution of the normal-
ized instrument resolution function of the monochromator R(E) with a modified
function Sexp (E):

Loy (E) = R(E) ® aSexp(E) (7.57)

with
Sexp(E) = fimed(E) + fim > Su(E) (7.58)

where a is a normalization constant, and the factor ¢ (# 1) takes into account the
extinction of the incident beam mentioned just above and serves to restore the
proper height of the central elastic peak. Using this, S(E) can be written as

S(E) = Sexp(E) + fist(1 — c)3(E). (7.59)

Processing experimental data, our aim is to determine the three parameters c, a,
and fium. First, the constant a can be derived from Lipkin’s sum rule of the first
moment:
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A= J Elexp(E) dE

~ aJ ESexp(E) dE = aJE [fLMcé(E) + fim Y Su(E)| dE

=a [fLM > Su(E)dE = aFg (7.60)

where, to a good approximation, R(E) is assumed to be a symmetric function.
The part of first moment of R(E) is of the order of 1% of Eg, so the slight asym-
metry of R(E) may be ignored in (7.60). In the integral over dE, the contributions
of all terms that are even in E cancel because of the multiplication by E. It is the
same for elastic scattering; so this factor a does not influence the result. To obtain
the value of A, and hence the value of a4, a numerical integration of I.(E)
weighted by E must be done. Finally, the measured intensity spectrum is normal-
ized as follows:

EICXP(E) dE = jR(E) ® Sexp(E) dE = cfiyt + (1 — fim), (7.61)

which means that the numerical integration of the normalized experimental data
gives the sum of elastic and inelastic scattering parts, and ¢ and fiy are corre-
lated.

The factor a may be found by an iterative procedure. Starting with a reasonable
trial value for a, we can calculate the phonon DOS according to Eq. (7.52). How-
ever, we confine our attention to the low-energy region of the phonon DOS,
which has a Debye behavior, i.e., it should follow the E2 law. When this procedure
was applied to the analysis of spectra from metmyoglobin [56], ¢ = 0.9840 gives
the best agreement with an E? dependence. After ¢ is obtained, the inelastic spec-
trum is separated from the elastic component. Now Sey,( E) is substituted into Eq.
(7.59), to restore S(E) to its proper form.

Although the value of fiy may be determined together with ¢ due to (7.61), it
would be in general found by some other independent approach. In fact, fiy can
be solved from (7.61) as

fiv=1 f%JIéXP(E) dE (7.62)

with I'exp(E) being the measured spectrum with the elastic peak removed. This
expression shows that the fiy-value is determined without requiring specific
knowledge about isotope abundance, shape or thickness of the sample, resonant
cross-section, hyperfine fields, and so on. This distinguishing feature reduces sys-
tematic error, ingeniously avoids the saturation effect, and leads to the very pre-
cise determination of fjy-values, as can be seen in Table 7.2.
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Table 7.2 The Lamb—M@&ssbauer factor f,, and dsop of various
compounds. The values were obtained by inelastic nuclear resonant
absorption with 3”Fe, 1'°Sn, or 'Eu as resonant nuclei [57].

Compound fim dsop (I) Ref.
Fe metal (bcc), foil 0.805(3) —2.47(4) 46
0.791(15) —2.50(13) 54
0.80(1) 58
0.796(2) —2.49(2) 13
Stainless steel, FessCrysNiy, foil 0.742(10) —2.41(4) Evaluated from [46]
0.76(5) 58
Fe metal, nanocrystalline powder 0.726(5) —2.62(12) Evaluated from [59]
Fe; Al foil 0.743(3) —2.46(2) Evaluated from [60]
Fe, Tb, Laves phase, film 0.679(3) —2.39(2) 61
Feg;Tbs3, amorphous film 0.595(5) —2.39(3) 61
SrFeOs, powder 0.811(10) —2.57(4) Evaluated from [57]
FeBO;s, single crystal 0.81(3) 62
Fe,03, powder 0.793(4) —2.56(4) 63
[Fe(bpp);][BF4], polycrystalline 0.10(5) 58
#-Sn(500 A)/InSb(001) 0.14(2) 64
$-Sn, foil 0.042(6) 65
SnO,, powder 0.628(9) —0.357(6) 66

With the normalized spectrum, one can easily calculate the different moments.
From the second moment (7.55), dsop is obtained from measurements with direc-
tions of the incident radiation along orthogonal axes [52]:

W) {EDy +<E)y +<E)y, —3Er
22 2E,

550[) = 7E0 (763)

where (E); = [ EJS(E)dE and E, is the nuclear transition energy. Note that the
extracted dsop by this way is separated from isomer shift d;s. The average force
constant @ projected on the direction of the incident radiation is given straight-
forwardly by (7.56):

hz ZEZ [KE)s;(k) — 3ER<ED, (k) + 2Eg]. (7.64)

The fim- and dsop-values of o-Fe measured by this method at various tempera-
tures are compared with those by conventional Mdssbauer spectroscopy in Figs.
7.27 and 7.28, respectively.
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Fig. 7.28 SOD shift versus temperature of polycrystalline iron foils (bcc) at ambient pressure.

To get the phonon DOS, we have to extract the single-phonon contribution
S1(E) convoluted with R(E). Using the convolution theorem, Eq. (7.49) has a very

simple form in the Fourier space:

F{Su(B)} = (1/n)F{Sua(E)} - F{S:(E)}

(7.65)
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where 7 indicates the Fourier transform. This recursive relation has the closed
solution

F{Su(E)} = (/n)[Z{Su(E)}]". (7.66)

Thus, taking the Fourier transform of Eq. (7.59) and summing up the multi-
phonon contributions, one obtains

F{S(E)} = fim exp[Z {S1(E)}]. (7.67)

Now, the single-phonon contribution can be solved from this expression,
S1(E) = [dte"ﬂ In[Z {S(E)}/fim)- (7.68)

This method is known as the Fourier-logarithm decomposition [69]. We need
to also correct for the influence of R(E), which can be done by simultaneously
multiplying the numerator and the denominator in the above expression by
aZ {R(E)}:

S1(E) = Jdte”ﬂ In{[a7{S(E) ® R(E)}]/[af 7 {R(E)}]}

= Jdte‘”ﬁ In{1 + [7{I'exp(E)}]/[6f 7{R(E)}]}, (7.69)

by which one can finally calculate the phonon DOS using the measured inelastic
scattering spectrum. As an example, the measured phonon DOS of o-Fe is shown
in Fig. 7.29.

Now we discuss an important issue in the determination of phonon DOS, i.e.,
the necessity of the Mossbauer effect. As can be seen from the above procedure,
what we want are only the inelastic contributions, while the central elastic peak
due to the Méssbauer effect must be removed. Since the incident radiation in
the recoilless process does not interact with phonons, is it possible to use a reso-
nant absorption other than that in a Méssbauer nucleus? Here, a Méssbauer tran-
sition, regarded and used as an energy analyzer, is an extremely precise energy
reference [48]. However, all nuclear transitions are excellent energy references,
not just the Mdssbauer transitions. The “analyzer” referred here is not the same
as the analyzer used in Mdssbauer Rayleigh scattering. Let us discuss this prob-
lem briefly.

It is important that resonant absorption or scattering is used because of the
large cross-sections to provide high counting rates. Furthermore, since the cross-
section is proportional to 42, low-energy transitions (e.g., <200 keV) are more
favorable. In order to observe delayed products of the decays, the lifetime of the
nuclear excited state must not be too short; otherwise it would be difficult to dis-
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Fig. 7.29 Phonon density of states for a-Fe as measured in inelastic
nuclear resonant scattering with 920 peV energy resolution [13] (circles)
and as reconstructed from neutron results (solid line). The inset shows
the raw data from inelastic nuclear resonant scattering.

criminate against the electronic scattering which causes serious background. It so
happens that the isotopes satisfying these conditions are mostly Méssbauer iso-
topes. In additional, the relative contribution from the multi-phonon terms is
(—=In f)"/n! [49]. If fim approaches 1, the sum in Eq. (7.43) converges quickly,
and it would be sufficient to take only the first few leading terms, e.g., taking up
to the three-phonon term and neglecting all higher order terms. Therefore, hav-
ing a large fim is very important for the precise separation of the single-phonon
term from the rest. It seems that the Mossbauer effect plays a pivotal role, and
the methodology is called “phonon-assisted Mossbauer effect.” Although the SR
energy is completely tunable for resonance excitations of all Méssbauer isotopes,
only a few of them have been used in experiments, such as *’Fe, 1°Sn, 1Tm,
18173, B1Ey, 161Dy, and 33Kr. The aspect of excellent energy resolution of Méss-
bauer effect is not exploited here, because we are not measuring hyperfine inter-
actions, but phonon DOS in the meV range.

7.5
Synchrotron Methods versus Conventional Methods

Synchrotron Méssbauer spectroscopy has attracted a significant amount of atten-
tion from researchers and become a well-established methodology in the last ten
years. Here we make a comprehensive comparison between synchrotron Méss-
bauer spectroscopy and the conventional Méssbauer spectroscopy.
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Table 7.3 Comparison between a modern SR source and a >’ Co source
with 10 mCi activity [63].

Radiation property SR 57Co source
Relevant spectral flux (ph s7! eV1) 2.5 x 1012 2.5 % 10°
Brightness (ph s™! eV~ sr1) 2.8 x 10% 2.5 x 1012
Brilliance (ph s™! eV~! st~! mm~2) 2.8 x 10% 2.8 x 101°
Typical beam size (mm?) 1x1 10 x 10
Energy resolution (eV) Variable 4.66 x 107°
Energy range (eV) 3.7 x10°° ~1x107*
Polarization 100% linear Unpolarized

Table 7.3 lists some of the typical properties (such as intensity, resolution, size,
and polarization) of the y-rays from SR and a *’Co source. As an additional fea-
ture of SR, its pulsed y-rays have excellent properties (each pulse duration < 100
ps, and variable periods between a few and hundreds of nanoseconds), which is
uniquely suitable for measuring time spectra.

Synchrotron radiation provides extremely strong and narrow photon beams,
which facilitates spectral measurement under special experimental conditions,
such as high temperature, high pressure, high magnetic field, and working with
small samples (~1 mm?) or nanostructured thin films. In biological samples,
the concentration of Méssbauer isotope is usually too low for conventional Mdss-
bauer spectroscopy, but SR should be strong enough to produce detectable signals.

Results from synchrotron Mossbauer spectroscopy have usually higher accu-
racy than results from the conventional methods. Whether using nuclear forward
scattering or inelastic nuclear resonant scattering, the experimental values of re-
coilless fraction f have typically three significant figures, as shown in Tables 7.1
and 7.2. The main reason for better accuracy is the absence of the saturation ef-
fect in synchrotron Méssbauer methods. In conversion Méssbauer experiments,
one must measure the height or the area of spectral peaks, whose uncertainties
are usually higher that a few percent. This is because the “thin absorber approxi-
mation” is usually not satisfied, causing the saturation effect. Scattering experi-
ments require only relatively short measurement time, ranging from a few min-
utes to a few hours. The conventional Mdssbauer spectroscopy may require up to
hundreds of hours. The hyperfine parameters measured from synchrotron ex-
periments have comparable accuracies to those from conventional experiments.
In quantum beat experiments, enough data accumulation is required in the cho-
sen time window in order to yield satisfactory measurements of the periods.

The most important contribution from synchrotron Méssbauer spectroscopy is
its ability of measuring phonon DOS directly. So far, this cannot be achieved by
conventional Mossbauer spectroscopy. Although phonon DOS may be deduced
from inelastic neutron scattering (see Section 4.6.1) by extracting force constants
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from fitting dispersion curves, inelastic nuclear resonant scattering using SR can
provide the phonon DOS directly, independent of the dispersion relations, and
hence is a model-independent method. This direct method is also much more ac-
curate (within a few percent), much better than that which neutron scattering
methods can provide. In nuclear resonant scattering, the Mossbauer nuclei serve
directly as analyzers. But in neutron scattering (Fig. 4.24), the scattered neutrons
must be diffracted by an “analyzer crystal,” which obviously introduces added un-
certainty. Inelastic nuclear resonant scattering using SR can also allow us to mea-
sure partial density of states (PDOS), which is remarkable because PDOS is very
difficult to obtain using other methods. For studying vibrations of Fe atoms in
various ferrous and ferric compounds, iron PDOS contains much needed infor-
mation. For studying Fe as impurities, PDOS can be used to elucidate local vibra-
tion modes. The availability of experimental PDOS is particularly significant, be-
cause PDOS can now be calculated using first-principles methods (see Fig. 4.27),
and be compared with experimental results.

However, synchrotron Mogssbauer spectroscopy suffers from several short-
comings. Because time domain experiments are based on the interference phe-
nomenon, the corresponding spectra are very complex, whereas conventional
Mossbauer spectra provide certain direct visual information. If two or more hy-
perfine fields are involved, time spectra may be severely modulated. To alleviate
these difficulties, new experimental procedures are being developed [70, 71],
such as the time-integrated nuclear forward scattering method using SR, where
an absorber mounted on a Mdssbauer drive is inserted between the sample and
the detector. The scattered intensity as a function of v is then measured, which in
principle is similar to an energy spectrum from conventional Méssbauer spec-
troscopy. This is an interesting concept, but it cannot be fully implemented until
all technical problems are resolved. The second major drawback of synchrotron
Méssbauer spectroscopy is obviously the high expense involved in constructing
and maintaining such large centralized synchrotron facilities and their unavail-
ability to local individual users.

In summary, synchrotron Méssbauer spectroscopy is an important supplement
of the conventional Méssbauer spectroscopy. The former will never completely re-
place the latter, but help to solve problems that the conventional methods cannot
study or unable to provide satisfactory results.

We now compare experimental results from three materials, o-Fe, Fe,03, and
(CN3Hg),[Fe(CN)sNO], each of which has been investigated by synchrotron
Méssbauer spectroscopy and by conventional Mdssbauer spectroscopy.

o-Fe has been extensively investigated by the conventional and synchrotron
Mossbauer methods, as well as by inelastic neutron scattering. For the recoilless
fraction values of a«-Fe, we can compare data in Table 5.3 (using conventional
Mossbauer) with data in Table 7.1 (using SR nuclear forward scattering time
spectra), and with data in Table 7.2 (using inelastic nuclear resonant absorption).
From the above three methods, the recoilless fraction values are f = 0.78,0.77,
and 0.80, respectively, which obviously agree with one another very well. Temper-
ature dependence of the recoilless fraction or the Lamb-Madssbauer factor is
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shown in Fig. 7.27, which contains data from Mdssbauer, SR nuclear forward
scattering, and SR nuclear resonant absorption. All data points follow exactly the
same trend and are quite consistent. The density of phonon states in Fig. 7.29
(using SR nuclear resonance scattering) compares very well with that in Fig.
4.19 (using neutron scattering). The polarization effects of an external magnetic
field as shown in the transmission spectra using conventional *’Co radiation
(Fig. 2.24) resemble their SR counterparts (Fig. 7.9). Furthermore, the effective
magnetic hyperfine field as plotted in Fig. 7.24 is a compilation of results from
both transmission Méssbauer and SR nuclear forward scattering.

Fe, 03 powder is another example for which comparisons can be made. Its re-
coilless fraction f from the traditional Méssbauer results is 0.66, as listed in Table
5.3, and the Lamb—Madssbauer factor fiyv from inelastic nuclear resonant absorp-
tion using SR is 0.793, as in Table 7.2. Strictly, these two values are not expected
to be equal. Nevertheless, we list both of them here because they are comparable.

One more example is the remarkable anisotropic vibrational mean-square dis-
placement of guanidinium nitroprusside, (CN3Hg),[Fe(CN)sNO], whose SR nu-
clear forward scattering spectra are presented in Fig. 7.22 with the corresponding
Lamb-Méssbauer factors fL(&) =0.122 + 0.010 and £) = 0.174 + 0.002 for the
orientations with the single-crystal a-axis and c-axis parallel to the incident SR
beam, respectively [44]. An investigation of single-crystal guanidinium nitro-
prusside using Mossbauer line broadening yielded fu&) =0.118 + 0.003,
fL(ﬁ[) = 0.206 + 0.010, and fL(If,[) = 0.198 + 0.002 for the principal crystal directions
[72]. Another study using Mdssbauer saturation and }))olarization effects pro-
vided £& =0.118 + 0.008, £!) = 0.174 + 0.008, and £} = 0.202 + 0.008 as the
Lamb—Méssbauer factors [73]. These three sets of data from experiments using
synchrotron and conventional Méssbauer methods are again consistent with one
another.
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8
Mossbauer Impurity Atoms (1)

In most cases, the Méssbauer atom appears as an impurity; even in the o-Fe lat-
tice, > Fe is an isotopic impurity. Therefore, studying impurity atoms is an impor-
tant part of Mdssbauer spectroscopy.

Among the methods for studying the dynamics of impurity atoms, the Méss-
bauer effect has many special characteristics. In addition to high energy resolu-
tion, its isotope selectivity gives the Méssbauer method a unique advantage, mak-
ing it the best means for obtaining information on impurity—host and host—host
force constants. Moreover, only the Méssbauer method allows the investigation of
“isolated” impurity atoms at extremely low concentrations. Neutron inelastic scat-
tering and heat capacity are not sensitive methods for studying impurity atoms,
and do not provide observable effects unless the impurity concentration is larger
than 1 at.%. On the other hand, good Mdéssbauer spectra can be obtained from
alloys where the Méssbauer atom concentrations are as low as 10™* to 1072 at.%
(1, 2].

The presence of impurity atoms destroys the translational symmetry of the lat-
tice and complicates theoretical treatments. The prevalent approach to solving the
equations of motion is to use the Green’s functions and take advantage of the
symmetry around the impurity atom as much as possible to simplify the calcula-
tions. Maradudin and other authors pioneered the theoretical calculations, but in
1968 Mannheim proposed a relatively simple and practical model, which is dis-
cussed here in detail. Also, we limit our attention to substitutional impurities of
low concentrations (<0.1 at.%) in this chapter, because the interactions among
them may be neglected and the theoretical analysis is much simplified. The
studies of impurities with higher concentrations are discussed in Chapter 9.

8.1
Theory of Substitutional Impurity Atom Vibrations

8.1.1
The General Method

First we introduce the Green’s function for the perfect Bravais lattice. In such a
solid, Eq. (4.28) can be written as
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D [@up(1 1) — 0 Moo Jug(l') = 0. (8.1)
BV

For calculating the thermal average of a physical quantity such as (u2(0)), it is
very convenient to use the retarded Green’s function, defined as [3-6]

Gop(Il't =) = =50t — ) 0 g (1, #)], (8.2)
where
1 hen t >t/
(}(tft’)z{ » waent > (8.3)
0, whent<t

is the step function, and <...) represents thermal averaging. We may Fourier-
transform the Green’s functions from the time domain to the frequency domain:

1 (* G /
Gxﬂ(ll/, o+ is) _ EJ Gmﬂ(ll/, b t/)el(wiw)(t—t ) d(t — t/)

-0
where ¢ — 40, and it is often convenient to assign ' = 0.

For a harmonic lattice, the Green’s functions in Eq. (8.2) satisfy the equations
of motion in Eq. (8.1), as shown in Appendix F.1 and Ref. [6]:

> " [Mow?d,0ur — @y (1L 1] Gop (11, ) = Sy (8.4)

l//) b
This may be written in the following matrix form:
LiG=1 (8.5)

where I is the unit matrix and Ly = Mow? — ®. For a perfect lattice of N atoms,
the solution to Eq. (8.5) is

) 1 e, (kj) - es(kj) gy
Gyl = e (1-1) 8.6
NURCERD NMO;wz_wf(kmge (8.6)

To understand the physical meanings of these Green’s functions, let us look at
the static Green’s function G,g(ll', = 0) as an example. It is the displacement of
atom [ in the o-direction when a unit force is applied on atom I’ in the -direction.
From Eq. (8.5), it is easy to see that the Green’s functions are reciprocals of the
force constants in ®. Because of this fact, the lattice Green’s functions have the
same symmetry properties as the force constants (see Appendix F.3).



8.1 Theory of Substitutional Impurity Atom Vibrations

Fig. 8.1 Formation of an impurity as a result of atom M

substituting M.
@ 2y, g Mo

ki

Suppose that an atom of mass M replaces an atom of mass M in a perfect lat-
tice, forming a substitutional impurity (Fig. 8.1). The substitution not only causes
a change in this atom’s mass but also alters the interatomic interactions. How-
ever, these changes are localized within a region involving the impurity atom
and its nearest neighbors. For studying the dynamics of the impurity atom, we
may consider the combination of the impurity atom and its nearest neighbor as
a new “molecule.” The regions occupied by such molecules are known as the im-
purity space. The Hamiltonian of a harmonic lattice containing an isolated impu-
rity atom is [7-9]

H = Ao+ AH (8.7)

where # is the Hamiltonian of the perfect lattice with atomic mass M, and force
constant tensor @

2
N1 ' '
Hy = By +35 g;; @5 (1,1 ), (g (1) (8.8)

LI

and A contains only the contributions from the atoms in the impurity space

AF — Z:%l (%l _ Mio) + ;%:[cb;ﬁ(l, V)= 0L (Du(l). (8.9)
L

We now introduce a new matrix for the perturbation term
U=Ly—L (8.10)

where L, corresponds to the perfect host lattice and L to the impurity lattice. If
each impurity atom interacts with z nearest neighbors, U is a 3n x 3n matrix,
where n = z + 1. Therefore, U is completely localized within the impurity space
(U-space) and n is not a large number. The matrix elements are

307



308

8 Mdssbauer Impurity Atoms (1)
Uy (L) = (My — M))o®0y:d,5 + [ED;ﬂ(L 1) — @yp(1,17). (8.11)

The equation of motion for the impurity atom is

Z[Mowz(syﬁéu/ — xﬁ l l u,; Z Uaﬁ l l I/L/; . (812)
BV BV

This inhomogeneous equation is satisfied by [10]

= Gl ) Up, (I, 1")m, (1), (8.13)
.
in which the summation over four different indices is tedious. We will take
an alternative approach, introducing the impurity lattice Green’s function
G,p(Il', ®) and utilizing its relation with G,z (the Dyson equation) to obtain
{u,?(0)> and the recoilless fraction f.
For a lattice with impurity atoms, a relationship similar to Eq. (8.5) can be writ-
ten (see Eq. (F.19) in Appendix F) as

G = (Mo? - ®')'1=M"Y?w’l - D] 'M/? (8.14)

where M is a 3N x 3N diagonal matrix in which three of the elements are M and
the rest are My. The only nondiagonal matrix is D = M~"/2®'M~"/2 but can be
diagonalized by a unitary matrix B with elements B,(I,s) (see Eq. (4.29)). Then
the Green’s function of the perturbed lattice can be expressed as [11, 12]

Gl ) Z (b 9Byl s (8.15)
off MlMl/ 1/2 w2 _ w

Using Egs. (8.5) and (8.10), we see that
U=Ly-L=G'!-G
thus G’ and G are related through
G' =G+ GUG (8.16)

which is known as the Dyson equation. Here, both G’ and G are 3N x 3N ma-
trices. To study effects of impurities on a variety of physical phenomena, only ele-
ments of G’ in the impurity space are needed. For this reason, we partition each
of the matrices as follows [13-15]:

(8.17)
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g ‘ G
c—| & | o (8.18)
G | G
B ECERRCE
‘e e o

where g and G;’ are both 3n X 3n matrices, formed by the U-space matrix ele-
ments of G and G’, respectively. Equation (8.16) now becomes four matrix equa-
tions of lower dimensions, and we are interested in the first one:

G/'=g+gUG,. (8.20)

Once the Green’s function matrix G;’ is obtained, we can calculate all the dy-
namic parameters, including the impurity atom’s vibration frequency, mean-
square displacement <u?(0)), the recoilless fraction f, the Debye temperature,
etc. We will still use the general form of the Dyson equation (Eq. (8.16)) with the
understanding that each matrix is evaluated only in the U-space.

For an impurity atom at the origin in a cubic host, it is only necessary to evalu-
ate the x-direction mean-square displacement {u,2(0)>. According to Refs. [11,
16, 17] or Eq. (F.28) in Appendix F, it can be written as

u2(0)) = ltirrol (U (0, 1)1 (0,0))
e—0

— lim {— EJ coth </mT‘”) Im G.,,(00, o + ie) dow

&e—0 T Jo

= lin&ﬁj coth (ﬂThw) [G.(00, 0 + ie) — GL (00, — ig)] dw
et (8.21)

where <...) represents thermal averaging and Im represents the imaginary part
of G’,x. Analogous to the case of a perfect lattice, the impurity mean-square dis-
placement can be expressed as

G2(0)) = iré coth (/?)g'(w) do. (8.22)

0

In general, g’(w) is the modified vibrational DOS for the impure lattice, or partial
DOS. The function g’(w) referring to the impurity atom is often called the impu-
rity dynamic response function:

M
g'(@) = — =2 Im G (00,0 + i0)
VA

M
=22167 (00, + i0) — G.,(00,w — i0)]. (8.23)
T
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Therefore, the main task in studying <u?(0)) is to obtain the impurity Green’s
functions through Eq. (8.20), in which M, and M are known, the host Green’s
functions can be calculated, and the only variables are the impurity—host and
host-host force constants.

In addition to the recoilless fraction, the second-order Doppler effect can also
be evaluated. This is because the mean-square velocity is calculated using Green’s
functions as [15]

(0)y = % [OC coth (/thw) Im G/ (00, w* — i0)»? do. (8.24)
JOo

8.1.2
Mass Defect Approximation

We now discuss isotopic impurities in a cubic Bravais lattice, which is the sim-
plest type of substitutional impurity without any force constant changes. The gen-
eral characteristics of the impurity vibrations can be obtained by studying such a

simple model. An obvious example is >’Fe in metallic iron, for which Eq. (8.11)
becomes

Uﬂﬁ(lv l/) = ﬂMszéll/(saﬂ (825)

where n = (My — M)/M, and for metallic iron n = 1.78%.
In the impurity space gU is a 3 x 3 matrix, whose elements are

(8U) 5.1 = SwdupnMoc* Gop(00, ). (8.26)
Using Eq. (8.20), we can easily get

G.,(00, w)

G! (00,0) = 8.27
O ) M0G0, 527
where the Green’s function for the perfect host lattice is [14, 18]
1 ek ek 1 1
Ga(00, ) = Sy = . 8.28
+(00,0) = 0, %: o’ —o?(k) " 3NMy ij:wz — o} (k) (8.28)

The frequency of the impurity vibration is determined by the following equation:
1 — nMow? Gy (00, ) = 0 (8.29)

which corresponds to a singular point in Eq. (8.20) [14]. We now consider the de-
tails in two different situations.
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8.1.2.1 Resonance Modes

In this case, the impurity vibration frequency w is within the band from 0 to wp,
where wy, is the highest frequency of the host lattice vibration. Generally, G’,, is
a complex function, and we need to find its imaginary part before calculating
<(u*(0)> of the impurity vibration. Changing w? to (w? + i¢) in Eq. (8.28), and
using Egs. (F.19) and (4.96), we obtain

. 1 1
Gy (00, + ie) = INMG Z >

2 .
0" — o] 18

_ 1 (mgle) ., .7 glo)
_ﬁopj o —if B2 (8.30)

where g(w) is the phonon DOS of the host lattice.
Substituting Eq. (8.30) into (8.27), the recoilless fraction f can be derived from
Eq. (8.22):

—In f = k*u*(0)) = %me&;}) coth ﬁ?dw (8.31)
0
where
M
ﬁg(w)
gl ) o T Teeg@)] 532
GIN R

Calculations by many authors [3, 9, 11, 14, 15, 19] all arrived at Eq. (8.31). Fre-
quencies of vibrations with very large amplitudes are solutions of the following
equation:

®m /
1- nwpr %dw’ =0. (8.33)
0 W, —w

In this case, the denominator of Eq. (8.32) shows the resonance characteristics,
i.e., the frequency of the impurity atom o, resonates with one of the host modes.
Those modes with frequencies that satisfy (8.33) are known as resonance modes.

8.1.2.2 Localized Modes

When o > wp,, we have localized modes. In this case, the Green’s function
G.,(00, w + ig) is a positive real number. It can be seen from Eq. (8.29) that a nec-
essary condition for w > wn, is 7 > 0 (impurity atoms lighter than the host ones).
In fact, # should be larger than a critical value 7.,.. When o = w, G., has a sin-
gular point because the denominator in Eq. (8.27) becomes zero. The correspond-
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ing normal modes (o) are known as local modes. In such a mode, vibration am-
plitude decreases exponentially as a function of distance from the impurity atom,
hence the name. Obviously, the frequencies of local modes must satisfy Eq. (8.29):

1 — Mo} G,y (00, ) = 0. (8.34)

According to (8.28), for a cubic lattice the above equation can be written as

2
poteiys b (8.35)
3N T o (k)
or
®m g(w/) da)'
1 = nw? L ey (8.36)

In order to determine the changes in <u?(0))> caused by the existence of local
modes, it is instructive to look at the behavior of G/, (00, ®) near w;. We now re-
place the denominator of Eq. (8.27) by its Taylor expansion near w = wy [20], in
which the first term automatically vanishes and the second is the lowest order
term (see Eq. (F.26) in Appendix F):

Im G/, (00, + ic)

=73 Gur(00, ) d(w —wr)

a 2

o [1Mow* Gy, (00, )]

-1
4
n no; 1

=— — ———1| Jw-— . 8.37

2yMyowy | 3N i [wz _ cujz(k)]z ] (CU wL) ( )

Substituting Eq. (8.37) into (8.21) gives an expression for the recoilless fraction:

1
e @ 1y coth {Eﬂth} 539
C2M qor 4 [P g(e) P '
nwLJ (wf — w/2)2 do' —1

For isotopic impurities or in cases where the force constants are approximately
the same, the vibration of the impurity atom depends strongly on the #-value, and
the amplitude increases as M decreases. When 7 is larger than the critical value
e (Where 5, > 0), the above vibrations will be mostly in discrete local modes.
The lighter the impurity atom M is, the more the modes are localized, and the
frequencies are higher. In general, it is difficult to excite these high-frequency
modes by the recoil energy after the nucleus absorbs a photon. Consequently,
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the recoilless fraction increases, which is an important fact. The opposite hap-
pens as the ratio M/M, increases. Low-frequency resonance modes gradually
dominate the vibrations, and f becomes more temperature-dependent.

If we use the Debye model to approximate the impurity vibrations, then the fol-
lowing simple relationship between 0, of the impurity and 0p of the host can be
derived [21, 22]:

M
0l = Op /ﬁo. (8.39)

This is to be expected because when the vibrations of both the impurity and the
host follow the same model, @ ~ 1/v/M. However, Eq. (8.39) would only be valid
for T=0.

8.2
The Mannheim Model

In the Mannheim model, in addition to the impurity atom mass, the impurity—
host force constant changes are also considered. However, only the nearest neigh-
bor central forces are taken into account for either the host or the impurity—host
system, and the anharmonic effects are neglected. This model was first developed
for fcc and bec lattices using group theory [23], followed by derivations using an
alternative method [17], and later it was applied to the diamond structure [2]. The
most significant contribution of the Mannheim model is that it has derived a sim-
ple and analytical expression for (u?(00)) or f, and it has been in practical use
because it agrees well with experimental results [24]. Considering only the near-
est neighbor central force seems to be somewhat a crude model, but the Mann-
heim model is the only practical one available for Méssbauer spectroscopy.

We now use the fcc lattice to illustrate the essentials of this model. Suppose the
impurity atom is at the origin with 12 host nearest neighbors. The symmetry
point group of the impurity site is still Oy (or group O plus a central inversion
i), and Eq. (8.20) will involve a 39 x 39 matrix. The irreducible representations
for an impurity site having symmetry Oy, in the fcc lattice are

T = Alg @ AZg @ ZEg @ 2F1g @ ZFZg @ Ay, @ E, @ 4F1, @ 2Fy, (840)

where each irreducible representation corresponds to one particular normal mode
in the lattice. It can be shown that only in representation Fy, is the impurity atom
involved in the lattice vibration. Fy, is a three-dimensional representation and ap-
pears four times. Therefore, in order to describe the vibration of the impurity
atom, four three-dimensional basis vectors are needed.

When studying small vibrations of a lattice or a molecule, it is customary to
use a displacement from the equilibrium position as the basis of an irreducible
representation. However, in order to simplify calculations, it is necessary to intro-

313



314

8 Mdssbauer Impurity Atoms (1)

duce a set of orthonormal symmetry coordinates (linear combination of displace-
ments) as the bases of 4Fy, [25], such that the matrices G and U in Eq. (8.16) are
block-diagonalized. Owing to cubic symmetry, we only need to consider the
x-components of the following four symmetry coordinates (see Appendix G):

So = 1x(000)

2V25S; = uy(110) 4 uy(110) 4 u,(101) + u,(101)

+ 1y (110) + 1, (110) + u,(101) 4 u,(101)
2v25S; = u,(110) + uy(110) + u,(101) + u,(101)

— uy(110) — uy(110) — u,(101) — u,(101)

(8.41)

2S5 = uy(011) + uy(011) + u,(011) + u,(011)

where u,(xyz) represents the a-direction unit displacement of the atom located at

xXyZ.
The Green's function for the host lattice is translation invariant, and only de-
pends on the relative position between atoms, as shown in Eq. (8.6). Therefore

Gop(LV) = Gup(1 = 1',0) = Gup(1 = 1) (8.42)

and other symmetry properties of Green’s functions are detailed in Appendix F.3.
The following shorthand notations will be used to avoid lengthy writing of the
results:

Uu/;(110) = Uy/;(llo7 000)7 Ux/,a(O, 0) = Ux/;(OOO, 000), (8,43)
and

g = G (000), g1 = Gu(110),

82 = Gy(110), g3 = Gy(011),

A= go + Gx(020) + Gy (200) + Giy(220)
B = G,,(220) + 2G,,(211)

C=g + Gu(211)

D = Gy(200) + Gyx(020) — G.(220) — g

(8.44)

E=Ggy(112) — g,
F = gy + 2G4 (020) + G,,(022)
H =g + Gu(121)

K = G4 (211).
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We now calculate the matrix elements of G and U in the space spanned by the
basis vectors Sy, S1, Sz, and S3 defined in (8.41):

(S0|GISo> = (1(000)|GJ14,(000)> = G,x(000) = g, (8.45a)

(SolGIS1> = <ux(000)|G|2—\1/2 [ (110) + uy (110)

+ uy(101) + u,(101) >
1 [ —
= m[cxx(no) + G (110) + G (101) + G (101) + - - ]
8
=57 O (110 = 2V2g1 (8.45b)

In the above derivations, we have used the relation G,3(l —1") = {u,(I')|Glus(1))
and the symmetry properties of Green’s functions (Appendix F.3). Similarly, we
have

(S0[G|S;> = <ux(000)|G|2—\1/i[uY(110) i _]>

8
=37 Gyy(110) = 2V2g,, (8.45¢)

{SolG|S3) = <ux(000)|G|%[ux(011) . .]>

= %Gxx(()l]-) = 2g;. (8.45d)

The calculations of some of the other matrix elements are very tedious and
would be unrevealing to be reproduced here. For example, {S,|G|S;> = A+ 2C,
which is actually simplified from a sum of 64 terms. Finally, the following matrix
elements are obtained:

[ % 2V2g V25, 2g
2V2g A+2C B 2V2H
G — | V28 AT V2 (8.46)
2V/2g, B 2E—D 2V2K
| 2g5 2V2H 2V2K F
U, (00) 2V2U(110)  2v2U,(110)  2U,(011)
272U (110)  — U, (110 —U,, (110 0
Us, V2U.(110) (110) 1 (110) . (8.47)
2V2U(110)  —Ug(110)  —Uxk(110) 0
L 2U.w(011) 0 0 — U (011)
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Next, we inverse the matrix (I — GU) to evaluate the impurity Green’s function
G'. However, in order to simplify the derivation, we have to utilize the relations
between the Green’s functions of the host lattice. The nearest neighbor forces are
given by Eq. (F.38) in Appendix F as follows:

D 00,1 G, ) = 0,00 + Mo Gor (O, ). (8.48)
Bl

Since we are only interested in the x-direction motion of the central atom in an
fcc lattice, the relevant equations derived from Eq. (8.48) are

D,(0,0)g0 + 8D (110)g1 + 8D, (110)g, + 4D, (011)g;

= —1+ Myw’g, (8.49a)
D,(0,0)g1 + Dsx (110)(A + 2C) + Dy, (110) B + 20, (011)H

= Myw’g, (8.49b)
D, (0,0)g) + Dy (110) B + @y, (110)(2E — D) + 2D, (011)K

- Moo, (8.49¢)
D,(0,0)g3 + 4D, (110) H + 4D, (110) K + Dy (011)F

= Mow?gs. (8.49d)

According to the central force approximation in Appendix E, some useful expres-
sions for our calculation are

8D, (110) = 8D, (110) = —D,(0,0), (8.50)
®,,(011) = 0, (8.51)
8Usx(110) = 8Uy(110) = Us(0,0) — Mo, (8.52)
Uy (011) = 0. (8.53)

Now we are able to simplify Eqs. (8.46), (8.47), and (8.49) to expressions
that contain only the parameters My, ®..(0,0), », A, and go, where 1=
1—®.(0,0)/®,.(0,0). After somewhat lengthy calculations, one would arrive
at the following inverse matrix:

i A A T
14+ Aa +a ———(1+a ———(1+4a 0
(a1 +a2) 2\/§( 0) 2\/2( 0)
(I—GU)_lzl *2\/2101 1*/ﬂn+bo+02 —C1 0
Al oy, e 1—Ji+by+c 0
C3 03
—2b - = -= A
I ’ V2 V2

(8.54)
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where a; = —Myw?g;, bi = —Myw?(n — 1)g;, and ¢; = —IMow?(1 — 5)g;. A is the
determinant |I — GU|, which is given by

A= (1= 21 =)L - pe?)S(?)] (8.55)
where
n w? A
o) =1 pRlEe (8.56)
and

S(@?) = —1 + Mow? G, (00). (8.57)

We notice that A = 0 is exactly the condition for having a resonance mode or a
localized mode:

1 — p(@?)S(w?) = 0. (8.58)

We now solve for G’ using the Dyson equation. Multiplying the first row of (8.54)
by the first column of matrix (8.46) and making use of Egs. (8.49a) and (8.50), we
obtain

1+ S(0?) |1 - p(?) + 1

/ o 1-7
=000 = T = )5 (8:9)

It is easy to show that, in the case of mass defect approximation only (41 = 0),
Egs. (8.59) and (8.58) reduce exactly to Egs. (8.27) and (8.29). Now, substituting
Eq. (8.59) with the complex function S(w? + ie) in it into Eq. (8.23), we get the
vibrational DOS function for an impurity atom from the unperturbed phonon
DOS as follows:

Mo g(w)

M 2
1= peA)S(A) + [ronfoglo)]

+% o(w — wr)
M M 2\12 4 a2 7 (') do’
3~ e soflpen) | B

(8.60)

Here, the first term is the contribution from the resonance modes whose frequen-
cies lie in the range of the normal modes of the host lattice. The second term is
the contribution from the localized mode (wy > wmayx), Which exists if the mass of
an impurity atom is sufficiently light and/or the binding of an impurity atom to
the host lattice is sufficiently strong.
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Equations (8.58) through (8.60) are the results of the Mannheim model, which
has been successfully applied to the following four types of impurity—host sys-
tems: simple cubic, face-centered cubic, body-centered cubic, and the diamond
structure [2]. The response function g’(w) is calculated from the g(w) of the
host lattice, which is either known or not difficult to obtain for many host sys-
tems. For a cubic lattice, the Mannheim model is still the best suitable method
for calculating the values of <(u?)» and {v?) for the impurity atom based on the
measurements of the recoilless fraction f and the second-order Doppler shift.

The method highlighted above is not the simplest; there are several other ap-
proaches that are slightly less cumbersome. The results for the function G’ given
by different authors [2, 12, 23] seem to be different at first glance, but one can
easily verify that they are all identical to Eq. (8.59). The Green’s function for the
host introduced by some authors [23] differs from Eq. (8.7) by a negative sign,
causing also a negative sign in G’. The definitions of G and U here are consistent
with Refs. [2, 13].

At the present time direct observation of the vibrational DOS for an impurity
atom is possible by using inelastic nuclear resonant scattering of synchrotron ra-
diation, as discussed in Chapter 7. Figures 8.2, 8.3, and 8.4 show the measured
and the calculated vibrational DOS for impurity >’ Fe in Al [26], Cu [26], and Cr
[27], whose unperturbed phonon DOS are given correspondingly. From these fig-
ures one can find a good agreement between experimental results and the theo-
retical curves of the Mannheim model. For Fe in Al, the measured vibrational
DOS shows that the vibrational modes are in resonance with host normal modes.

. Al-0.017 at. % Fe

Density of States (Arb. Units)

Energy (meV)

Fig. 8.2 (a) Vibrational DOS of >’Fe in Al-0.017 at.% Fe measured
using inelastic nuclear resonance scattering. (b) Vibrational DOS of Fe
atom in Al calculated on the basis of the Mannheim model with

@/®" = 0.94 [23]. (c) Unperturbed phonon DOS of Al.
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Cu-0.1at % Fe

Density of States (Arb. Units)

Energy (meV)

Fig. 8.3 (a) Vibrational DOS of >’Fe in Cu-0.1 at.% Fe measured using
inelastic nuclear resonance scattering. (b) Vibrational DOS of Fe atom
in Cu calculated on the basis of the Mannheim model with ®/®’ =
0.79 [23]. (c) Unperturbed phonon DOS of Cu.

Cr-3 at. % Fe

A

—‘/ \J\ (a)

(®)

Density of States (Arb. Units)

20 30 40 50 60
Energy (meV)

=
—
(=]

Fig. 8.4 (a) Vibrational DOS of ”Fe in > Feq 03Cro g7 alloy film measured
using inelastic nuclear resonance scattering [27]. (b) Vibrational DOS of
Fe atom calculated on the basis of the Mannheim model with ®/®’ =
1.25 [28]. (c) Unperturbed phonon DOS of Cr.

In the case of Fe in Cu, besides the resonant modes, a peak interpreted as being
the localized mode predicted by the Mannheim model was observed. The Mann-
heim model assumes harmonic forces only. Therefore, the localized modes ap-
pear as the Dirac function. Anharmonic contributions to the interatomic forces,
as well as other phonon interactions, are expected to broaden these sharp lines
into narrow frequency bands, as is observed in Fig. 8.3. As for Fe in Cr, the agree-
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ment between the measured and calculated DOS is poor because the latter was
taken for a bulk sample, not a film. So, one may get a better agreement by choos-
ing an appropriate ratio ®'/®.

83
Impurity Site Moments

In Chapter 4, we discussed how to describe lattice dynamics using frequency mo-
ments u(n) instead of using the response function g(w). For an isolated substitu-
tional impurity, the corresponding impurity site moments are defined as

ﬂ'(n):fw"g'(w)dw and 2/(0) = 1. (8.61)

Since both integrands are site-dependent, these moments must also be site-
dependent.
Based on the concept of weighted mean frequencies in Ref. [29], we might give

another definition of the nth site moment for a compositional disordered solid in
the form

8

W (n) =" B(ls) ol (8.62)

s=1

where B,(l,s) are elements of a unitary matrix given in Section 4.1.4. For a perfect
cubic lattice the normal mode s is replaced by (kj), and from Eq. (4.38) one gets
) _le(l)l* 1

1Bl9)" =—F—=35- (8.63)

Therefore, the moment defined by (8.62) reduces to the usual expression (4.105):

and in this case the indices | and o can be omitted. Therefore, the definition in
(8.62) is equivalent to (8.61).

Again according to Ref. [29] and using expression (8.62), <u?) and {v?) of the
impurity atom at I = 0 in a cubic host can be expressed, for high temperatures
(T > 0p/2), as

2 _kBT , 1 i\ 1 i 4,
{u >_M{ﬂ (72)+ﬁ(kBiT) *7%<kBiT>ﬂ(+2)+'“

3kgT
M

(8.64)
@y =

1/ kY, 1/ h\,
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And for T — 0 as

(1), P = ot (1), (8.65)

2
u® oM

="

If the prime is removed from y’ in (8.65), the expressions are also valid, but
only for the perfect lattice.

It has been pointed out [12, 29] that, for any harmonic cubic Bravais lattice
with central or noncentral neighbor forces, the moment u(+2) is given by

®,,(0,0)

2) = 8.66
u+2) =20 (5:66)
where
D (0,0) = — Y D0, ).
1£0
For a substitutional impurity atom, a similar relation can be written:
@ (0,0
1(+2) = 7"’“1(\4 ) (8.67)

where

©,,(0,0) =~ @, (0,1).

1#0

Generally speaking, contributions to ®,, (0, 0) can be made by up to the sixth or
seventh nearest neighbors, but for cubic lattices such as fcc or bec, summing up
just the nearest neighbors would be sufficient and the result is

where wy, is the maximum frequency of lattice vibration [10]. Good agreements
have been obtained between this approximation and u(+42), as shown in Table
8.1. Discrepancies between (1/2)wm? and u(+2) are only significant for a small
number of lattices. In Eq. (8.56), (1/2)wm? has been replaced with u(+2) so that
the expression is more general.

Incidentally, because of the anharmonic effect, ®’, ®, and ®’/® all depend on
temperature; thus both g’(w) and g(w) as well as the frequency moments are all
functions of temperature. For >’Fe in Cu, for example, ® and u(+2) vary about
2% for every 100 K temperature change [1].
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Table 8.1 The parameters x(+2) and f8, of cubic lattices [12].

Lattice us H(+2) 2O B B B Bia
(K) (10% rad? s72)

fcc Al 80 16.91 18.73 0.556 0.842 1.046 0.759
Ni RT 15.29 15.54 0.603 0.865 1.038 0.797
Cu RT 10.10 10.79 0.559 0.848 1.042 0.779
Kr 10 0.44 0.45 0.555 0.851 1.041 0.782
Pd RT 8.30 9.46 0.509 0.830 1.046 0.765
Ag RT 4.85 5.22 0.524 0.833 1.047 0.763
Xe 10 0.33 0.33 0.558 0.852 1.041 0.784
Pt 90 5.85 6.75 0.506 0.823 1.050 0.747
Au RT 3.45 4.32 0.443 0.788 1.063 0.695
Pb 100 0.92 1.01 0.491 0.801 1.061 0.702

bee Na 90 2.84 2.88 0.454 0.791 1.057 0.747
Cr RT 21.90 18.21 0.691 0.910 1.022 0.879
Fe RT 18.02 16.99 0.599 0.870 1.034 0.818
Rb 120 0.40 0.43 0.382 0.753 1.068 0.712
Nb RT 8.28 8.51 0.534 0.851 1.037 0.816
Mo RT 14.43 13.01 0.674 0.904 1.024 0.865
Ta RT 5.24 5.22 0.617 0.880 1.030 0.845
W RT 9.83 9.10 0.658 0.894 1.028 0.842

aRT, room temperature.

Since the relation between u(+2) and the host restoring force, Eq. (8.66), does
not depend on the specific lattice model, we may introduce a dimensionless ratio
B, for relating u(+2) to other frequency moments:

u(+2))"”*

bn = #(n)

(8.68)

Measuring frequency moments of the various orders can provide the impurity—
host force constant ratios ®'/® as an important parameter. In particular, low-
temperature ®'/® ratios can only be obtained through analysis of these mo-
ments. Since the Mdssbauer effect has the distinctive advantage in obtaining the
low-temperature data, x(—1) and x(—2) can be calculated from accurately mea-
sured f-values. As for u(+1), the result is usually not as good because the
second-order Doppler shift at low temperatures is not as pronounced.

We now summarize the results of u'(n) derived from several different lattice
models, especially the Mannheim model. Details can also be found in a few
good review articles [2, 12, 28].



8.3 Impurity Site Moments

8.3.1
The Einstein Model

The simplest model for lattice vibrations is of course the Einstein model. The
lattice is treated as independent oscillators (atoms) with the same frequency
wg = (©/ Mo)l/ 2 If there is a substitutional impurity of mass M and the new
force constant @', the frequency becomes w'g, and

% - (%2) - (1;4;)”/2 (z)m' (8.69)
8.3.2

The Einstein—Debye Model

=

Using the Debye model, the frequency moments can be expressed in terms of
Debye temperatures as in Eq. (4.109):

) =2 () o0l and ) =2 (R . 870

Substituting these into Eq. (8.69), we obtain

0L (n) = O (n) <AA44°>1/2 <V/)1/2 (8.71)

14

where the force constant ratio is written as y’/y, and called the Einstein—Debye
force constant ratio. Equation (8.71) is the result of combining the two models,
and hence known as the Einstein—-Debye model.

8.3.3
The Maradudin—Flinn Model

Using the fcc lattice as an example and taking the central force approximation,
the following expression is obtained [7]:

p(=2) M| (1-9/®) 5(1-0'/D)°
w(=2) Mo | u(+2)u(=2) 4 u(+2)u(-2)

(8.72)

This model is most suitable when the impurity only causes a small change in the
force constant.

834
The Visscher Model

Considering only the interactions among nearest neighbors in a simple cubic
lattice [30] and using the Visscher model [31], the following result has been
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obtained for high temperatures:

p(=2)_ M {1 - 0.675(1 *%ﬂ (8.73)

u(=2) Mo

which is valid for all values of ®/®’, not just small force constant changes.

8.3.5
The Mannheim Model

1. Even moments. Detailed analyses of two extreme situations (w very high and
very low) can be found in Ref. [12]. When w is very high

#(+2) Mo (3’) (8.74)

u(+2) M\ @

which is essentially the ratio of (8.67) to (8.66), consistent with the Einstein
model for n = 2. When o is very low, another important relation can be derived:

()] (875)

where

B 1 5 (0p(-2)Y
eI (HD(+2)) '

This is valid for a wide temperature range, and is not the same as from the Ein-
stein model because f_, # 1. In order to compare this with Eq. (8.72), we write
®/D" as ®/®' = [1 — (1 — ®'/®)] ! and expand it as a polynomial of the small
quantity (1 — @’ /®):

M @ ®"\?
[rli-2)erafo-3)]

This differs from Eq. (8.72) in the third term by a factor of 5/4, which is much
larger than f_,, limiting the Maradudin—Flinn model to cases with ®’ ~ ®.

Using Eq. (8.70), we may replace the moments u'(—2), u(—2), and u(+2) in
Eq. (8.75) with 0'p(—2), Op(—2), and 0p(+2), respectively, and obtain

eD(—z)} M 5 <9D(—z)>2 ( cp)

=—|(1—-—= 1-—1]. 8.77
{0{3(—2) Mo |9 \o(r2)) (8.77)
The Debye temperature 0p(+2) of the host lattice can be determined either by the
heat capacity method or by neutron scattering, which usually give consistent re-

(8.76)




Table 8.2 Frequency moments w(n) = [u(n)]"/" (x10'® rad s~} from

dispersion relations and heat capacity data [28].

8.3 Impurity Site Moments

Metal (temp. (K)) Method® o(+4) o(H+2) o(H+1) o-1) o-2) op(-3) Ref
Cu (296) NS 3.38 3.18 3.05 2.69 2.37 4.30 12, 32
NS 3.37 3.18 3.04 2.69 2.37 4.36 33
NS 3.39 3.20 3.07 2.72 2.39 4.34 34
Cu (80) NS 3.45 3.29 3.11 2.75 2.42 4.47 12, 36
NS 3.41 3.21 3.10 2.76 2.43 4.52 34
HC 338(4)  321(3) - 2722) 2432) - 12,37
HC - - - - - 4.49 35
HC 3.41(2) 3.24(1) - 276(1) 2.43(1) 452(1) 42
Al (80) NS 4.41 4.11 3.93 3.47 3.07 5.77 12,39
NS 4.43 4.13 - 3.47 3.06 5.66 39
HC 427(4)  4.06(2) - 3.39(3) 3.09(3) - 37
HC - - - - - 5.61 35
HC 436(13) 4.08(1) - 3.45(1) 3.05(1) 5.63(1) 39
Al (300) NS 4.34 4.03 - 3.35 2.94 5.37 39
Pt (90) NS 2.60 242 2.30 1.99 1.72 3.05 12, 40
HC 280(2) 2.52(1) - 1.99(2) 1.72(2) - 41
HC - - - - - 3.07 35
HC 293(1)  2.60(5) 2.41(4) 2.01(3) 1.73(2) 3.12(3) 42
V (296) XDS 3.68 3.54 3.44 3.15 2.81 5.13 12,43
HC 435(3)  4.13(3) 3.98(3) 3.49(3) 2.98(2) 5.22(4) 38

2NS, neutron scattering; HC, heat capacity; XDS, x-ray diffuse

scattering.

sults (Table 8.2), while 0'p(—2) and 0p(—2) are obtained by fitting the f versus
temperature curve. Finally, we can calculate the force constant ratio ®/®’ from
Eq. (8.77). One example of the application of the Mannheim model is the studies
of 1"Sn impurities in host lattices of Si, Ge, and «-Sn using Méssbauer spectros-
copy [44]. The results are listed in Table 8.3. A comparison of ®/®’ with the
Einstein—Debye force constant ratio /7’ shows that they do not agree. However,

Table 8.3 Mdssbauer effect results of 1'°Sn impurities in host lattices of Si, Ge, and «-Sn [2, 44].

0’2  ©al0,0) 7 £(300 K) £(300 K)
D (0, 0) ¥ (Mannheim model) (experimental)
Si 223(4) 1.92(15) 1.31(6) 0.332(14) 0.34(3)
Ge 191(4) 2.51(30) 1.48(7) 0.226(20) 0.22(3)
2-Sn 161(3) 1 1 0.125(13) 0.13(1)
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the Mannheim model force constant ratio gives an f-value in each case that
agrees very well with the experimental result.

2. Odd moments. While the even moments describe the impurity atom
motion that resembles the classical vibration, the odd moments depict the
zero-point motion of the impurity atoms. No analytical expressions of u(+1)
are available from the Mannheim model, but for 0.25 < M/M, <4 and
0.2 < 4, (0,0)/D',(0,0) < 5, two semi-empirical formulas have been derived:

R G G T e
A:t,((j:ll)) ~ (]1\/\140)1/2% (M)WZ)M(M/MM. (8.79)

For Cu as the host lattice,

a—1(11>:0.043 and b=

T 2\B,

Values of _;, 1, and B, can be found in Table 8.1.

Figure 8.5 shows plots of x'(—1)/u(—1) and u'(4+1)/u(+1) against ®/®’ for
various parameters of M/Mp, all within the ranges indicated above. The black
circles in the graphs represent calculated values using Eq. (8.60) to evaluate
g'(w) from known room temperature g(w) for Cu, followed by using Eq. (8.61)
to evaluate u(+1) and u'(+1). The solid curves in Fig. 8.5 are best fits using for-
mulas (8.78) and (8.79), whereas the dashed curves are the Einstein model results
[12].

(B; —1) =0.021.

N =

rEE) ) (1)

5'0 L 1 Ll L L L1} i ' 'l /I 5.0 A1 A J 1 L1 i1l 1 A1 -

J 3 (b) E
3.01 3.0 i
20 2.0- MMy =025 |
1.0 1.03 o
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Fig. 8.5 Theoretical predictions of (a) x'(—1)/u(—1) and (b)

' (+1)/u(41) as functions of the force constant ratio ®/®’. The solid
lines represent the results from Eqs. (8.78) and (8.79), while the dashed
lines represent the results based on the Einstein model.



8.4 Examples of Mossbauer Studies of > Fe, 1°Sn, and '’ Au Impurities

3. The McMillan ratio. It was found that an impurity’s McMillan ratio
{w)/{w™1) is also an important parameter of lattice dynamics. It is approxi-
mately a constant, and can be deduced from Méssbauer experiments. Using the
Mannheim model, the impurity McMillan ratio may be expressed in terms of fre-
quency moments. In the high-temperature limit [12]

{w) 1 @.(0,00 /1 @(0,0)\
<<w1>>m_ﬂ’<—2>_ M (/tz ”@;x(ovo))’ (8.80)

and in the low temperature limit

<<w>> VACRY
), WD

,u/
©,,(0,0) (®L,(0,0\"2_, .00\
i (o200) 7 {“ﬁ“{l‘(@;x(om) |

(8.81)

2

In summary, analysis of the f-values and their temperature dependence for
S7Fe, 9Sn, and 'Au in fcc and bec lattices shows that the Mannheim
model can adequately describe experimental results for most cases when
the force constant ratio and mass ratio fall into the following ranges:
0.65 < @,,(0,0)/®"(0,0) < 2.6 and 0.3 < M/M, <3.5. In host lattices of
more massive atoms, noncentral forces become appreciable; in some cases, the
presence of the impurity atom causes host atoms to deviate from their original
equilibrium positions, and it would not be sufficient to merely consider the
nearest neighbors.

8.4
Examples of Méssbauer Studies of >’Fe, ''°Sn, and '’ Au Impurities

As substitutional impurity atoms in Mdssbauer studies, °’Fe is the most com-
monly used isotope, followed by *°Sn. To investigate the effects of heavy impur-
ities (M/My > 1), % Au is also a suitable choice. In this section, we discuss the
experimental results using these three isotopes.

8.4.1
57Fe Impurity Atoms

The Mannheim model is very successful in describing the dynamic properties of
>’Fe impurities, because only a very low impurity concentration (10™* to 1072) is
required for obtaining a good spectrum [1], and thus the impurity atoms are iso-
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Fig. 8.6 Recoilless fractions f of >’Fe in single-crystal Cu, Pd, and Pt as
functions of T. The solid lines are Debye functions, corrected for the

anharmonic effect &(—2).

lated from each other. Mdssbauer spectra of >’ Fe in most of the cubic host lattices
such as Ag, Al, Au, Cr, Cu, Ir, Mo, Nb, Ni, Pd, Pt, Rh, Ta, V, and W have been
investigated. Figure 8.6 shows how the recoilless fraction f varies with tempera-
ture for *’Fe in Cu, Pd, and Pt [28, 45]. The parameters such as f, 0'p(n), and
force constant ratio ®/®’ for >’ Fe in various cubic hosts are listed in Tables 8.4

and 8.5.
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Table 8.4 Recoilless fraction f(T), 0p’'(—2), and 0p(—2) for > Fe impurities in cubic metals [12, 24, 25, 46, 47].!

Host T (K) f(T) Best value 0p'(—2) Op(—2) Host TP (K) £(T) Best value 0p'(—2) Op(—2)
f(m (K) (K) f(m (K) (K)
Ag RT 0644 Ni RT  0.80(1)
0.52(3) 0.81(5)  0.80(1)  505(10) 401
0.58(3) - 211
Pd RT  0.652(36)
Al RT 05402 0.652(15)
0.52(5) 0.661(6)
0.50(5)  0.50(5) 405 0.657(24) 0.659(4)  325(3) 257
4 0.813(13)
Au  RT  0.589(14) 13 0.875(15)
0.62(5) 20 0.891(6) 0.891(10)
0.583(10) 0.583(10) 164
Pt RT  0.729(25)
Cr RT  0.76(2) 0.723(36)
0.792(9)  0.790(9) 0.729(16)
0.723(8) 0.725(7)  369(3) 231
Cu RT  0.710(14) 4 0.85(5)
0.727(16) 12 0.897(10)
0.725(34) 20 0.905(8) 0.905(8)
0.710(10)
0.709(6) Rh RT  0.785(17)
0.703(7) 0.783(25)
0.710(6)  0.709(5)  372(3)  317(10) 0.78(10)
4 0.917(19) 0.781(5)  0.781(5) 255
0.910(7) 4 0.875(18)
0.911(6)  0.911(5) 0.910(6)  0.906(6)
Ir RT  0.807(25) Ta RT  0.77(4)
0.79(3) 0.76(3)
0.812(5)  0.812(5) 0.704(8)  0.704(8) 235
4 0.914(5)  0.914(5)
V. RT 0553
Mo RT  0.78(5) 0.76(3)
0.76(3) 0.547(24)
0.77(1) 0.76(1)
0.753(8) 070(1) -
0.773(11) 0.763(11) 4 0.913(10) —
4 0.907(10)
0.885(11) 0.907(10) W RT  0.86(3)
0.86(5)
Nb RT  0.63(3) 0.797(9)  0.797(9) 263
0.659(8) 4 0916 0.916(13)
0.660(10)
0.644(4)  0.648(14) 226
4 0.881(6)

0.846(10) 0.881(10)

2Values in italics may be less reliable.
bRT, room temperature.
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Table 8.5 Force constant ratio ®/®’ calculated from temperature
dependence of recoilless fraction f(T’) in 3”Fe Mdssbauer effect
experiments, from neutron dispersion and heat capacity data [12].12

Host M, Using Moéssbauer and neutron Using Using heat capacity data
‘M dispersion data neutron
dispersion , ,
o= o=
From f(T’), Impurity Host data From ﬁ From ﬁ
g(o) at To, T To —— T~26K T =~4K
and Eq. (8.57) (K)® e EED) Tox150K Tox 150K
#-1)
T ~4K
To~ 4K
Al 047  1.6(3) RT 80 - 1.6(6) -
Au 346 1.49(10) RT RT - 1.59(8) -
Cr 091 1.43(10) RT RT - 1.39(20) -
Cu 112 0.76(1) - - - - -
0.80(10) 80 80  0.81(13) 0.80(7) 0.80(4)
0.82(3) RT RT - - -
0.87(3) 471 473 - - -
0.91(3) 677 673 - - -
Ir 338 - - - - 2.15(16) 2.56(40)
Mo  1.69 2.25(15) RT RT  2.49(64) 2.31(20) 2.55(76)
Nb  1.63 1.63(9) RT RT  2.10(50) 1.67(10) 2.17(55)
Ni 1.03  0.80(10) RT RT - - -
Pd 1.87 1.72(2) - - - - -
1.72(2) 126 120 1.96(50) 1.78(9) 1.94(70)
1.78(5) RT RT - - -
1.71(4) 655 673 - - -
Pt 343 1.60(25) 78-110 90  1.97(40) 1.73(7) 2.16(53)
Rh 181 - - - - 1.84(10) 2.32(40)
Ta 318  1.84(8) RT RT  2.5(7) 1.94(15) 2.7(8)
W 323 2.42(18) RT RT  2.6(10) 2.53(21) 2.9(12)

aValues in italics may be less reliable.
bRT, room temperature.

8.4.2
119Sn Impurity Atoms

Dynamic parameters such as f, ®'/®, and 0p(—2) from several investigations of
198n impurities in Ag, Al, Au, Pb, Pd, Pt, Si, Ge, o-Sn, Cu, and Rh are summa-
rized in Table 8.6. In all experiments, the Sn concentration was higher than 1
at.%, and thus the 1*”Sn atoms cannot be treated as isolated impurities. However,
these studies have shown that for such high impurity concentrations, the Mann-
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Table 8.6 Dynamic parameters ®'/®, f, 0'p(—2), and Op(—2) for '°Sn
impurities in several host lattices [2, 12, 24, 44, 47].

Host M D5 (0, 0) f 0'p(—2) 0p(—2)
MO q)xx(ov 0) (K) (K)
Room temp. 4K
Ag 1.10 0.81(13) 0.27(1) 0.80(2) 190(8) 211
Al 4.41 0.49 0.14(2) 153(6) 405
Au 0.60 0.54 0.18(5) 0.85(2) 180(8) 164
Pb 0.57 1.64 0.016(15) 0.80(6) 88
Pd 1.12 1.08(28) 0.48(5) 262(20) 272
Pt 0.61 0.32 0.44(5) 212(9) 236
Si 4.24 0.52 0.34(3) 223(4) 526
Ge 1.64 0.40 0.22(3) 191(4) 297
o-Sn 1.00 1.00 0.13(1) 161(3) 169(7)
Cu 1.87 0.70(10) 0.30(3) 206(10) 314
Rh 1.15 - 0.44(5) 248(20) 235

60 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Temperature " (K)

Fig. 8.7 Natural logarithm of the integrated intensity as a function of
temperature for '""Sn in Pb at concentrations of (a) 1.3%, (b) 1.6%,
(c) 3.1%, and (d) 5.7%.
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heim model can still give satisfactory results. For example, implantation of *°Sn
at a concentration of 1013 atoms cm~2 and *In at 10'! atoms cm~2 in Si and Ge
resulted in the same recoilless fraction f to within 2% [24].

Figure 8.7 shows recent experimental results of 1'°Sn impurities in crystalline
PDb [48]. When the atomic concentration is varied between 1.3 and 3.1%, 0p re-
mains unchanged at 116 K; only when the concentration is raised to 5.7% does
the curve show a lower slope.

11981 belongs to group IV in the periodic table and has the same valence elec-
tronic structure as Si and Ge. Therefore, '°Sn is an ideal impurity in Si and Ge
for Méssbauer studies, and has many valuable applications. Table 8.6 gives the
results of such investigations. For 1%Sn in a Si or Ge host lattice, the impurity
response function g'(w) differs from the host response function g(w) signifi-
cantly [20], with the former having a much increased low-frequency peak. On

I Auin Cu (a)
8 ,"ICu
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s A7 1\
8 L. @}
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/a’ \ | ll'|
, M

0.24

0.20

0.16

0.12

J)

0.08

0.04

0.00
0 20 40 60 80 100 120 140

T (K)

Fig. 8.8 (a) Vibration DOS g'(w) of '’ Au impurities in Cu and g(w) of
pure Cu. (b) Experimental and calculated recoilless fraction f(T) as a
function of temperature for '*’Au in Cu.



8.5 Interstitial Impurity Atoms

Table 8.7 Values of the impurity—host force constant ratio
®',,(0,0)/®,(0,0) for 7Au in host lattices of Cu and Ag [49].

Host Au atomic M (0, 0)
concentration (%) Mo D, (0, 0)
Cu 2 3.2 1.51(4)
1.57(5)
1.63(5)
1.72(6)
Ag 5 1.83 1.54(11)
1.34(10)
1.39(10)

the other hand, very few changes were observed in the force constant ratio
®',,(0,0)/®,,(0,0) and the Debye temperature 6'p.

843
197 Au Impurity Atoms

Since the 1% Au Méssbauer transition energy (77.3 keV) is relatively high, reason-
able values of recoilless fraction f can only be observed at or below the liquid ni-
trogen temperature. There have been extensive studies of '/ Au impurities in Cu
and Ag. Figure 8.8(a) shows the dynamic response functions g(w) and g’(w) for
Cu host and Au impurities in Cu. In g'(w), the resonant modes broaden due to
the effect of a large mass difference (M/M, = 3.10) exceeding the opposite effect
of an increased force constant ratio (®'/® = 1.52). Figure 8.8(b) shows data
points and fitted curves of f versus temperature [17, 49]. Table 8.7 lists the values
of the force constant ratio ®',,(0,0)/®(0,0) obtained from fitting the f(T)
curves using the Mannheim model.

8.5
Interstitial Impurity Atoms

When the foreign atoms are located at interstitial positions, the lattice vibrations
become extremely complicated. It is very difficult to obtain a theoretical impurity
DOS g'(w) in terms of the host DOS g(w). But experimentally when the Méss-
bauer effect is used for studying the dynamic properties of lattices with interstitial
impurities, parameters such as 0'p(n) and ®'/® can be obtained by fitting the re-
coilless fraction f and second-order Doppler shift dsop using an approximate
g'(w) based on the Debye model. To date, Mdssbauer studies of interstitial impu-
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rity atoms have yielded the following general conclusions: (1) the f- and 6p-
values for interstitial impurities are very different from those for substitutional
impurities; (2) the s-electron density for an interstitial impurity also differs signif-
icantly from that for a substutional impurity; and (3) the electric field gradient at
the nucleus of an interstitial impurity atom is usually large and has a certain dis-
tribution, causing severe broadening of the spectral lines.

We now discuss two examples of Mossbauer effect studies of interstitial impu-
rities.

8.5.1
7Fe Impurities in Au

In this study, a source was produced by electroplating >’ Co into single-crystal gold
chips of 99.995% purity followed by heating and quenching [50]. When a natural
iron foil was used as the absorber, the Méssbauer spectrum has a single line as
shown in Fig. 8.9(a). The recoilless fractions f; were measured using the “wide
black absorber” technique, for the quenched and annealed samples. The f;-values
and other pertinent parameters are listed in Table 8.8.

In Fig. 8.9, the single line spectrum (Fig. 8.9(a)) demonstrates that *’Fe is at a
cubic site (the host lattice of Au is fcc) and leads us to believe that the impurities
in the quenched source occupy the substitutional positions. The linewidth
I' = 0.235 mm s~! is slightly larger than the typical value. Similar line broaden-
ing has been observed in several other fcc hosts where the nearest neighbor dis-
tance is increased. The emission spectrum of the annealed source shows an addi-
tional broadened doublet, whose centroid was shifted towards lower energy,
characteristic of an increase in the s-electron density at the Fe nucleus. This indi-

Relative Intensity (arbitrary units)

Fig. 8.9 Room temperature Mossbauer spectra of >’ Fe
in Au. (a) 90% of the Fe impurities are in substitutional
, , | sites (using a natural iron foil absorber). (b) 25% of Fe

0.5 0.0 0.5 1.0 1.5 impurities are in substitutional sites and the rest in
Velocity (mm/s) interstitial sites (using a nitroprusside absorber).
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Table 8.8 Dynamic and Mossbauer effect parameters for 3”Fe in Au [50].

Heat treatment  f; 0'b(-2) DK(0,0) I dis AEq
(296 K) (K) ®,(0,0) (mms™) (mmsT) (mms™)
(rel. to a-Fe)
Quenched 0.583(7)  282(5) ~0.9 0.235(5) —0.635(5) ~0
Annealed 0.73(1) 366(10)  ~1.3 0.40(2) —0.34(1) 0.40(1)

cates that some Fe atoms in the annealed sample now occupy the interstitial sites.
Since both f; and 0'p(—2) increase after annealing, the mean-square displace-
ment (u?) must have decreased, and the restoring force on the Fe atom is
stronger than the Au—Au interaction. Because the atomic radius of Fe is smaller
than that of Au, if the Fe impurities were in substitutional sites, they would be
less strongly bonded to the lattice than the original Au atoms, and would not re-
sult in a higher recoilless fraction f;. This is similar to the results from 3 Co in an
indium crystal, where the experimental value for f; at 297 K is 0.7 but the theo-
retical estimate using a substitutional model was between 0.15 and 0.2. There-
fore, the Co atoms are in interstitial positions. Also, it is found that the
quadrupole-split doublet does not have significant broadening, indicating that all
interstitial positions have an identical environment.

8.5.2
7Fe Impurities in Diamond

Diamond possesses many excellent physical and chemical properties, some of
which are very unique. Being a very hard material due to the strong carbon-
carbon covalent bonds, the amplitudes of the atomic vibrations in diamond are
very small and the vibration frequencies are as high as 10'* Hz. Its Debye tem-
perature, Op = 2230 K, is also the highest of all known materials. These peculiar
properties have stimulated the interest of many Mdssbauer spectroscopists. There
have been several reports of making a source or an absorber by replacing a carbon
atom with a Mdssbauer isotope, and the largest recoilless fractions have been ob-
served [51-55].

Figure 8.10 shows a typical emission spectrum of > Co in diamond, which is a
superposition of a singlet with 20% intensity and an asymmetric quadrupole-split
doublet with 80% intensity. The singlet is due to >’ Co in the high-symmetry (HS)
substitutional sites while the doublet is due to °’Co in low-symmetry (LS) intersti-
tial sites. These interstitial sites have a large average EFG of V,, = 1.2 x 108
V cm™2 resulting in AEq = 2.57 mm s™!, and have also a certain distribution of
EFG values.

Table 8.9 lists values of f; and 0'p for >’Co in diamond. These are the largest
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Fig. 8.10 Mossbauer emission spectrum of 3’ Co in diamond, with both
the source and a NasFe(CN)g-10H,0 absorber at room temperature.
The 3 Co ions were hot-implanted into the diamond target at 830 K [54].

recoilless fractions and Debye temperatures ever observed in Méssbauer spectros-
copy at room temperature. The Debye temperature #'p may also be estimated
using Eq. (8.71). Assuming ®’,,(0,0) ~ ®.,(0,0) and using 0p = 2230 K, we
find 0’'p = 1023 K, which is somewhat lower than the experimental value of
1300 K, indicating that ®',,(0,0) is actually larger than ®,,(0, 0).

There is a report of Mdssbauer studies of nanophase diamond (NPD) films,
which contain diamond-like sp3 bonds concentrated into nodules of 20 to 30 nm
in diameter and have many important solid-state properties [55]. Méssbauer spec-
tra from >/ Fe-implanted NPD showed similar results for the interstitial sites, and
the corresponding values of f and 0'p are also included in Table 8.9.

Investigation of other properties such as the types of interstitial sites, local elec-
tronic configuration of Fe impurities, and distribution of EFG is usually very chal-
lenging [55-57], and sometimes requires a strong external magnetic field.

Table 8.9 Dynamic parameters from Mdssbauer studies of >’Co in diamond.

fu o' (K) Ref.
Single-crystal diamond HS 0.97(1) 1300(150)  800(100)!b! 54
LS 0.71(3) 550(50)(2  450(50)b]
NPD films 0.69 523 55

2Derived from Méssbauer measurements between 4 and 100 K.
bDerived from Méssbauer measurements between 300 and 1100 K.
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9
Mossbauer Impurity Atoms (l1)

The previous chapter was devoted to the studies of Méssbauer impurities of di-
lute concentrations (<0.1 at.%). In this chapter, we discuss experimental results
from Mdossbauer effect studies of dynamics of several systems where the M6ss-
bauer isotope concentration is larger than 0.1 at.%. These systems include met-
als, alloys, as well as amorphous, molecular crystalline, and low-dimensional ma-
terials (surface, multilayer, nanocrystals, etc.). It is often the case that Fe is one of
the major constituents of the material, but >’ Fe is still an “isotopic impurity.” The
natural abundance for most of the Mdssbauer isotopes is not 100%. It is for this
reason that these systems are grouped together in this chapter.

Because we are now dealing with high-concentration impurities, the Mdssba-
uer atoms cannot be treated as isolated impurities and the Mannheim model is
no longer applicable. In most cases, anharmonic effects must be included be-
cause the harmonic approximation is no longer adequate. There are generally
two approaches to understanding the Mossbauer spectra from these systems. If
the dynamic response function g’(w) of the Mdssbauer atom vibrations is un-
known, the frequency moments and Eq. (5.35) are utilized to fit the spectra to ob-
tain the characteristic temperature 0p(—2) and the parameter ¢(—2). If the mate-
rial's g’(w) is available, the analysis would then be very straightforward.

9.1
Metals and Alloys

9.1.1
Metals

The dynamic properties of metals of Mdssbauer atoms have been thoroughly
studied by many researchers (some results are listed in Table 9.1). For other
metals, the Méssbauer scattering method may be applied (see Chapter 6).

As an example, we discuss zinc and its alloys, which were first extensively
studied using the Mossbauer effect in the 1980s (8, 12-19].

The Méssbauer radiation used are the 93.3 keV y-rays from % Zn, whose decay
scheme is shown in Fig. 9.1. The most prominent characteristic of this source is
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Table 9.1 Recoilless fractions and Debye temperatures in some metals.

Metal f Op (K)
Méssbauer Neutron X-ray Specific
effect diffraction diffraction heat [4]
a-Fe  0.93(3) at 4.2 K [1] 400 (30) [2] 420 (3] 460
p-Sn - 0.40(2) at 100 K [5, 6] 140 [5] 170
Au 0.189 at 4.2 K [7] 168 [7] 180
Zn  f =64x1073 at42K[8] 0, =242(10)[8] 254 [9) 250
fi=26x 107* 0 = 149(20) 169
Ni 0.09(1) at 80 K [10] 413 [10], 406 [11] 440

ﬁ‘?Ga

393.5 keV

184.6 y loms ;4600
L 9.1 LS /

933 Y
o 4 1 22 E,=93.3 keV
I;,=49.9 peV
STZn a=0.89

Fig. 9.1 Decay scheme of ®’Ga. The y-ray energy E,, linewidth Ty, and
internal conversion factor o are listed.

the long life of the excited state (9.1 ps), resulting in an extremely narrow energy
level width (T, = 49.9 x 10712 eV) and consequently a very high energy resolu-
tion. It has been reported [12] that an energy resolution of 1.3 x 107'# has been
obtained using a single-crystal ¥ Ga/ZnO source and a ¢Zn-enriched powder
ZnO sample. In order to record a spectrum of such high resolution, the appara-
tus must be isolated from the slightest mechanical vibrations. In the y-ray direc-
tion, a vibration velocity of about 0.16 um s~! would completely destroy the Mss-
bauer effect. Furthermore, due to the spin 5/2 of its ground state as shown in Fig.
9.2, hyperfine interactions would split the Zn energy levels such that a Zn
Méssbauer spectrum would appear much more complicated than the *’Fe or
198n spectrum.
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=172 =172 -1/2

172 —X 12
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Fig. 9.2 Hyperfine splittings of ¢’Zn: (a) pure quadrupole splitting and
(b) a combination of electric quadrupole and magnetic dipole
interactions.

Metallic Zn has a close-packed hexagonal lattice, with a relatively large c¢/a ratio
of 1.861, from which a large anisotropy is expected in the mean-square displace-
ment of the atomic vibrations [15].

For a polycrystalline Zn sample, a ©Zn Méssbauer spectrum should be com-
posed of three lines of equal intensity due to quadrupole splitting. However, be-
cause of the G—K effect, the intensities of the three lines are not exactly equal, as
shown in Fig. 9.3.

In order to study the anisotropic recoilless fraction (f|, fi) and atomic mean-
square displacement ({uy%),{u. %)), Mossbauer emission spectra of a single-

100.00 |

99.95

Transmission (%)

99.90

Velocity (gan/s)

Fig. 9.3 Mossbauer spectrum of a polycrystalline 7Zn metal absorber
at 4.2 K, using a ’Ga/Cu source [13].
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—60 —-40 -20 0 20 40 60
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Fig. 9.4 Mossbauer emission spectrum of a ’Ga/Zn single-crystal
source at 4.2 K with its c-axis perpendicular to the 93.3 keV y-ray
direction. The absorber is f’-brass, also at 4.2 K.

crystal ¥’Ga/Zn source have been measured [8]. The absorber used was ’-brass,
a Cu—Zn alloy with a Zn content of 49.2 at.% (%’ Zn-enriched to 91.9%). Let 0 be
the angle between the c-axis and the y-ray direction. Méssbauer spectra at several
given temperatures (4.2, 20.8, and 47 K) were obtained for ¢-values of 90°, 75°,
60°, and 55°. A typical spectrum (6 = 90°, T = 4.2 K) is shown in Fig. 9.4.
According to Eq. (5.44), a linear relation should exist between In f(0) and
cos? 0 at a given temperature. Therefore, after background correction, we may
calculate <u,?) and <{u?), as well as f| and fj, from the total area of the three
peaks. The results are listed in Tables 9.1 and 9.2, which show that the anisotropy
in the recoilless fraction is enormous. At T = 4.2 K, f1 /fj = 25,and at T = 47 K,

Table 9.2 Experimental and theoretical ©Zn recoilless fraction f,
experimental center shift §, and theoretical dsop values for metallic Zn.
Both d and dsop are relative to the respective value at 4.2 K [18].

T(K) fi (%) i (%) J dsop
(ums™) (ums™)
exp. theor. exp. theor. €xp- theor.
4.2 1.07731 1.19 0.04373:088 0.032 0.0 0.0
20.8 0.807918 1.08 0.0987 9% 0.022 0.37(8) 0.267

47 0.407542 0.62 0.0001815-0067, 0.0016 4.46(19) 4.38
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w?) (A?)

20 40 60 80 100
Temperature T (K)

Fig. 9.5 Mean-square atomic displacements in zinc, parallel and
perpendicular to the c-axis. Circles: from Mossbauer experiments;
squares and crosses: from x-ray experiments. Solid lines: fits to
Méssbauer data by the Debye model; dashed lines: results of
calculations based on the modified axially symmetric (MAS) model.

fL/fj becomes as large as about 2.2 x 10°, which means that the Méssbauer ef-
fect can hardly be observed in the direction 6 = 0.

When the Debye model is used to fit the results of {u, %) and {yy 2% at various
temperatures (Fig. 9.5), Debye temperature values of fp, =240 K and 0p =
149 K are deduced [8].

9.1.2
Alloys

9.1.2.1 The p-Ti(Fe) Alloy [20]

This is an example of obtaining a solid’s dynamics information via measuring the
second-order Doppler shift dsop. This alloy contains 9.3% Fe atoms. It has been
revealed that when Fe atoms are doped into a Ti crystal to form a substitutional
solid solution, they substantially stabilize its high-temperature bcc phase. We may
understand this effect by considering the difference between the force constants
®ipe and Oriy, or the difference between the bond energies Eripe and EiTi.
Suppose that

Etife > Erere and  Eripe > Erimis (9.1)

i.e., the attractive forces between like atoms (Ti—Ti or Fe—Fe) are weaker than
those between unlike atoms (Ti—Fe). If this is the case, there would be no Ti-rich
or Fe-rich regions, but rather a tendency to form certain ordering so that each Fe
atom would coordinate with as many Ti atoms as possible. In other words, the
tendency is to have as many Ti—Fe pairs as possible, not Ti—Ti. The above hypoth-
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Fig. 9.6 Center shift J in 3’ Fe Mdssbauer spectra of a f-Ti(Fe) alloy
(Ti+ 9.3 at.% Fe), as a function of temperature T.

esis can be verified by measuring dsop as a function of temperature and calculat-
ing the force constant ratio ®ripe/DriTi.

If we apply the Debye model for atomic vibrations by substituting the expres-
sion for {v?) in Eq. (5.4) into (5.54) and use «-Fe as the reference absorber, we
would obtain

9kBgD 1 T 4 (O00/T X3
3 =0d15 — 08 — —+(— d 9.2
18 = 90D T 52 [8+(9D) Jo or_1¥ (9.2)
where 0258 = —0.229 mm s! is the second-order Doppler shift of o-Fe at room

temperature and dis is the isomer shift (relative to o-Fe) of the Fe atoms in the
p-Ti(Fe) alloy.

When Eq. (9.2) is used to fit the data of J-values measured at different temper-
atures, as shown in Fig. 9.6, the parameters 6p and J;s are determined to be
Op = 497(26) K and 6;s = —0.154 mm s~!. The negative sign indicates that the
s-electron density at the Fe nuclei in the alloy is higher than that in «-Fe, which
is due to electron transfer from Ti to Fe [21].

Let us use the Einstein-Debye formula for calculating the difference in the
force constants. Substituting the known value of 0p(Ti) = 420 K and the above
Op-value, along with the mass values of Ti and Fe, into Eq. (8.71), we obtain the
ratio

Dri—re MFe< Op )2

- ) =1.66>1, 9.3
@1t Mri \Op(Ti) ®3)
which is consistent with the above hypothesis. This confirms that the Ti—Fe
atoms are more tightly bonded than Ti-Ti, and therefore the Fe atoms in
S-Ti(Fe) alloy stabilize its high-temperature bcc lattice.
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9.1.2.2 Cu—Zn Alloy (Brass)

In this example, the densities of states (DOS) g,(w) and gy (w) for the - and
B'-phases are both known, and a detailed comparison between theoretical and ex-
perimental results can therefore be easily carried out.

The Cu—Zn system has many different phases, and since it is an important in-
dustrial material, it has always been the focus of theoretical and experimental re-
search. Amongst the experimental methods, x-ray diffraction and neutron scatter-
ing are difficult to apply because the atomic structure factors of Cu and Zn are
almost equal and their neutron scattering wavelengths are similar. Therefore,
high-resolution Zn Méssbauer spectroscopy is ideally suited for both the a- and
f-phases of this system, which are solid solutions of fcc and bcc structures, re-
spectively.

Figure 9.7 shows the ®/Zn Méssbauer spectra from the a- and f’-phases of the
Cu—Zn alloy [22, 23]. With Zn atoms being nonmagnetic and both phases having
cubic symmetry in their structures, we would expect each of their spectra to have
a single-line absorption with no magnetic or quadrupole splitting. However, the
experimental Mdssbauer spectrum of the a-phase shows four absorption lines.
When the Zn content is varied in the range 4.3 to 24.6%, there are appreciable
changes in the intensities of these lines but almost no changes in their positions,
indicating that the four lines are not due to quadrupole interactions. They must
be due to four different configurations in the a-phase, each having a different

100.00

Transmission (% )

99.95 -

99.90 =

99.85 +

I I I I T T T T
=20 -10 0 10 20

Velocity (tan/s)

Fig. 9.7 %7Zn Méssbauer spectra of a-phase (15.9 at.% Zn) and f'-
phase (49.2 at.% Zn) Cu—Zn alloys at 4.2 K, using a ’Ga/Cu source.
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Fig. 9.8 %7Zn isomer shift 6 as a function of temperature T in a-phase
and B’-phase Cu—Zn brass. Solid curves: calculations of the second-
order Doppler shift using the phonon distribution g(w) derived from
inelastic neutron scattering data. Dotted curves: best fits to the Debye
model. Dashed curve for a-phase: using 6p = 302 K derived from
specific heat data. Dashed curve for f’-phase: using 0p = 249 K from
data for f-factor (see Fig. 9.9).
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Fig. 9.9 Recoilless fraction f and mean-square displacement <u?) as
functions of temperature T. Solid curves: calculated results based on

the phonon distributions in Fig. 9.10. Dotted curves: best fits using the
Debye model. Dashed curve for a-phase: based on 0p = 302 K derived
from specific heat data. Dashed curve for ’-phase: based on 0p = 252 K
derived from second-order Doppler shift data.



9.1 Metals and Alloys

s-electron density at the Zn nuclei. Therefore, contrary to the belief that Zn has
the binomial distribution in the a-phase of the Cu—-Zn system, there must be a
short-range order in the structure [24]. The existence of short-range order in the
a-phase was therefore first verified unequivocally by the Méssbauer effect. Subse-
quent neutron scattering experiments also supported this conclusion [25]. From
the viewpoint of lattice dynamics, the f’-phase is more interesting. At tempera-
tures lower than 725 K, the f’-phase of CugsZngs has the ordered CsCl structure,
with eight Cu atoms surrounding one Zn atom, or vice versa, having a cubic sym-
metry. Since Zn and Cu atoms have similar mass values, substituting Cu with Zn
causes very little change in the force constant [18].

How Jsop and recoilless fractions of - and ’-phases vary with temperature are
shown in Figs. 9.8 and 9.9 [22, 23]. The positions of the four subspectral lines
exhibited the same temperature dependence within experimental uncertainty.

The following two conclusions can be drawn from the experiments:

1. Either using the DOS (as shown in Fig. 9.10) or applying the
Debye model, there is a good agreement between theory and
experiments. However, recoilless fractions derived from the
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Fig. 9.10 Frequency distribution functions ge, (), g«(®), and gy () for
metallic Cu, o-phase Cu-Zn, and ’-phase Cu-Zn [23].
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DOS are somewhat higher than the experimental values.
Analyses have shown that the phonon DOS may have a
systematic deviation.

2. For the o-phase, there is an excellent agreement between
Op = (285 + 2) K from the f measurements and
0p = (277 + 13) K from the dsop measurements. For the '
phase, the corresponding values are 0p = (249 + 2) K and
0p = (252 + 2) K, about 30 K lower than the 0p-values for
the a-phase. The agreement between the fp-values from
recoilless fraction and second-order Doppler shift
measurements shows that the Debye model is a very good
approximation for describing the lattice dynamics of this
system.

9.2
Amorphous Solids

In a dilute gas, there is almost no interaction between the individual molecules,
and because the molecular positions in space are constantly changing, they are in
a completely disordered state. The main structure of an amorphous solid is a
long-range disordered state, but the atomic arrangement may not be completely
random and “short-range order” may exist, which has been revealed by a large
amount of diffraction data. Typical diffraction patterns from amorphous materials
consist of relatively wide haloes and diffuse rings, rather than the characteristic
sharp points and lines from crystalline samples. A diffuse diffraction pattern in-
dicates that the relative positions of atoms in an amorphous material are distrib-
uted in a certain range, unlike the completely random positions in a gas that
would not even give diffuse rings in its diffraction pattern. So far, there is still
lacking a single consistent description or definition for “amorphous materials.”
In contrast with a crystalline material or a gas, the structure of an amorphous
material may be depicted as in Fig. 9.11(b). Based on the experimental results

(2) (b) (c)
"- ¢ o’ o .
... .‘ ..
.’ o® .
2t . &

Fig. 9.11 Schematic representations of atomic arrangements in (a) a
crystal, (b) an amorphous solid, and (c) a gas.
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available to date, the general notion is that atoms or molecules in an amorphous
material have no spatial periodicity and no translational symmetry, and thus long-
range order is destroyed. Due to the local atomic interactions, certain characteris-
tics of ordered atomic constitution and structural arrangement are still main-
tained in small regions of nanometer size, namely, short-range order.

The two most common types of short-range order are topographic short-range
order (TSRO) and chemical short-range order (CSRO). TSRO refers to the situa-
tion where the relative atomic positions have certain order in a small region,
while CSRO refers to order in the arrangement of different atoms. If the nearest
neighbor positions of an atom are occupied by a different kind of atom, as in a
transition metal-metalloid amorphous material, the transition metal atoms and
metalloid atoms form nearest neighbors of each other because of the strong het-
eroatomic interaction.

An amorphous material is sometimes referred to as in a “glassy state” or as a
“solidified liquid.” But the liquid and amorphous structures have fundamental
differences. We may imagine that a high pressure is applied to a liquid so that
the atoms are compressed next to one another until the repulsive potential ap-
pears. The atoms cannot have diffusions or displacements beyond the typical in-
teratomic distance, but are only allowed to execute thermal motions about their
equilibrium positions. Such a material would be a solid similar to an amorphous
material.

The physics of amorphous materials is an important and active research area.
Compared with the studies of crystalline materials, research on amorphous mate-
rials is still under development. Numerous books are available, offering system-
atic descriptions of this area of research. Here, we focus on how the Mdssbauer
effect can be used for investigating the dynamics of amorphous materials.

Figure 9.12 shows Mossbauer spectra of an amorphous ferromagnet Fe;sP15Cyg
at two different temperatures, each composed of six broad absorption peaks. The
broadening is similar to the wide diffuse rings in the diffraction patterns, except
Mossbauer peak broadening here is a result of the distributions of magnetic hy-
perfine fields, EFGs, and s-electron densities at the Méssbauer nuclei. However, it
is not immediately obvious which of these hyperfine interactions, or a combina-
tion, is responsible for the broadening. References [27, 28] give a method of sep-
arating the magnetic dipole interaction from the electric quadrupole interaction.
The method uses an external magnetic field of a suitable radio frequency applied
to the amorphous sample, causing a collapse of the magnetic hyperfine interac-
tion [29]. This makes the average magnetic hyperfine field at the Méssbauer nu-
clei approach zero, leaving a pure quadrupole split spectrum. Therefore, based on
this Méssbauer spectrum with the collapsed magnetic interactions, one may mea-
sure the distribution of EFG in the amorphous sample. For example, the AEq
values in amorphous alloys FeysSijoB1s and FeqoNigP14Bg are distributed in
the range from 0 to 1 mm s~! while the most probable value occurs at
(AEQ)may = 0.5 mm s~! [27, 28]. Using this method, the Mossbauer effect is re-
garded as an effective method for revealing the short-range order in amorphous
solids.
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Fig. 9.12 Mossbauer spectra of an amorphous alloy FeysP15Cyo [26].

Regardless how the hyperfine interactions are distributed, the total area can al-
ways be easily evaluated. The harmonic approximation is obviously applicable to
the atomic vibrations in amorphous solids, so the recoilless fraction is still Eq.
(5.13), except for the lack of an exact analytical expression for <u?). The Debye
model could be used as an approximation, which must be based, of course, on
the short-range order.

9.2.1
The Alloy YFe; [30]

The crystalline and amorphous phases of the alloy YFe, are denoted by c-YFe,
and a-YFe,, respectively. We now compare their lattice dynamics parameters.

For a-YFe, at T > 58 K, the magnetic hyperfine field disappears and only a cer-
tain distribution of quadrupole splitting exists. For c-YFe,, the spectrum is a
superposition of two sextets, corresponding to two different sublattices. Figure
9.13 shows the temperature dependences of the recoilless fraction f and center
shift . Fitting each curve according to the Debye model gives 0p = (350 + 10) K
for ¢-YFe; and 0p = (280 + 10) K for a-YFe;. These results indicate that the
Debye temperature of the amorphous state is lower than that of the crystalline
state, namely 0p?/0p© = 0.80. Similar results have also been observed in other
amorphous alloys (Table 9.3).

The lower Op-values in amorphous alloys can be explained by the considerable
changes in the vibrational density of states (VDOS) in comparison with that of
the corresponding crystalline enhancement in the low-frequency region and a
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Fig. 9.13 (a) >’Fe Mossbauer absorption intensity and (b) center shift
as functions of temperature in amorphous a-YFe; and crystalline c-YFe;.

Table 9.3 The 6p2/0p € ratios of several amorphous—crystalline alloy systems.

Alloy system 0p?/60p° ratio
YFe, 0.80
PdgoSizo 0.75
ZrgsFegs ~0.79
FegoBzo ~0.73
FE40Ni40P14B(, 0.87
T T T T T T T T T
()
a-Fe
experimental 296 K
5
= !
=
‘F-a' T T T L} T T T T T
’g ) amorphous Fe
5 theoretical
L
0

Frequency @ (x10%s ")

Fig. 9.14 Phonon DOS g(w): (a) experimental result for o-Fe at 296 K;
(b) theoretical result for amorphous Fe [32].
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Table 9.4 Values of 0p(n) for a-Fe and amorphous Fe.

o(=2) (K) o(=1) (K) o(+1) (K) 0o(+2) (K)
o-Fe 390 370 375 376
Amorphous Fe 351 345 354 361

softening in the high-frequency end [31], as clearly indicated by the DOS curves
of o-Fe and its amorphous state, shown in Fig. 9.14. Calculations using the fre-
quency moments [32] also provided results (Table 9.4) that show the same trend
ofHD""/HDC < 1.

9.2.2
The A”O)’ Fe,go Bzo

We choose FegoBy as a second example, because the Fe-B amorphous alloys
have been extensively investigated by various experimental methods including
transmission Mdossbauer spectroscopy. Recently, the Fe partial VDOS of FegyBy
in both amorphous and crystalline phases were measured by the phonon-assisted
Mossbauer effect [33], as shown in Fig. 9.15. The partial VDOS for the crystalline
phase consists of two maxima at about 26 and 36 meV, typical of the bcc struc-
ture. This result for the amorphous phase is intriguing because of an excess vi-
brational density of states in the low-energy range of 4 to 21 meV, compared to
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- —o— crystalline
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Partial VDOS (meV')
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0.00
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Energy (meV)

Fig. 9.15 Fe partial vibrational densities of states in amorphous and
crystalline FegoByo, as obtained using the phonon-assisted Méssbauer
effect.
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the usual Debye law (g(w) oc @?). Such an excess is now termed a “boson peak”
and has been observed not only in a large number of amorphous materials but
also in some disordered crystals [34, 35]. The origin of the boson peak is an issue
that has attracted a lot of experimental and theoretical activities. A number of
models for its explanation have been proposed [36-41], but it is still far from
being completely understood [42, 43]. The existence of a boson peak is qualita-
tively consistent with the decrease in Debye temperature, as mentioned above.

9.3
Molecular Crystals

If a crystal is formed by van der Waals forces between individual atoms or finite
molecules whose internal structure is covalently bonded, it is referred to as a typ-
ical molecular crystal. Many pure substances of nonmetals, nonionic oxides, and
most solid organometallic compounds belong to the category of molecular crys-
tals. The Mdssbauer effect has often been applied in the studies of molecular
crystals, in particular, those with complex ions such as [Fe(CN)g]*~, [Ni(CN)4]%~,
[FG(C5H7O3)3]3+, and [Fe(HZO)G] 3+.

In general, intermolecular forces are weak compared to forces in covalent
bonds. Therefore, the normal modes of vibration in a molecular crystal are usu-
ally separated into two different groups: the intermolecular modes related to vi-
brations of the molecular center of mass and the intramolecular modes of much
higher frequencies within the molecule. Although the Born—-von Karman theory
can be used to calculate the intermolecular modes provided that the molecular
framework may be treated as a rigid one, a promising theoretical method to study
the structure and dynamics is the first-principles calculation based on the density-
functional theory (DFT). This method has been quite successful in several exam-
ples [44].

9.3.1
The Concept of Effective Vibrating Mass Mg [45]

In molecular crystals, the Mossbauer nucleus is usually at the center of the mole-
cule. If the molecule is an ideal rigid body, the mass value in the expressions for
f and dsop would just be the molecular weight. In reality, the molecule is not en-
tirely rigid due to some degree of internal vibration; the mass value may be re-
placed by an effective vibrating mass Mcg. Its upper limit is the molecular weight
and lower limit is the mass of the Méssbauer atom (57 u for *’Fe); the latter cor-
responds to the situation of Fe atoms as monatomic vibrating entities in a solid.
In the high-temperature limit and after the substitution of Mg for M, Egs. (5.14)
and (5.52) become, respectively,

2

3
Inf=-—-'—>T=InA(T) + t, 9.4
nf YT n A(T) + cons (9.4)
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3 ksT
2 MeffC

dsop = — + const. (9.5)

Because of the introduction of the effective vibrating mass M.g, the corre-
sponding Debye temperature 0p will be affected and it is therefore replaced by
the so-called Méssbauer lattice temperature 6. Equation (9.5) indicates that the
effective vibrating mass Mg can be deduced from the slope of a linear relation
between J and T:

Mg = (9.6)

 3ka [ddsop
2¢ | dT

-1 -1
_,[ddsop
_ 2
] = —4.1601 x 10 { aT

where the numerical coefficient is such that it would give Mg in u if dsop is mea-
sured in mm s~! and T in K. Substituting Eq. (9.6) into (9.4), we obtain the fol-
lowing formulas for determining the M&ssbauer lattice temperatures for °” Fe and
1198n from experimental data:

ddsop/dT] "
57 o 2 SOD
0r (> Fe) = 4.3202 x 10 [7dlnA/dT] : (9.7)
ddsop/dT]"?
119 _ 2 SOD
On("°Sn) = 7.1564 x 10 {7(1 o A/dT} (9.8)

As soon as Mg and 6y are evaluated, the recoilless fraction f can be calculated
using Eq. (9.4). For *’Fe,

~In f =7.75369 x 10°

} (9.9)
e 0%

In such an approximation the dynamics of molecular crystals is described by
parameters f, Mg, and 0y. These results have confirmed the feasibility of sepa-
rating external from internal vibrations and have allowed a measure of molecular
rigidity. Here is an example of such studies. Ferrocene, Fe(CsHs),, and its deriva-
tives [46, 47] are compounds with an Fe atom sandwiched between two CsHs
rings. Their Mossbauer spectra are relatively simple, each having a doublet due
to quadrupole splitting. Figure 9.16(a) shows In f for ferrocene and Fig. 9.16(b)
shows the center shift J for one of its derivatives, both as functions of tempera-
ture T. The Mdssbauer parameters deduced from the data are listed in Table 9.5.

As can be seen from these graphs, both In f and ¢ are indeed linearly depen-
dent on T in the range from 100 to 300 K. The values of the effective vibrating
mass M.g are about twice that of °”Fe, but only 2/3 of the molecular weight (187
u), indicating that the molecule is not entirely rigid. Taking the slope data
from rows 3 and 4 in Table 9.5 and using Eq. (9.7), Méssbauer lattice tempera-
tures have been calculated to be 0y =93 and 117 K for ferrocene and bis(3-
methylpentadienyl)iron, respectively. Using Eq. (9.9), the recoilless fraction at
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Fig. 9.16 (a) Temperature dependence of the recoilless fraction f for
ferrocene and (b) temperature dependence of the center shift J for
bis (3-methylpentadienyl)iron.

Table 9.5 Lattice dynamics parameters for ferrocene and its derivative
bis (3-methylpentadienyl)iron. The dis values are with respect to that of

o-Fe at 295 K.
Ferrocene Bis(3-methylpentadienyl)iron
Sis at 78 K (mm s71) 0.542(9) 0.482(5)
AEq at 78 K (mm s~ ') 2.452(12) 1.255(41)
—dd/dT (x10~* mm s~! K1) 3.74 4.06
—d1In A/dT (x1073 K1) 8.09(22) 5.49(41)
Meg (u) 111(8) 103(8)
Ou (K) 93 117
fat295K 0.092 0.109

room temperature f = 0.092 is calculated, which is consistent with the result of
f =0.08 as given in Ref. [48].

The deviation of the Mg value from 57 u reflects the covalency of the bonding
force between the Fe atom and its neighbors. Here, we present a recent experi-
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mental result which defines the meaning of the effective mass more precisely. In
the temperature range of 15 to 550 K, the measured central shifts of iron(III) oc-
tahedral 16a and tetrahedral 244 sites in Dy;FesO,; give an effective mass of 57 u
[49]. It is evident that the >’ Fe atoms are indeed totally ionically bonded to their
neighboring oxygen dianions. The effective mass is then expected to be exactly 57
u in the absence of covalency.

9.3.2
Vibrational DOS in Molecular Crystals

9.3.2.1 The Mode Composition Factor e?(l, j)
For a molecular crystal, Eq. (7.53) is reduced to

g(h,E) = Z(S(E — hay)|h- e(j)I, (9.10)
J

and for a particular mode with wj, it is reduced to
g(ey, h) = [h-e(j)|*. (9.11)

This means the probability that a vibrating mode j takes place is determined by
le(j)|*. On the other hand, the eigenvector e(l, j) of the Ith atom vibrating in
mode j within a molecule is related to the atomic displacement u(l, j) by [50]

172
u(l, j) _\/i\/l_l(fu(vjz)> e(l, j). (9.12)
J

Using this relation and the normalization properties of the vector e(l, j), one
easily gets

BZ(T,j) _ uz(rvj)MV
> ur(l, )My

I=1

(9.13)

where u?(r, j) is the mean-square displacement of the Méssbauer atom of mass
M,. As can be seen, both the numerator and the denominator in the right-hand
side of the above expression represent the kinetic energy of the Méssbauer atoms.
Therefore, the quantity e2(1, j) is called the mode composition factor [51]. The vi-
brating spectrum in a molecular crystal usually consists of discrete peaks. The
factor e?(l, j) offering direct information on mode character is determined by the
area fraction under each peak. We consider two simple cases. First, when the
inter- and intramolecular vibrations are completely decoupled, the mean-square
displacement in the acoustic mode is the same for all atoms, i.e., a translational
mode. Therefore, for each acoustic mode the factor is
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2 M,

e. = —_—
ac
Ms

(9.14)

where Ms is the total molecular mass. Second, consider a molecule that can be
grouped into two rigid molecular fragments with masses M; and M,. Let the
Mossbauer atom be located in the first fragment. Assuming the vibrational mo-
tion involves no translation of the center of mass, the kinetic energy associated
with the motion of the first fragment must be a fraction M;/Ms of the total ki-
netic energy. A sub-fraction of M,/M, is then associated with the motion of the
Mossbauer atom. Hence, one obtains a composition factor for the stretching
mode [51, 52]:

M, M.
2 r 2
=——. 9.15
estr M1 ]\A'2 ( )
Measuring the factor €2, permits one to calculate the fragment mass Ms:
M, M;
My=—""% (9.16)
M, + Mz@sn,

The simplest such fragment is one that contains only the Mdssbauer atom and
nothing else. In this case, the composition factor of this stretching mode reaches
its maximum value

2 _ M

[2 = .
‘max
Ms

(9.17)

The composition factor may be estimated in simple cases as done above, but in
general it is determined experimentally.

9.3.2.2 An Example

We take the hexacyanoferrate(II) compound (NH4),MgFe(CN)g [52] as an exam-
ple of application of inelastic nuclear resonant scattering in molecular dynamics.
The free complex ion [Fe(CN)g]*~ has octahedral symmetry. As mentioned in
Chapter 8, the Fe atom vibrates in two threefold-degenerate Fy, modes only (Fig.
9.17). The measured Fe partial VDOS is illustrated in Fig. 9.18 where the energies
and the widths of the peaks were found by a fit with Gaussian distributions (with
the exception of the region of acoustic modes). The spectral parameters are listed
in Table 9.6.

First, we consider the assignment of the three acoustic modes. According to Eq.
(9.14), the total area under the DOS curve due to the three acoustic modes is
equal to Mpe/Ms = 0.21 (where My =273 u). The integral over the phonon
DOS reaches this value at 12.7 meV. An acoustic peak occurs at ~8 meV. The
peaks at higher energies come from intramolecular vibrations. The largest peak
at 74.3 meV has a composition factor of €2 = 1.04, which is higher than the max-
imum value of 2 = 0.79 according to Eq. (9.17). Due to the threefold degener-

max
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Fig. 9.17 (a) Fe surroundings in hexacyanoferrate (II) complexes.
(b, c) The two vibrational Fy, modes (each with threefold degeneracy)
of the ideal octahedron that involve motion of the central Fe.
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Fig. 9.18 Fe VDOS in hexacyanoferrate (I1) at 30 K. Solid lines represent
the fits of frequency distributions for several indicated modes with
Gaussian functions.
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Table 9.6 Composition of iron partial VDOS in (NH,4),MgFe(CN)e at 30 K.

Vibrational mode Vo " V2 v3 V4
Frequency (meV) 0-12.5 37.9(6) 55.7(3) 58.0(6) 74.3(3)
Frequency (cm™1) 0-101 306(5) 449(2) 468(5) 600(2)
Width (FWHM) (meV) - 3.8(5) 1.1(2) 3.0(5) 1.4(2)

Mean force constant (N m~1) 15.7(5) 315(10) 681(8) 738(15) 1213(10)

Composition factor e? 0.19(3) 0.23(3) 1.04(3)

Vibration amplitude (A) at 0.176(1) 0.017(1) 0.013(1) 0.024(1)

room temperature

Assignment Acoustic - Stretching Degenerate
and bending stretching

acy, this peak may consist of three degenerate modes with e? = 0.35 for each
stretching mode. Equation (9.16) then gives a fragment mass M; = 102 u. This
unequivocally points to the fragment as the Fe atom and two CN groups (total
109 u), as shown in Fig. 9.17(b). Therefore, this mode can be identified as the
threefold-degenerate stretching of this fragment against the rest of the molecule.
Of course, one expects the other stretching mode where the fragment is com-
posed of the Fe atom and four CN groups (Fig. 9.17(c)). But the estimated €%,
does not allow an unambiguous assignment that is consistent with the experi-
mental data. The other three peaks have low factors e? (Table 9.6). Finally, two
peaks with higher factors e? are assigned to the second Fj, modes. These results
are basically consistent with that from normal mode analyses, even though not all
modes are pure Fe—C stretching motion, but involve both Fe—C stretching and
Fe—C—N bending components [53].

This is the simplest example. At the present time, the phonon-assisted Mossba-
uer effect has been successfully used to study the dynamics of macromolecules
such as the protein myoglobin [54]. Furthermore, the first-principles calculation
method has begun to simulate spectral measurements from molecular crystals.

9.4
Low-Dimensional Systems

9.4.1
Thin Films

In conventional Mdssbauer spectroscopy, the conversion electron method is used
for thin-film studies because of its high surface sensitivity. However, it seldom
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provides reliable data of dynamics parameters, including recoilless fraction f. In-
vestigating the vibrational properties of thin films is particularly difficult because
neither neutron inelastic scattering nor x-ray inelastic scattering is feasible for
such a small amount of material in thin films. Infrared or visible light scattering
can only provide a small part of the vibrational DOS. Recently, this problem has
been successfully solved by x-ray inelastic scattering using SR.

A variety of interesting and useful phenomena occur under glancing incidence
of x-rays on a flat surface of a material. These phenomena include total external
reflection, interference fringes from layers on the substrate, and the formation of
evanescent and standing waves [55, 56]. A valuable feature of these phenomena is
the ability to enhance the output x-ray flux considerably by the interference ef-
fects. All of these phenomena have been utilized in the studies of surfaces, inter-
faces, thin films, and layered materials.

To understand the phenomena, let us first assume that x-rays, as electromag-
netic traveling plane waves, impinge on a flat material under a glancing angle 6.
The incident and reflected waves will be coherent and interfere to generate a
standing wave with planes of maximum intensity parallel to the surface and
with a spatial period (1/2) sin 0 [55]. This describes the distance between the first
antinode and successive antinodes above the surface. In the case of total reflec-
tion, the first antinode of the standing wave coincides with the surface, where
the intensity may be up to four times the incident one.

This method becomes especially effective when the thin film under study is de-
posited on a high-reflection substrate, i.e., a material with a high electron density.
Figure 9.19(a) shows an example of an FeB film on a Pd substrate where the crit-
ical angle of the air—FeB surface is 0.(FeB). A synchrotron x-ray beam is allowed
to penetrate into the FeB film and is strongly reflected by the Pd layer. If the re-
flection angle 6 is higher than 6.(FeB), the x-ray beam, already reflected from the
Pd layer, is totally reflected back into the FeB film from the FeB—air interface, and
is therefore trapped in this film which acts as a waveguide [57]. The x-ray inside
the thin film is said to resonantly excite a guide mode, and as a result the electro-
magnetic field intensity within the thin film is strongly enhanced. Such a reso-
nance always leads to a standing wave with a periodicity equal to an integer frac-
tion of the thin film thickness — one of the conditions for resonance — and also
with the antinode planes parallel to the interfaces. This type of resonance can be
experimentally detected by deep minima in a reflection curve and by a sharp max-
imum in the secondary effect yield (e.g., fluorescence photons), shown in the left
and middle columns in Fig. 9.19, respectively. The arrow in each reflectivity curve
indicates the first-order resonance. The degree of field enhancement, the widths
of the intensity peaks, and the number of peaks depend on the layer thickness.
The intensity enhancement is most pronounced if the film under investigation
is sandwiched between two highly reflecting layers (Fig. 9.19(b)).

In a recent study, this effect has been utilized in inelastic nuclear resonant scat-
tering (INRS) to measure the vibrational DOS of a thin film. The experimental
results of a 13 nm *’Fe film on a 20 nm thick Pd layer [58] are illustrated in Fig.
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Fig. 9.19 Thin-film interference effects to enhance fluorescence signals:
(a) inside a thin film of FeB on a total reflecting Pd substrate and (b)
inside a Pd/C/Pd sandwich structure that acts as an x-ray waveguide.
The graphs also show the specular reflectivity of the structure (left
column) and the normalized field intensity as a function of depth
(middle column).

9.20, where a guide mode of first order is excited and the average fluorescence
yield inside the film reaches 6 times the incident SR intensity. At this peak, a
maximum counting rate of 30 s~! was observed which is comparable to that ob-
tained from the bulk material.

The recorded vibrational DOS of thin films of thickness 13 and 28 nm are
shown in Figs. 9.21(a) and (b). For comparison, the DOS of bulk «-Fe, obtained
from a 10 pm thick foil under the same experimental conditions, is shown Fig.
9.21(c). The most obvious feature is that the longitudinal peak at 35 meV is
broadened in comparison with the peak in bulk Fe. Much of this type of broaden-
ing may have been caused by the short phonon lifetimes in the thin film.

Assuming that each phonon is broadened in energy as a damped harmonic
oscillator, each intensity at energy E’ of the experimental DOS curve is convo-
luted with the characteristic spectrum of a damped harmonic oscillator function
D(E',E) [58, 59]:

g(E'>:J0 D(E', E)g(E) dE (9.18)
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guided mode is excited at an angle of 4.2 mrad. The inset shows the
depth dependence of intensity inside the layer. (b) Angular dependence
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the phonon spectrum recorded at an incident angle of 4.2 mrad.

1 1
" nQE (E'/E— E/E') +1/Q°

D(E',E)

(9.19)

and g(E) is the phonon DOS of the bulk «-Fe. In the convolution, the quality fac-
tor Q is the sole parameter used to fit the data. The Q-values for the 13 and 28 nm

Fe films were determined to be 13 + 1 and 25 + 2, respectively.

Using the glancing incidence technique, other thin films such as FeC,Ni on Pd
[60] as well as FeBO3 and Fe islands on a W(110) surface [58] have been studied.

Because of the development of strong synchrotron x-ray sources, one may now
directly record the VDOS in thin films without using the above technique, but rel-
atively long measurement times are required. The Fe partial VDOS of Tb/Fe
multilayers obtained with the direct method [61] is plotted in Fig. 9.22, where
the VDOS of a bulk Fe and a 175A thick a-Tb;3Fes; amorphous alloy film are
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also given for comparison. Distinct differences in the VDOS have been observed
by varying the thickness of Fe or Tb. For the thicker Fe layers (samples C, D, and
F), the VDOS exhibit phonon peaks at 36 meV (longitudinal phonons) as well as
at 23 and 28 meV (transverse phonons), all typical of bulk bcc o-Fe. For the thin-
ner Fe layers (samples A, B, and E), the VDOS have a broad and featureless peak
and they resemble that observed in the amorphous alloy films Tb;_,Fe, [62].
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9.4.2
Nanocrystals

Nanocrystalline materials, often defined as materials composed of crystallites
smaller than 100 nm, have attracted much interest in recent years. Their unusual
physical and chemical properties are related to the finite-size effect, quantum-size
effect, and large surface-to-volume ratio. A detailed study of the dynamics of
nanocrystals is one of the best ways to understand their properties. Very recently,
inelastic neutron scattering [63—66] and INRS of y-rays [67, 68], as well as theo-
retical calculations [69-71], have provided evidence of two distinct differences
in the phonon DOS of materials in nanocrystalline and bulk phases. One
such feature is an enhancement of phonon DOS at low energies. The second is
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the broadening of phonon DOS in the relatively high-energy region. These fea-
tures are not well understood and they continue to motivate more extensive inves-
tigations.

Figure 9.23(a) depicts the measured phonon DOS in nanocrystalline Fe by
INRS of y-rays [67]. For comparison, the phonon DOS of bulk bcc Fe obtained
under the same conditions is overlaid in this figure, where the dashed curve was
calculated in the same way as for the solid line in Fig. 9.21(c). The low-energy
part of the phonon DOS curve is plotted in Fig. 9.23(b), where it is clear that the
nanocrystalline DOS lies above that from bulk bcc Fe by a factor of about 2. The
DOS below 15 meV can obviously be fitted to the Debye law g(w) = aE?, where
constant a dependents on the crystallite size. Such a quadratic dependence on en-
ergy has been confirmed also by other experiments [64, 68]. However, the func-
tional dependence of the low-energy modes is controversially reported in the liter-
ature. The power-law exponent was found to be 1 [65, 69, 70], ~1.5 [71], and 2
[64, 67, 68]. At the present time, only some of theoretical calculations are fully
consistent with the experimental data.

A broadening of peaks in DOS of nanocrystalline Fe is particularly evident for
the longitudinal mode at 36 meV, and additional intensities above the high-
frequency cutoff extends to about 50 meV. Due to the negligible background
counts, INRS is a suitable method for studying the features at the high-energy re-
gion and especially the additional intensities. The broadening of DOS again can
be described by a damped harmonic oscillator model with Q =5, which pro-
duced the solid line for the nanocrystalline Fe in Fig. 9.23(a).
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Appendices

Appendix A
Fractional Intensity £(v) and Area A(t,)

Let ['s and I, be the linewidths of the source and the absorber, respectively. They
are often unequal, i.e., £ = I'y/T, # 1. Therefore, the fractional absorption inten-
sity of y-rays is the convolution between the Lorentzian emission spectrum and
the Lorentzian absorption spectrum:

_ () = 1(v)
AR
_ir AR
2] o (E-E+5)’+T2/4
t,I2/4
X {1 —exp [—W] }dE (A1)

where S = (v/c)Ep, v is the Doppler velocity of the source, and Ey and E’y are
energy peak positions of the emission and absorption lines, respectively.
Introducing two dimensionless variables
2(E — E}) 2(S+ E} — Ep)

_ _ — ) A2
x .Y T, ; (A2)

we can rewrite integral (A.1) as

B[ et/ )]
) =2 E el
£ explota/(1457)
—fi- ‘ —x+ S (A3)

Substitution of

x = tan % (A4)
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into (A.3) then gives

0) R
S nE 4y 41
r —(t./2
[ 2 sl )
4y -1 2y .
5 3 L Cosgp+t_—————5sing
¢y 1 Ay A1
Let us introduce two more variables, p and 0, so that
£2+Y2_1
m:pcoso
Yo+ 7
<0<9<E>, (AG)
2y .
Fryp
and
42

0= cos™! SR
N

Therefore, the expression in (A.5) is simplified to
(A7)

(ta/2) cos ¢

3/2\/ ™ exp[— d
F 14 pcos(y0)

In this integral, the denominator is a periodic function of ¢ with period 2z and

ey) _

can be expanded into a Fourier series

1 - )
— +(p, 0)e™? A8
1+ p cos(p — 0) n;ﬂ an(p, O)e (A.8)
where
e (T -1)"
an(ﬂ: 9) - ﬂ p : (A9)

Using this Fourier series, (A.7) becomes

_ o Il
b2 —in0 (v 1—p*— 1) J e (ta/2) cos ping 4, (A.10)

e(y)
YZlieZn Ee p

fs W
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The integral happens to match the definition of the modified Bessel function I,,
and the expression is then written as

[n]
(Y) _ a—ta/2 o[ V1=p*—1 _ta
i [Z e ( ) In( 2)} (A.11)

A e p

Using the properties of these Bessel functions, I,(x) = I_,(x) and [,(—x) =
(—1)"I,.(x), and sorting out terms containing +n and —n, we finally get

n=1

. <_\/7Llewﬂ . (%) } (A.12)

This expression was obtained by Capaccioli et al. (Nucl. Instrum. Methods B 101,
280 (1995)).
Now we continue to treat the above expression by using

VIZPEEL g g (A-13)

P

where the condition f > 0 is to guarantee that the sum in (A.12) converges. Thus,
the formula in (A.13) can be compactly written as

20 ) R 0 S E T ta
7 =1—-e""] > 2e Z(e cos nb)I, 5 ) (A.14)

n=1

If £=1, this formula reduces to the result obtained by Ruby and Hicks
(Rev. Sci. Instrum. 33, 27-30 (1962)). When resonance absorption takes place,
vy = c(Ey — E'y)/Eo, y =0, and 0 = 0, we obtain the following analytical formula
for the line shape:

S(fz’):k —td/zl< ) 26—%/22(Cf ) < ) (A.15)

which is explicitly expressed in terms of I's and I', through their ratio . In the
special case of Iy = T, i.e., & = 1, the above formula further simplifies to

&(ve) = fs [1 —e ] (tza)} ; (A.16)

which is a well-known result.
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Now we turn to the consideration of the area under an absorption line, which is
given by the integral

Alty) = r £(S) ds. (A.17)

— 00

The following is based on the derivation by Williams and Brooks (Nucl. Instrum.
Methods 128, 363 (1975)). Substituting (A.3) into (A.17) yields

Alta) = Jf k< {r 1—exp[—ta/(1+%7)] dx} ds

—o T -0 éz+(x+ Y)Z

= £ %ij {1 —exp {— 7 j_axz} } dx. (A.18)

Using the simple integral relation

t
1—e ™ = ocJ e " dt (A.19)
0

and the relation in (A.4), we may rewrite (A.18) as

ta 4
A(ty) = fs%Jo dt L dg exp {,%(1 + cos (p):|

ty n
— fsEJ dt exp (7 E) J do exp<fE cos (p>. (A.20)
2 0 2 0 2

Using the definition of the zeroth-order modified Bessel function of imaginary
argument,

Jolit) = 1o©) = | exp(¢ cos §) 4 (A.21)

where ( is real, Eq. (A.20) will be reduced to

At) = f. %n J(: dt exp (-%) o G) . (A.22)

It can be shown that

J d exp(—x)Io(x) = 1 exp(—n)[Io(n) + (). (A.23)

Finally, A(t,) is written as
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Alty) = fsran%a exp (7 %) [10 (%) +n <t2)] . (A.24)

The expression for the area A(t,) takes the above simple form. Note that A(t,)
depends on neither I, nor [y, which is a major difference between A(t,) and &(v).

Appendix B
Eigenstate Calculations in Combined Interactions

B.1
Electric Quatrupole Perturbation

The secular determinant equation (2.62) of the combined interactions is
M+ plrgi+r=0, (B.1)

where p, g, and r are given in (2.63). According to Ref. [60] in Chapter 2, the roots
of this equation are four sums

+VIHnEVR F VY (B.2)

with the signs of the square roots chosen so that

VIVEVE = ¢ (83)

where y;, y;, and y; are the roots of the cubic equation

2
3, P P4 g

£ -2 =0. B.4

AR R TI A Vi (B4)

In the case of pure magnetic interaction (i.e., R=0), p=—-10,g=0,and r=9

(see (2.63)); hence the roots of (B.4) are
y1=0 y,=4 and yp3=1, (B.5)

which satisfy Eq. (B.3).

When the magnetic hyperfine interaction is dominant and electric quadrupole
interaction is present as a perturbation, i.e., a case with R « 1, we can expand
(2.65) into a Taylor series:

pi(R) = yi(0) + p{(OR+ Y2 R2 1. (B.6)
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The zeroth approximation term is given by (B.5) and the first derivative y’;(0) can

"
(0
be shown to be zero. Letting Y‘—(') = k?, we obtain the following solutions to the
second-order approximation:
Y1 = 0+ klz RZ7
yo =4+ K2R, (B.7)
ys=1+k;R%

Because kR? « 4 and k?R? « 1, which we will neglect, such solutions y; imme-
diately satisfy Eq. (B.3), provided

ki == (3 cos? 0 — 1+ 5 sin® 0 cos 2¢). (B.8)

N =

Finally, we obtain the reduced eigenvalues

A1 =—-3+kR,
Jg =—1—kiR,
(B.9)
A3 =+1— klR,
s = +3+kiR.

B.2
The Coefficients a; . and bj,

For the eigenstates with I = 3/2, the coefficients b; ,,, in the |Im) representation
(see Eq. (2.60)) are found relatively easily by a standard procedure, namely by
solving

> [KIm| Hqu| Ime) = Gmym, Eelilbjm, = 0. (B.10)
Using the matrix elements of (2.57), the above equation can be explicitly written

as four simultaneous linear equations:

; R
(R—3cos 00— 4)bj 3, — V3 sin He’””bjyl/z +}7—\/§bj4’_1/2 =0, (B.11a)
—+/3 sin Ge“"’bjt 32— (R+cos 0+ 4)bj 12

. R
—2sin G b, 1)+ %bjd/z —o, (B.11b)
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R .
Lb',3/2 — 2sin Hel"’bj’l/z — (R — cos 6+ /Auj)bj,l/z

/3
—+V/3sin He’i”’bj_,;/z =0, (B.11¢)
R .
Lﬁbj’l/z — /3 sin He"pbj’,l/z + (R+3cos 0 — A)bj 3, = 0. (B.11d)

From (B.11d) and (B.11a) it follows that

. : R
\/§ sin 0€l¢bj7,1/2 — %bj,l/l
bj 32 = : (B.12)
’ R+3cos 0~/
. 71 R
\/g sin fe ¢bj71/2 _Lﬁbj‘—l/Z
bj 30 = - : (B.13)
R —3cos 00—/
Substituting (B.12) and (B.13) in (B.11c), we find
b1/
1 n*R*(R + 3 cos 0 — 2j) — 3y + 9 sin® O(R — 3 cos 0 — ) "
3 27R(R — 4) sin fe=*% — 2 sin 0e¥(R+ 3 cos 0 — 4;)(R — 3 cos 0 — ;) 12
(B.14)

where y = (R4 3 cos 0 — 4;)(R — 3 cos 0 — 4;)(—R + cos 6 — /). Recall the nor-
malizing equation

3/2
Yool =1 j=1,234,.. (B.15)

me=—3/2

Using the last four equations, we can find four normalized coefficients b; ,, for
each index j.

Similarly, for the eigenstates with I = 1/2, the normalized coefficients @i, m, I
(2.61) can be found for E(},1) = —E, and E(},2) = Eg, respectively:

0 (0

a1,1/2 = COS E s al.—l/Z = Sin E e,
(0 0\ i
G2,1/2 = —SIn 3) @y, —1/2 = COS 5 e’

(B.16)
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Appendix C
Force Constant Matrices (—®) in fcc and bcc Lattices

First nearest neighbors:

Lattice Atom position General matrix for Central force
force constant (—®) matrix
[n m 0 (11 0
a A
fec if(l 10) 7w o 0 ) 110
L 0 5 10 0 0
[ -7n 0 [1 -1
a . o N A
ii(l 10) -y, op O ) -1 1
Lo o g [0 o0
T (1 0 1
a A
if(l 01) 0 B 0 3 000
n 0 o _1 0 1
[ 0 - 1 0
a - n & A
if(l 01) 0 p; O 3 0 0
-7 0 o |-1 0
[ 0 0 [0 0 0
a A
iE(O 11) 0 o1 »n ) 01 1
L0 7 = [0 1 1
[ 0 0 [0
a, - F A
iE(O 11) 0 o —n ) 0 1
10 —n o« 10 -1
R 1 1 1
a A
bec +5(111) B w B HERE
_/31 B oo _1 11
[ o —$ _ﬁl- [1 -1
a - A
+2(11) B ow B 31
__/31 B o _—1 1
[on =B B (1 -1
a, - A
ii(l 11) —$ o —p 3 -1 1
L B =B ] L 1 -1
KR (11 -1
a - A
+5(117) B o B S RS
=P =P o | -1 -1 1
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Second nearest neighbors:

Lattice Atom position General matrix for Central force
force constant (—®) matrix

(g 0 0 [1 0 0]

fc and bec i%(200) 08 0 Alo 0 0

0 0 8] [0 0 0]

B 0 0 [0 0 0]

i%(ozo) 0 @ 0 Alo 1 0

[0 0 8] [0 0 0]

B, 0 0 [0 0 0]

i%(ooz) 0 8 O Alo 0 0

0 0 o [0 0 1]

The atom positions up to the fifth neighbors can be found in Appendix E. The
®-matrix is basically determined by the particular symmetry of the lattice. For
example, the ®-matrices for atoms at (a/2){2 2 0} and (a/2){1 1 0} share exactly
the same form. The ®-matrices for the third nearest neighbors in fcc and the
fourth nearest neighbors in bec lattices are described by four independent con-

stants, «, f3, y, and J.
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Appendix D

Nearest Neighbors Around a Substitutional Impurity

Assuming that a substitutional impurity atom is located at the lattice coordinate
origin (0 0 0) in an fcc or a bec lattice, its nearest neighbor atom positions are

given in the following table.

Lattice Nearest Atom positions (a/2)(x y z) Distance from
neighbors impurity
fec First nearest +(110),+(110),+(101), V2
neighbors (12) +(101),+(011),+(011) 2"
Second nearest +(200),+(020),+(002) a
neighbors (6)
Third nearest +(211),+£(121),+(112), V6
neighbors (24) +(211),+(121),+(112), 54
£(211),£(121),£(112),
+(211),+(121),4+(112)
Fourth nearest +(220),+(220),+(202), V2a
neighbors (12) +(202),4(022),4(022)
Fifth nearest +(013),+(031),+(103), V10
neighbors (24) +(130),+(301),+(310), - ¢
+(013),+£(031),+(103),
+(130),+(301),+(310)
bec First nearest + 1),+(111), V3
neighbors (8) +(111),+(117) -5
Second nearest +(200),+(020),+(002) a
neighbors (6)
Third nearest +(220),+(220),+(202), V2a
neighbors (12) +(202),4(022),+(022)
Fourth nearest +(311),+(131),4(113), V11
neighbors (24) +(311),+(131),+(113), ¢
+(311),+(131),+(113),
+(311),+(131),+(113)
Fifth nearest +(222),+(222), V3a
neighbors (8) +(222),4(222)
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! r [y,
o
—Vxlu/

Fig. E.1 Two atoms I” and | are separated by a distance r. Atom I’ is
fixed while atom [ is displaced from its equilibrium position by u.

Appendix E
Force Constants for Central Forces

Let two atoms I’ and ! in a solid be separated by a distance r. One, say atom ', is
fixed at (0 0 0), and the other is displaced from its equilibrium position by u (Fig.
E.1).

Assume that the force F between this pair of atoms is axially symmetric. The
force constant matrix involves two constants, namely a bond-stretching constant
A and a bond-bending constant B. In terms of the radial and tangential compo-
nents, u, and uy, of the displacement of atom I, the force between ! and I’ is

A B
F=Au,+Buy = —r(r-u)—5rx(rxu) (E.1)
r r

where ris the radius vector from the atom I’ to atom I. The constants A and B are
related to the spherically symmetric potential V(r) between the two atoms

o*v 10V
A=——, B=—-—. (E.2)
or r or

In order to deduce the force constant matrix, it is necessary to write (E.1) also
in the matrix notation. The vector r consists of three components, ry, r,, and r3;
hence

n
r=|ni,
L&}
r u=r'u,
rxu= Ru
where
0 —r3 1
R = 13 0 —n
—nr 141 0

In the matrix form, (E.1) is written as
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A B
F = —erTu + —ZRRTu.
r r

According to Eq. (4.16), the force constant matrix is

o(1,0) = f%(ArrT + BRRT) (E.3)

and explicitly

v V//r le lez rnrs , 1 0 0
(I)(l, 0) = riz rr ry rr | + ? 0 1 0f. (E4)
r3r 13 r32 0 0 1

As an example, we take the fcc lattice. Suppose the atom [ is at position (1 1 0)
and atom I’ at (0 0 0), then r = (v/2/2)a, 1, = r, = a/2, and r; = 0, and we have

1 V'(r)+ V' (r)/r V'(r)=V'(r)/r 0
®(110,0) = 3 V'(r)=V'(r)/r V"(r)+V'(r)/r 0 . (E.5)
0 0 2V'(r)/r

A special case of B = 0 is the so-called central force approximation, which leaves
the force along the bond direction. In this case

Vi 110
®(110,0) =—= 1 1 0 (E.6)
000
Because of
D (0,0) = = > Dy (1,0) = —4V"(r), (E.7)
1#0
we obtain
D,(0,0) = —8®,,(110,0) = —8®,,(110,0). (E.8)

Substitution of atom I’ by an impurity causes some changes in the force constant
®. The following relation is obviously valid:

D AD(LY) =0 (E.9)
T
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which leads to

AD,5(110,110) = — > AD,4(110,1') = —A®,5(110,0). (E.10)
1'#110

Here, we assume that, among the nearest neighbors of atom I at (110), only the
®-matrix for this particular pair of atoms (I and I’) changes. Inserting (E.10) into
(8.11) gives

U,5(110,110) = — U,4(110,0). (E.11)

Based on (E.8), the changes in the force constants along the x-axis will be

Use(110,0) = o [V"(r) pure — V" (F)aer ] :%[‘D;x((), 0) = 0(0,0)].  (E12)

1
2
Therefore, Eq. (8.11) can be written as

8 U, (110,0) = 8Uy(110,0) = Us(0,0) — nMoa?. (E.13)

The relative change in the ®-matrix is represented by the following parameter

Y Y i
®,,(0,0) D,.(0,0)
Appendix F

Lattice Green’s Function

F.1
Definition of Green’s Function

In the harmonic approximation, the Hamiltonian for an ordered crystal can be
written as

Z D5 (1 1y (Dug(l'). (F.1)

1
Elz 0 l B

ol B
To evaluate the mean square displacement {u?), we use the displacement—
displacement double-time Green’s function defined by

o0

Gyl o) = J dte ™ Cun(l, 1): up(11,0)> (F2)

—00
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where
CA(1); B(0)>> =F

and

A(t) = el/W7ot ge= (M Aot (F.4)

Here the upper and lower signs give, respectively, the retarded and advanced
Green's function with 0(t) being the Heaviside step function. A and B are arbi-
trary operators. Due to (F.3), @ may be replaced in (F.2) by a complex frequency
z=w+ie with Im z > 0 (Im z < 0) for the retarded (advanced) Green’s func-
tion, i.e., the retarded (advanced) Green’s function is analytic in the upper (lower)
half of the complex frequency plane. For applications in physics, the Green’s
function is always taken as the retarded one. From both these functions a new
Green’s function can be constructed which is analytic in the entire complex fre-
quency plane, except on the real axis. This new Green’s function is related to a
displacement—displacement correlation function

=k [ aw Ll
Gy(ll,z) = A dw poy— (F.5)
where
Jup(lV,0) = J | Cuy (1, 1), ug(l',0) e dt. (F.6)

Now we derive a Green’s function equation of motion to determine the Green’s
function itself. Differentiating Eq. (F.3) with respect to time and taking into ac-
count the relation

L dA(t)
= = [A(), o), (F.7)

we arrive at
ih%«A(t); B(0)))> = o(t)<[A, B]) + {[A, #5]; B)). (F.8)

It is evident that the Green’s function in the time domain can be expressed in the
form of Eq. (F.3):
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i

Goc/f(l l/7 t) =+ g(it)quoc(lv t)7 “’/f(l/v 0)]> (F9)

=t

Based on (F.8) and (F.9), we obtain

i S Gup11,1) = (0) (1,0, ug(1',0))> + e<t><[d”jﬁ’ D, o>}>, (F.10)

where the first term on the right-hand side is zero because the quantity in the
square brackets becomes zero at t = 0, and the second term is

0(t)[pa(L, ), up(V', 0)]>. (F.11)

Differentiating again produces an equation entirely in G, namely

2

d f ¢ o o " "
—Mo 5 Gop(11',8) = b00:0(1) + l;cp,y(z,z )Gp(1"L,8). (F.12)

Equations (F.10) and (F.12) have been deduced by using the following four
relations:

Uy (1) = —%[uu(l)7 Ho| = P;/j(j),

i

px(l) = h[pa(l),]//o} = Z(Da/f(lvl,)u/f(llvt)v
I.p

[us(1), pp(l")] = ihdydag,
[ua (1), us(1")] = [pa(1), pp(1")] = O.

Fourier transforming (F.12) gives the equation

> [Mow?8,,00 — @y (L1 G171, 0) = S0, (F.13)

1
which can be abbreviated in the matrix notion (the Dyson equation) as
(Myw? — ®)G(w) =1, (F.14)

or

G(0) = (Myow? — ®) .
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The frequency-dependent Green’s function satisfying Eq. (F.13) is

Gyl ) = 1 Ze‘“(kj)e;(kj)eik-(u').

- NM, k,j w’ — wjz(k)

(F.15)

In a compositionally disordered crystal, the atoms are generally assumed to be
placed randomly at the sites of a regular lattice. In the harmonic approximation,
the Hamiltonian of such a lattice is

oy 201 37 0L (Dug(l) (F.16)
’ T ZMI 2l‘l/ o, f » ’ / . ‘

There is an equation similar to (F.13) for the Green’s function G’ in the dis-
ordered crystal:

Z[lezéot}'éll’ — (I);}(l, l”)}G}l,ﬂ(ll/l/, CO) = 51/)75”/4 (F17)

1"y

When the mass differs from site to site, it is more convenient to introduce the
dynamical matrix D’ with the elements

. (1,1")

D! (11" = . F.18
R (F.18)

Then, in the matrix notation, the equation (F.17) can be written as
(Mw? — ®')G'(0) = (Iw* — D')M'2G' (w)M'? = I. (F.19)

F.2
The Real and Imaginary Parts of G

The real part of G is symmetric and the imaginary part is antisymmetric with
respect to w:

Re{G(w)} = Re{G(—w)},

(F.19)
Im{G(w)} = ~Im{G(-w)}.
Using the correlation function (F.6) and the identity
1 x , & 1 _
xii8:x2+82_19€2+87p; T ind(x) (E.20)
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(where p indicates the Cauchy principal value and ¢ — +0), the discontinuity of

the Green’s function across the real axis is

G(w+ig) — G(w — ie) = 2i Im G(w + i¢)
(1- eﬁ“w’>s<w'>} i’

_ L [asesen
S 2nh)_| o—o +ie w—o' —ie
- 7%(1 — PV S(w), & — +0. (F.21)
Making use of the symmetry relations, we can write
1 ) . “  do’ ,
Re G(w) == [G(w + ie) + G(w — ie)] = =p ; Im G(w')
2 T —w®
0 !
_1 J m G() 42, (F.22)
s 0o W~ —w
and similarly
(F.23)

2w J‘x Re G(o') , ,
do’,
—-—w

Im G(w) = -—p S

which are known as the Kramers—Kronig relations.
Finally, we consider the behavior of Im G'(w) near a local mode ;. Replacing
o by o + ie in (8.27) leads to

G, (00, i
Im G, (00, + i¢) = Im ( el i2) . (F.24)
1 — nMo(@ + ie) "Gy (00, 0 + ie)

The denominator may be expanded around o = wy:

1 — Mo®? Gy (00, 0 + ie) = [1 — nMo? G, (00, ;. + ic)]
d
+df[l — Mo (@ + i£) > G, (00, @ + ie)] (0 + ie — o) + - - - (F.25)
where the first term on the right-hand side is zero. Taking account of (F.21), we

rewrite (F.24) as

Im G,,(00,0 + is) = n— Can(00, ) 3w — o). (F.26)
P [nMowZGW(OO, )]
w
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F.3

Symmetry Properties of the G-Matrices

The expression in (F.14) indicates that, for a perfect crystal, the G-matrices and
®-matrices have the same symmetry properties. We take the fcc lattice again as
an example. The G-matrices between the central atom and its first and second
nearest neighbors are given in the following table.

Nearest neighbors

Atom positions

Green'’s function
matrices

First nearest neighbors

Second nearest neighbors

a & 0
2 & 0
L 0 0 83
(g1 —& O
-2 & 0
L 0 0 83
g 0 &
0 83 0
2 0 g
a 0 —g
0 83 0
-2 0 @
2 0 0
0 g 2
10 & &
(g5 0 0
0 @ -
L0 —& &
e 0 0]
0 85 0
L 0 0 85 ]
e 0 0]
0 84 0
L 0 0 85 ]
e 0 0]
0 85 0
L0 0 g
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Here the elements g, g1, g2, and g; are given in Eq. (8.44). The G-matrices for the
third, fourth, and fifth nearest neighbors can all be written in a similar manner.

F.4
The Mean Square Displacement {u?(0)) and the Recoilless Fraction f

Fourier transforming (F.6) yields

uy (1, t)u/](l/70)> = Zian‘ic \Ja(ﬁ(l l/,a))efiwt do

— iJ ]u/f(l l/, w)efﬂhmei(ut do

27'50

+ iJ (1 w)e ™ do. (F.27)
27'[ 0

Therefore, the mean square displacement of an isolated impurity atom in a cubic
host crystal can be found by letting | =1' = 0 be the impurity site. Since the
vibration of this atom is isotropic we need only consider, say, the x-component

of (u?», so

0

<u3 (O)> =lim <ux(0, l‘»)l/qu(o7 0)> = iJ. ‘]w(()(), w)(l + efﬂhm) do
=0 27 )o

_ 7@[ o coth (ﬁﬁw) Im G._(00,» + i¢) do. (F.28)

o 2

Hence, we get the recoilless fraction f for an impurity (Mdssbauer) atom in a
cubic host:

2 o0
f=exp [” J coth (MT(D) Im G, (00, + ic) dw] . (F.29)
T Jo

F.5
Relations Between Different Green’s Functions G,4(/ I’,w)

For nearest neighbor forces only, we may rewrite the equation of motion (4.36) in
the following alternative form:

1 . a1 1 . .
=3 ®,5(0,0)e(kj) + Y _ ™ " 0,4(0, ey (kj) = o] (k)e,(kj) (F.30)
Mo B [ Mo B
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where I denotes the position vector of a nearest neighbor around the atom at the
origin, and ®,;(0, 0) and ®,4(0, 1) represent @,5(000, 000) and ,;3(000, 1), respec-
tively. Multiplying (F.30) by e; (kj), dividing it by N[w® — w!(k)], and then sum-
ming it over the first Brillouin zone in the k-space, we have

1 kies(k
anlﬁOO)NMOZ e (kj )ﬂz((li))

kj CO 760]

1 k kj) ..
+ZZ(DWOZ NMOZ (J)eﬂ((li)) ikl

k(,!]—CUJ

_ ;;j(l M-ﬂf(l@) lex(kj)) (F.31)

Using Egs. (4.41) and (F.15), this equation can be simplified to
®,,(0,0) G, (000) +Zq>m 0,)Gu(l) + > > @p(0,1) Gyl
1 p#o

= —1 + My»?G,,(000). (F.32)

Two more similar relations can be obtained by multiplying (F.30) by ¢ (kj)e kT’

* N L —ik-I’ : .
and e (kj)e ™", respectively:

®,,(0,0)G +Zq>moz )Gl =1) 4> > ,p(0,)Goy(l - 1)

I p#a
= Myw? G (') (F.33)
©,,(0,0)Go(=1) + > ©,,(0,1)G )+ 30> @,(0,1)Gp (1 - 1)
1 I p#o
= Mow?G,, (1) (F.34)

where I’ denotes one of the nearest neighbor sites. It is easy to see that the above
three relations can be combined into one:

D 0, (0,) Gy (L, 0) = =d,p001 + Mocd® GOV, ). (F.35)
B
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Appendix G
Symmetry Coordinates

The best method of determining the normal vibrations in cases of symmetrical
crystals or molecules has proved to be the method of “symmetry coordinates.”
Consisting of linear combinations of atomic displacements u;, these coordinates
serve as basis functions of various irreducible representations of a symmetrical
group. The symmetry coordinates are closely connected with the normal coordi-
nates; the latter can be linearly represented by the former and, in some cases,
they are even identical to each other. For instance, the symmetrical nonlinear
molecule H,O belonging to the C,, point group has two normal vibrations of ir-
reducible representation A; and one of B, i.e., the total representation is decom-
posed into 2A; @ B;. For B there is only one unambiguous normal vibration,
and hence the symmetry coordinate is identical to the normal coordinate. For
Ay, on the other hand, there is an infinite number of possible symmetry coordi-
nates and the actual normal coordinates are linear combinations of two mutually
orthogonal symmetry coordinates. In the case of the linear symmetrical CO, mol-
ecule, the symmetry coordinates are the same as the normal coordinates.

The monatomic cubic crystals, such as simple cubic (sc), body-centered cubic
(bcc), and face-centered cubic (fcc), have the highest symmetry. Suppose a substi-
tutional impurity atom (say, a Méssbauer atom) is at the origin of the coordinates,
i.e., at the (000) lattice site, and is coupled to its nearest neighbors to form an
impurity space. The irreducible representations for an impurity site having sym-
metry Oy, in this host lattice are

rsc :Alg@Eg®F1g®F2g®3F1u<‘BF2m
Thee = Alg ) Eg D Flg @ 2F2g DADPE, D3F1, D FZu’ (Gl)

chc:A1g®A2g@2Eg®2F1g@2F2g @ Az, ® E, @ 4Fy, @ 2Fy,.

For a single impurity, we are only interested in the triply degenerate Fy, mode in
which the impurity atom moves.

Again we take a host fcc lattice as an example to discuss in details how the
basis functions — the symmetry coordinates — for the irreducible representation
Fy, are found. In the impurity space we have a total of 13 atoms and hence 39
degrees of freedom. At first sight, a basis set for 4F;, should have 12 symmetry
coordinates:

Sj(x),Sj(y),Sj(z) (J: 0,1,2,3). (GZ)

But one can easily show by group theory that only 4 symmetry coordinates, say
the 4 x-component symmetry coordinates Sj(x), are needed. We introduce
the following notation for the unit displacements of 13 atoms: u,(XYZ) = x;,
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uy(XYZ) = yi, and u,(XYZ) = z;, where the site number i and the respective
coordinate are

i= 0 1 2 3

N
v
[*}

(XYZ)= (000) (011) (011) (011) (011) (101) (10T7)
i= 7 8 9 10 11 12
(Xyz)= (101) (101) (110) (110) (110) (110)

The symmetry operations R and their respective matrices I'(R) for the irreducible
representation Fy, are given as follows:

100 1 0 0 -1.0 0
E: [0 1 0 Cx:lo -1 0 c:lo 1 0
00 1 0 0 -1 0 0 -1
-1 0 0 [0 0 1 0 0 -1
ci:|l 0 -1 0 C¥: 11 0 0 cZl-1 0 0
0 0 1 0 0 0 1 0
[0 o0 1] [0 0 —1] [0 1 0
G l-1 0 0 Gt 0 0 Grlo o1
|0 -1 0] [0 -1 0 | 100
[0 -1 0] [0 -1 0] o 1 0
G lo o0 o1 Cy o 00 -1 Grlo o0 -1
-1 0 0] 1 0 0 | -1 0 0
[0 —1 0] [0 1 0] 0 -1 0
Cz |1 0 0 (1 0 0 -1 0 o
0 0 1] 0 0 -1 0 0 -1
[0 1 0] [-1 0 o] [1 0 o]
Ci:|-1 00 o o001 cxlo 0 -1
|0 0 1] | 0 | 01 0 |
[1 0 o] (-1 0 o [0 0 —1]
Ci:lo 0 1 o o -1 o 1 0
[0 -1 0] 0 -1 0 (1 0 0 |
0 0 -1 [0 0 1 [0 0 1]
10 -1 0 C&F |0 -1 0 cl1o 10
-1 0 0 1 0 0 -1 0 0]

Now we start to derive the symmetry coordinates by the standard projection op-
erator which in our case is



Appendix G Symmetry Coordinates

Py =) T*(R),R
= N{()E+ (1)C} + (—1)C) + (-1)CF + (1)) + (1)C;
+(W)C + (“1)CF + (—D[(DE+ (1)CF + (-1)C + (-1)C5
+(=)CF + (1)C + (1)E + (-1} (G3)

where N is the normalization factor. First, we choose x, as a generator. The pro-
jecting operation gives

1511360 = ZN(xO + X0 + Xo + Xo + Xo + Xo + Xo + X?()) = 16Nxy;
hence we have
So oc Xo. (G.4)

To proceed to find the remaining symmetry coordinates, we let x5 be another gen-
erator. The projecting operation gives

Prixs = 2N(xs5 + %6 + %7 + Xg + %o + X10 + ¥11 + X12),
and similarly

1311366 = 1311967 = 1311368 = 1511969 = 13113610 = 13119611 = 13119612 = 1311365-
Combining the above eight identical results, we obtain

1311(965 + %6 + %7 + %8 + %9 + %10 + %11 + %12)

= 16N (x5 + x6 + %7 + x5 + X9 + %10 + %11 + %12)
and therefore we find the second symmetry coordinate:
S1 oC X5 + X6 + X7 + X5 + X9 + X10 + X11 + X12. (G.5)
The next step is taking zs as another generator and we have
Piizs = 2N(zs — 26 — 27 + 28 + y9 — Y10 — Y11 + ¥12)
and also
_131126 = —131127 = 131128 = 1511)’9 = —1311 Y10 = —1511)211 = 1311 Y12 = 15112’5-

Combining these results gives
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1311(25 —25—27+ 23+ Yo — Yo — Y11 + y12)

= 16N(2z5s — 26 — 27 + 28 + Y9 — Y10 — Y11 + Y12)-
Therefore
Sy oczs —26 — 27+ 28+ Yo — Y10 — Y11 + Y12 (G.6)
Finally, the fourth symmetry coordinate can be calculated in a similar way:
S3 o€ x1 + X3 + X3 + x4. (G.7)

From (G.4) through (G.7), the four orthonormal symmetry coordinates, trans-
forming as the first row of the representation F;, of Oy, are calculated as follows:

So = %o,
1
M :7(3@ +x6+x7+x3+x9+x10+x11+x12),

2V/2

S —1 ( + 23 + + ) (G.S)
= 25 — Zg — 2 Z — — R
2 2\/2- 5 6 7 8 T Yo — Y10 — Y11 T Y12

1
S3 :E(x1+xz+x3+x4).

Appendix H
Mass Absorption Coefficients

The following table lists the mass absorption coefficients (cm? g~1) for elements
from Z =1 to Z =94. [G.]. Long, T.E. Cranshaw, and G. Longworth. The ideal
Méssbauer effect absorber thickness. Mossbauer Effect Ref. Data J. 6, 42—49
(1983).]
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